首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We present compositional data for 358 lithic fragments (2-4-mm size range) and 15 soils (<1-mm fines) from regolith samples collected at the Apollo 12 site. The regolith is dominated by mare basalt, KREEP impact-melt breccias (crystalline and glassy), and regolith breccias. Minor components include alkali anorthosite, alkali norite, granite, quartz monzogabbro, and anorthositic rocks from the feldspathic highlands. The typical KREEP impact-melt breccia of Apollo 12 (mean Th: 16 μg/g) is similar to that of the Apollo 14 site (16 μg/g), 180 km away. Both contain a minor component (0.3% at Apollo 12, 0.6% at Apollo 14) of FeNi metal that is dissimilar to metal in ordinary chondrites but is similar to metal found in Apollo 16 impact-melt breccias. The Apollo 12 regolith contains another variety of KREEP impact-melt breccia that differs from any type of breccia described from the Apollo sites in being substantially richer in Th (30 μg/g) but with only moderate concentrations of K. It is, however, similar in composition to the melt breccia lithology in lunar meteorite Sayh al Uhaymir 169. The average composition of typical mature soil corresponds to a mixture of 65% mare basalt, 20% typical KREEP impact-melt breccia, 7% high-Th impact-melt breccia, 6% feldspathic material, 2.6% alkali noritic anorthosite, and 0.9% CM chondrite. Thus, although the site was resurfaced by basaltic volcanism 3.1-3.3 Ga ago, a third of the material in the present regolith is of nonmare origin, mainly in the form of KREEP impact-melt breccias and glass. These materials occur in the Apollo 12 regolith mainly as a result of moderate-sized impacts into surrounding Fra Mauro and Alpes Formations that formed craters Copernicus (93 km diameter, 406 km distance), Reinhold (48 km diameter, 196 km distance), and possibly Lansberg (39 km diameter, 108 km distance), aided by excavation of basalt interlayers and mixing of regolith by small, local impacts. Anomalous immature soil samples 12024, 12032, and 12033 contain a lesser proportion of mare basalt and a correspondingly greater proportion of KREEP lithologies. These samples consist mainly of fossil or paleoregolith, likely ejecta from Copernicus, that was buried beneath the mixing zone of micrometeorite gardening, and then brought to the near surface by local craters such as Head, Bench, and Sharp Craters.  相似文献   

2.
Feldspathic Mare Basalts at the Apollo 17 Landing Site, Taurus-Littrow   总被引:1,自引:0,他引:1  
O'HARA  M. J. 《Journal of Petrology》2001,42(8):1401-1427
The basalt target rocks that have been converted to regolithacross the lunar maria are everywhere more feldspathic and lessmafic than the basalt hand specimens recovered from four Apollolanding sites, an effect not due to either horizontal or verticalmixing with adjacent highland materials. These crushed targetrocks need to be characterized by direct chemical and petrographicanalysis of the lithic fragments of basalt in the regolithsand by determination of the phase equilibria in and adjacentto these compositions at low pressure. Such data are availablefor the basalts of Mare Crisium and Mare Nubium (Luna 16, 24)and for Very Low Titanium basalt, first defined by three lithicfragments from the Apollo 17 core. These are all feldspathicbasalts, as are those from the Mare Tranquillitatis and OceanusProcellarum soils (Apollo 11, 12). Such data are lacking forthe principal basalt components at Mare Imbrium and Mare Serenitatis(Apollo 15, 17). The thoroughly investigated Apollo 17 landingsite at Taurus–Littrow, SE Mare Serenitatis, providesan example where other published information may be used toarrive at estimates of the composition of the feldspathic marebasalt that was the principal target material for regolith formation.This crushed basalt composition is that of a liquid close tobeing in simultaneous equilibrium with all of olivine, plagioclase,calcium-rich pyroxene, spinel, armalcolite and ilmenite at lowpressure. The simplest explanation would be that the basaltthat dominated the formation of the regolith comes from a differentflow unit than the hand specimens, but it strains credulitythat not a single hand specimen can be positively assigned tothat upper unit, and not a single soil sample can be positivelyidentified as having formed principally from the unit that providesthe hand specimens. KEY WORDS: cotectic; lithic fragment; lunar; target rock; regolith  相似文献   

3.
Twenty-one 2–4 mm rock samples from the Apollo 12 regolith were analyzed by the 40Ar/39Ar geochronological technique in order to further constrain the age and source of nonmare materials at the Apollo 12 site. Among the samples analyzed are: 2 felsites, 11 KREEP breccias, 4 mare-basalt-bearing KREEP breccias, 2 alkali anorthosites, 1 olivine-bearing impact-melt breccia, and 1 high-Th mare basalt. Most samples show some degree of degassing at 700–800 Ma, with minimum formation ages that range from 1.0 to 3.1 Ga. We estimate that this degassing event occurred at 782 ± 21 Ma and may have been caused by the Copernicus impact event, either by providing degassed material or by causing heating at the Apollo 12 site. 40Ar/39Ar dating of two alkali anorthosite clasts yielded ages of 3.256 ± 0.022 Ga and 3.107 ± 0.058 Ga. We interpret these ages as the crystallization age of the rock and they represent the youngest age so far determined for a lunar anorthosite. The origin of these alkali anorthosite fragments is probably related to differentiation of shallow intrusives. Later impacts could have dispersed this material by lateral mixing or vertical mixing.  相似文献   

4.
Abundances of O, Si, Al and Mn have been determined in Luna 20 fines sample 22001,9 by instrumental neutron activation analysis. The abundances of O, Si and Al are among the highest we have observed in lunar samples and reflect a highlands origin for much of this regolith sample. The Luna 20 abundances reported here most closely resemble those we have determined in four samples of two Apollo 16 fines, rock 14310, and a clast from breccia 15459. The Luna 20 OSi ratio of 1.96 ± 0.05 is similar to that in most other lunar samples, but the AlSi ratio of 0.532 ± 0.024 is exceeded only by our data on the Apollo 16 fines. This AlSi ratio is in agreement with the value of 0.55 ± 0.06 determined by the remote X-ray fluorescence experiment for the highlands between Mare Crisium and Mare Smythii which lie near the Luna 20 site (Adleret al., 1972).  相似文献   

5.
Accurate estimates of global concentrations of Th, K, and FeO have an important bearing on understanding the bulk chemistry and geologic evolution of the Moon. We present empirical ground-truth calibrations (transformations) for Lunar Prospector gamma-ray spectrometer data (K and Th) and a modified algorithm for deriving FeO concentrations from Clementine spectral reflectance data that incorporates an adjustment for TiO2 content. The average composition of soil samples for individual landing sites is used as ground-truth for remotely sensed data. Among the Apollo and Luna sites, Apollo 12 and 14 provide controls for the incompatible-element-rich compositions, Apollo 16 and Luna 20 provide controls for the feldspathic and incompatible-element-poor compositions, and Apollo 11, 15, and 17, and Luna 16 and 24 provide controls for Fe-rich compositions. In addition to these Apollo and Luna sample data we include the composition of the feldspathic lunar meteorites as a proxy for the northern farside highlands to extend the range of the calibration points, thus providing an additional anorthositic end-member composition. These empirical ground-truth calibrations for Lunar Prospector Th and K provide self consistency between the existing derived data and lunar-sample data. Clementine spectral-reflectance data are used to construct a TiO2-sensitive FeO calibration that yields higher FeO concentrations in areas of high-Fe, low-Ti, mare-basalt-rich surfaces than previous FeO algorithms. The data set so derived is consistent with known sample compositions and regolith mixing relationships.  相似文献   

6.
Since the Apollo 14 mission delivered samples of the Fra Mauro formation, interpreted as ejecta of the Imbrium impact, defining the age of this impact has emerged as one of the critical tasks required for the complete understanding of the asteroid bombardment history of the Moon and, by extension, the inner Solar System. Significant effort dedicated to this task has resulted in a substantial set of ages centered around 3.9 Ga and obtained for the samples from most Apollo landing sites using a variety of chronological methods. However, the available age data are scattered over a range of a few tens of millions of years, which hinders the ability to distinguish between the samples that are truly representative of the Imbrium impact and those formed/reset by other, broadly contemporaneous impact events. This study presents a new set of U-Pb ages obtained for the VHK (very high K) basalt clasts found in the Apollo 14 breccia sample 14305 and phosphates from (i) several fragments of impact-melt breccia extracted from Apollo 14 soil sample 14161, and (ii) two Apollo 15 breccias 15455 and 15445. The new data obtained for the Apollo 14 samples increase the number of independently dated samples from this landing site to ten. These Apollo 14 samples represent the Fra Mauro formation, which is traditionally viewed as Imbrium ejecta, and therefore should record the age of the Imbrium impact. Using the variance of ten ages, we propose an age of 3922 ± 12 Ma for this event. Samples that yield ages within these limits can be considered as possible products of the Imbrium impact, while those that fall significantly outside this range should be treated as representing different impact events. Comparison of this age for Imbrium (determined from Apollo 14 samples) with the ages of another eleven impact-melt breccia samples collected at four other landing sites and a related lunar meteorite suggests that they can be viewed as part of Imbrium ejecta. Comprehensive review of 40Ar/39Ar ages available for impact melt samples from different landing sites and obtained using the step-heating technique, suggests that the majority of the samples that gave robust plateau ages are indistinguishable within uncertainties and altogether yield a weighted average age of 3916 ± 7 Ma (95 % conf., MSWD = 1.1; P = 0.13) and a median average age of 3919 + 14/-12 Ma, both of which agree with the confidence interval obtained using the U-Pb system. These samples, dated by 40Ar/39Ar method, can be also viewed as representing the Imbrium impact. In total 36 out of 41 breccia samples from five landing sites can be interpreted to represent formation of the Imbrium basin, supporting the conclusion that Imbrium material was distributed widely across the near side of the Moon. Establishing temporal limits for the Imbrium impact allows discrimination of ten samples with Rb-Sr and 40Ar/39Ar ages about 50 Ma younger than 3922 ± 12 Ma. This group may represent a separate single impact on the Moon and needs to be investigated further to improve our understanding of lunar impact history.  相似文献   

7.
The concentrations of uranium, thorium and lead and the lead isotopic composition of Luna 20 soil were determined. The data indicate that the Luna 20 soil is mainly a mixture of highland anorthosites and low-K basalt, but little KREEP basalt. The U-Th-Pb systematics are discussed in comparison with other lunar soils, especially with Apollo 16 soils which were collected from a ‘typical’ highland region. The data fit well in the Apollo 16 soil array on a U-Pb evolution diagram, and they exhibit excess lead relative to uranium. This relationship appears to be a characteristic of highland localities. Considering the previous observations of lunar samples, we infer that lead enrichment in the soil relative to uranium occurred between 3.2 and 3.9 b.y. ago and that the soil was disturbed by ‘third events’ about 2.0 b.y. ago. A lunar evolution model is discussed.  相似文献   

8.
The laser 40Ar/39Ar dating technique has been applied to five Luna 16 basalt fragments and one impact glass, and nine Luna 24 basalt fragments and one breccia. The textures of these basalts are fine-grained ophitic and coarse-grained basalts. The samples contain high levels of solar and lunar atmospheric argon acquired during their residence on the lunar surface. These trapped argon components are predominantly released at low temperature steps and can be distinguished from radiogenic and cosmogenic released at intermediate and high temperature steps. The apparent ages obtained for Luna 16 samples span a narrow range of 3.29 to 3.38 Ga. A young age of 0.988 Ga was obtained for a basaltic impact glass indicating the age of an impact event in the vicinity of Luna 16 landing site. The ages obtained for Luna 24 samples suggest the existence of at least three periods of volcanism occurring over a protracted interval of between 3.45 and 2.52 Ga. The long period of volcanism suggested for the Mare Crisium was likely due to a combination of geophysical and geochemical features in the surrounding and underlying areas of the Crisium Basin. Attempts at dating three Luna 20 samples were inconclusive due to their high trapped argon contents.  相似文献   

9.
The regolith of the Apollo 16 lunar landing site is composed mainly of feldspathic lithologies but mafic lithologies are also present. A large proportion of the mafic material occurs as glass. We determined the major element composition of 280 mafic glasses (>10 wt% FeO) from six different Apollo 16 soil samples. A small proportion (5%) of the glasses are of volcanic origin with picritic compositions. Most, however, are of impact origin. Approximately half of the mafic impact glasses are of basaltic composition and half are of noritic composition with high concentrations of incompatible elements. A small fraction have compositions consistent with impact mixtures of mare material and material of the feldspathic highlands. On the basis of major-element chemistry, we identified six mafic glass groups: VLT picritic glass, low-Ti basaltic glass, high-Ti basaltic glass, high-Al basaltic glass, KREEPy glass, and basaltic-andesite glass. These glass groups encompass 60% of the total mafic glasses studied. Trace-element analyses by secondary ion mass spectroscopy for representative examples of each glass group (31 total analyses) support the major-element classifications and groupings. The lack of basaltic glass in Apollo 16 ancient regolith breccias, which provide snapshots of the Apollo 16 soil just after the infall of Imbrium ejecta, leads us to infer that most (if not all) of the basaltic glass was emplaced as ejecta from small- or moderate-sized impacts into the maria surrounding the Apollo 16 site after the Imbrium impact. The high-Ti basaltic glasses likely represent a new type of basalt from Mare Tranquillitatis, whereas the low-Ti and high-Al basaltic glasses possibly represent the composition of the basalts in Mare Nectaris. Both the low-Ti and high-Al basaltic glasses are enriched in light-REEs, which hints at the presence of a KREEP-bearing source region beneath Mare Nectaris. The basaltic andesite glasses have compositions that are siliceous, ferroan, alkali-rich, and moderately titaniferous; they are unlike any previously recognized lunar lithology or glass group. Their likely provenance is within the Procellarum KREEP Terrane, but they are not found within the Apollo 16 ancient regolith breccias and therefore were likely deposited at the Apollo 16 site post-Imbrium. The basaltic-andesite glasses are the most ferroan variety of KREEP yet discovered.  相似文献   

10.
This study addresses the issue of what fraction of the impact glass in the regolith of a lunar landing site derives from local impacts (those within a few kilometers of the site) as opposed to distant impacts (10 or more kilometers away). Among 10,323 fragments from the 64-210-μm grain-size fraction of three Apollo 16 regolith samples, 14% are impact glasses, that is, fragments consisting wholly or largely of glass produced in a crater-forming impact. Another 16% are agglutinates formed by impacts of micrometeorites into regolith. We analyzed the glass in 1559 fragments for major- and minor-element concentrations by electron probe microanalysis and a subset of 112 of the fragments that are homogeneous impact glasses for trace elements by secondary ion mass spectrometry. Of the impact glasses, 75% are substantially different in composition from either the Apollo 16 regolith or any mixture of rocks of which the regolith is mainly composed. About 40% of the impact glasses are richer in Fe, Mg, and Ti, as well as K, P, and Sm, than are common rocks of the feldspathic highlands. These glasses must originate from craters in maria or the Procellarum KREEP Terrane. Of the feldspathic impact glasses, some are substantially more magnesian (greater MgO/FeO) or have substantially lower concentrations of incompatible elements than the regolith of the Apollo 16 site. Many of these, however, are in the range of feldspathic lunar meteorites, most of which derive from points in the feldspathic highlands distant from the Procellarum KREEP Terrane. These observations indicate that a significant proportion of the impact glass in the Apollo 16 regolith is from craters occurring 100 km or more from the landing site. In contrast, the composition of glass in agglutinates, on average, is similar to the composition of the Apollo 16 regolith, consistent with local origin.  相似文献   

11.
To investigate the formation and early evolution of the lunar mantle and crust we have analysed the oxygen isotopic composition, titanium content and modal mineralogy of a suite of lunar basalts. Our sample set included eight low-Ti basalts from the Apollo 12 and 15 collections, and 12 high-Ti basalts from Apollo 11 and 17 collections. In addition, we have determined the oxygen isotopic composition of an Apollo 15 KREEP (K - potassium, REE - Rare Earth Element, and P - phosphorus) basalt (sample 15386) and an Apollo 14 feldspathic mare basalt (sample 14053). Our data display a continuum in bulk-rock δ18O values, from relatively low values in the most Ti-rich samples to higher values in the Ti-poor samples, with the Apollo 11 sample suite partially bridging the gap. Calculation of bulk-rock δ18O values, using a combination of previously published oxygen isotope data on mineral separates from lunar basalts, and modal mineralogy (determined in this study), match with the measured bulk-rock δ18O values. This demonstrates that differences in mineral modal assemblage produce differences in mare basalt δ18O bulk-rock values. Differences between the low- and high-Ti mare basalts appear to be largely a reflection of mantle-source heterogeneities, and in particular, the highly variable distribution of ilmenite within the lunar mantle. Bulk δ18O variation in mare basalts is also controlled by fractional crystallisation of a few key mineral phases. Thus, ilmenite fractionation is important in the case of high-Ti Apollo 17 samples, whereas olivine plays a more dominant role for the low-Ti Apollo 12 samples.Consistent with the results of previous studies, our data reveal no detectable difference between the Δ17O of the Earth and Moon. The fact that oxygen three-isotope studies have been unable to detect a measurable difference at such high precisions reinforces doubts about the giant impact hypothesis as presently formulated.  相似文献   

12.
To characterize the compositions of materials accreted to the Earth-Moon system between about 4.5 and 3.8 Ga, we have determined Os isotopic compositions and some highly siderophile element (HSE: Re, Os, Ir, Ru, Pt, and Pd) abundances in 48 subsamples of six lunar breccias. These are: Apollo 17 poikilitic melt breccias 72395 and 76215; Apollo 17 aphanitic melt breccias 73215 and 73255; Apollo 14 polymict breccia 14321; and lunar meteorite NWA482, a crystallized impact melt. Plots of Ir versus other HSE define excellent linear correlations, indicating that all data sets likely represent dominantly two-component mixtures of a low-HSE target, presumably endogenous component, and a high-HSE, presumably exogenous component. Linear regressions of these trends yield intercepts that are statistically indistinguishable from zero for all HSE, except for Ru and Pd in two samples. The slopes of the linear regressions are insensitive to target rock contributions of Ru and Pd of the magnitude observed; thus, the trendline slopes approximate the elemental ratios present in the impactor components contributed to these rocks. The 187Os/188Os and regression-derived elemental ratios for the Apollo 17 aphanitic melt breccias and the lunar meteorite indicate that the impactor components in these samples have close affinities to chondritic meteorites. The HSE in the Apollo 17 aphanitic melt breccias, however, might partially or entirely reflect the HSE characteristics of HSE-rich granulitic breccia clasts that were incorporated in the impact melt at the time of its creation. In this case, the HSE characteristics of these rocks may reflect those of an impactor that predated the impact event that led to the creation of the melt breccias. The impactor components in the Apollo 17 poikilitic melt breccias and in the Apollo 14 breccia have higher 187Os/188Os, Pt/Ir, and Ru/Ir and lower Os/Ir than most chondrites. These compositions suggest that the impactors they represent were chemically distinct from known chondrite types, and possibly represent a type of primitive material not currently delivered to Earth as meteorites.  相似文献   

13.
我国低钛月海型模拟月壤初始物质选择的地球化学依据   总被引:1,自引:0,他引:1  
以Apollo14月壤样品和美国JSC-1模拟月壤的地球化学特征为基础,结合我国低钛玄武岩火山的分布,对我国不同地区新生代玄武岩的化学成分、年龄、储量等方面进行对比分析结果表明,滇西北金沙江地区和吉林辉南红旗林场-四海地区的玄武质火山喷发物的化学成分与Apollo14月壤样品和美国JSC-1模拟月壤相似,比较适合用于我国低钛月海玄武岩模拟月壤研制的初始物质。野外地质调查发现,吉林省辉南县金川镇红旗林场—四海一带产出的玄武质火山渣为距今1600 a的该玄武质火山岩的喷发物,其储量大、质地纯、粒度均匀,而且比滇西北金沙江地区最近一期的玄武质火山渣新鲜,最适合作为我国低钛月海玄武岩模拟月壤研制的初始物质。  相似文献   

14.
月壤的物理和机械性质   总被引:46,自引:0,他引:46  
月壤是在O2、水、风和生命活动都不存在的情况下,由陨石和微陨石撞击、宇宙射线和太阳风轰击、月表温差导致岩石热胀冷缩破碎等因素的共同作用下形成的。月壤独特的形成过程,加上独特的月表环境,使月壤在粒度分布、颗粒形态、颗粒比重、孔隙比和孔隙率、电性和电磁性质、压缩性、抗剪性、承载力等方面均与地球土壤存在较大差异,这些参数的平均值和最佳估计值,可以作为月表机械设计和操作、宇航员装备设计、月球着陆场选址的主要依据,对月球资源开发和利用以及月球基地建设具有极其重要的意义。  相似文献   

15.
Approximately 100 glasses and 52 lithic fragments from Apollo 11 lunar fines and microbreccias were analyzed with the electron microprobe. Ranges in bulk composition of lithic fragments are considerably outside the precision (<±1%) and accuracy (±2–5%) of the broad electron beam technique. Results of this study may be summarized as follows: i) A large variety of rock types different from the hand specimens (basalt) were found among the lithic fragments, namely anorthosites, troctolitic and noritic anorthosites, troctolites, and norites (different from Apollo 12 norites). ii) In analogy to the hand specimens, the basaltic lithic fragments may be subdivided into low-K and high-K groups, both of which extend considerably in composition beyond the hand specimens. iii) Glasses were divided into 6 groups: Group 1 are the compositional analogs of the anorthositic-troctolitic lithic fragments and were apparently formed in single-stage impact events directly from parent anorthosites and troctolites. iv) Group 2 glasses are identical in composition to Apollo 12 KREEP glass and noritic lithic fragments, but have no counterparts in our Apollo 11 lithic fragment suite. Occurrence of KREEP in Apollo 11,12, and 14 samples is indicative of its relatively high abundance and suggests that the lunar crust is less depleted in elements that are common in KREEP (e.g. K, rare earths, P) than was originally thought on the basis of Apollo 11 basalt studies. v) Group 3 glasses are the compositional analogs of the basaltic lithic fragments, but low-K and high-K glasses cannot be distinguished because of loss of K (and Na, P) by volatilization in the vitrification process. vi) Group 4 glasses have no compositional analogs among the lithic fragments and were probably derived from as yet unknown Fe-rich, moderately Ti-rich, Mg-poor basalts. vii) Group 5 (low Ti-high Mg peridotite equivalent) and 6 (ilmenite peridotite equivalent) glasses have no counterparts among the Apollo 11 lithic fragments, but rock equivalents to group 5 glasses were found in Apollo 12 samples. Group 6 glasses are abundant, have narrow compositional ranges, and are thought to be the products of impact melting of an as yet unrecognized ultramafic rock type. iix) The great variety of igneous rocks (e.g. anorthosites, troctolites, norites, basalts, peridotites) suggests that large scale melting or partial melting to considerable depth must have occurred on the moon.  相似文献   

16.
17.
The lunar regolith is exposed to irradiation from the solar wind and to bombardment by asteroids, comets and inter-planetary dust. Fragments of projectiles in the lunar regolith can potentially provide a direct measure of the sources of exogenous material being delivered to the Moon. Constraining the temporal flux of their delivery helps to address key questions about the bombardment history of the inner Solar System.Here, we use a revised antiquity calibration (after Eugster et al., 2001) that utilises the ratio of trapped 40Ar/36Ar (‘parentless’ 40Ar derived from radioactive decay of 40K, against solar wind derived 36Ar) to semi-quantitatively calculate the timing of the assembly of the Apollo 16 regolith breccias. We use the trapped 40Ar/36Ar ratios reported by McKay et al. (1986). Our model indicates that the Apollo 16 ancient regolith breccia population was formed between ∼3.8 and 3.4 Ga, consistent with regoliths developed and assembled after the Imbrium basin-forming event at ∼3.85 Ga, and during a time of declining basin-forming impacts. The material contained within the ancient samples potentially provides evidence of impactors delivered to the Moon in the Late-Imbrian epoch. We also find that a young regolith population was assembled, probably by local impacts in the Apollo 16 area, in the Eratosthenian period between ∼2.5 and 2.2 Ga, providing insights to the sources of post-basin bombardment. The ‘soil-like’ regolith breccia population, and the majority of local Apollo 16 soils, were likely closed in the last 2 Ga and, therefore, potentially provide an archive of projectile types in the Eratosthenian and Copernican periods.  相似文献   

18.
Fines from a Luna 20 soil sample and from three Apollo 16 deep drill core samples have been analyzed for major-minor element abundances by a combined, semi-micro atomic absorption spectrophotometric and colorimetric method. Both the major element and large ion lithophile trace element abundances in these soils, the first from interior highland sites, are greatly influenced by the very high normative plagioclase content, being distinctly richer in Al and Ca, and poorer in K, P, Cr, Mn, Fe, and Ti, than most bulk soil samples from previous lunar missions. The relatively large compositional variations in the Apollo 16 core can be ascribed almost entirely to decreasing plagioclase with increasing depth. The chemical composition of the Luna 20 soil indicates less plagioclase and less KREEP than in the Apollo 16 soils. A lunar differentiation model is presented in which is made the suggestion that KREEP is the result of a second fusion event in a lunar crust consisting of early feldspathic cumulates and primary aluminous ‘liquid’.  相似文献   

19.
The Antarctic lunar meteorite Meteorite Hills (MET) 01210 is a polymict regolith breccia, dominantly composed of mare basalt components. One relatively large (2.7 × 4.7 mm) basalt clast in MET 01210 (MET basalt) shows remarkable mineralogical similarities to the lunar-meteorite crystalline mare basalts Yamato (Y)-793169, Asuka (A)-881757, and Miller Range (MIL) 05035. All four basalts have similar rock texture, mineral assemblage, mineral composition, pyroxene crystallization trend, and pyroxene exsolution lamellae. The estimated TiO2 contents (∼2.0 wt%) of the MET basalt and MIL 05035 are close to the bulk-rock TiO2 contents of Y-793169 and A-881757. These similarities suggest that Y-793169, A-881757, MIL 05035, and the MET basalt came from the same basalt flow, which we designate the YAMM basalt. The source-basalt pairing of the YAMM is also supported by their similar REE abundances, crystallization ages (approx. 3.8-3.9 Ga), and isotopic compositions (low U/Pb, low Rb/Sr, and high Sm/Nd). The pyroxene exsolution lamellae, which are unusually coarse (up to a few microns) by mare standards, imply a relatively slow cooling in an unusually thick lava and/or subsequent annealing within a cryptomare. Reported noble gas and CRE data with close launch ages (∼1 Ma) and ejection depths (deeper than several meters) among the four meteorites further indicate their simultaneous ejection from the moon. Despite the marginally close terrestrial ages, pairing in the conventional Earth-entry sense seems unlikely because of the remote recovery sites among the YAMM meteorites.The high abundance (68%) of mare components in MET 01210 estimated from a two-component mixing model calculation could have resulted from either lateral mixing at a mare-highland boundary or vertical mixing in a cryptomare. The proportion of mare materials in MET 01210 is greater than in Apollo core samples at the mare-highland boundary. The burial depth (>several meters deep) inferred from the lack of surface irradiation of MET 01210 exceeds the typical mare regolith thickness (a few meters). Thus, the source of the YAMM meteorites is likely a terrain of locally high mare-highland mixing within a cryptomare. We searched for a possible source crater of the YAMM meteorites within the well-defined cryptomare, based on the multiple constraints obtained from this study and published data. An unnamed 1.4 km-diameter crater (53°W, 44.5°S) on the floor of the Schickard crater is the most suitable source for the YAMM meteorites.The 238U/204Pb (μ) value of the YAMM basalts is extremely low, relative to those of the Apollo mare basalts, but comparable to those of the Luna 24 very low-Ti basalts. The low-μ source indicates a derivation from a less differentiated mantle with a lack of KREEP components. Although the chemical sources of materials and heat source of melting might be independent, the heat source that generated the source magma of the YAMM and Luna 24 basalts may not be related to KREEP, unlike the case of the Apollo basalts. The distinct chemical and isotopic compositions of mantle sources between the Apollo basalts and the YAMM/Lunar 24 basalts imply differences in mantle composition and thermal evolution between the Procellarum KREEP Terrane (PKT) and non-PKT regions of the nearside.  相似文献   

20.
Kalahari 008 and 009 are two lunar meteorites that were found close to each other in Botswana. Kalahari 008 is a typical lunar anorthositic breccia; Kalahari 009 a monomict breccia with basaltic composition and mineralogy. Based on minor and trace elements Kalahari 009 is classified as VLT (very-low-Ti) mare basalt with extremely low contents of incompatible elements, including the REE. The Lu-Hf data define an age of 4286 ± 95 Ma indicating that Kalahari 009 is one of the oldest known basalt samples from the Moon. It provides evidence for lunar basalt volcanism prior to 4.1 Ga (pre-Nectarian) and may represent the first sample from a cryptomare. The very radiogenic initial 176Hf/177Hf (εHf = +12.9 ± 4.6), the low REE, Th and Ti concentrations indicate that Kalahari 009 formed from re-melting of mantle material that had undergone strong incompatible trace element depletion early in lunar history. This unusually depleted composition points toward a hitherto unsampled basalt source region for the lunar interior that may represent a new depleted endmember source for low-Ti mare basalt volcanism. Apparently, the Moon became chemically very heterogeneous at an early stage in its history and different cumulate sources are responsible for the diverse mare basalt types.Evidence that Kalahari 008 and 009 may be paired includes the similar fayalite content of their olivine, the identical initial Hf isotope composition, the exceptionally low exposure ages of both rocks and the fact that they were found close to each other. Since cryptomaria are covered by highland ejecta, it is possible that these rocks are from the boundary area, where basalt deposits are covered by highland ejecta. The concentrations of cosmogenic radionuclides and trapped noble gases are unusually low in both rocks, although Kalahari 008 contains slightly higher concentrations. A likely reason for this difference is that Kalahari 008 is a polymict breccia containing a briefly exposed regolith, while Kalahari 009 is a monomict brecciated rock that may never have been at the surface of the Moon.Altogether, the compositions of Kalahari 008 and 009 permit new insight into early lunar evolution, as both meteorites sample lunar reservoirs hitherto unsampled by spacecraft missions. The very low Th and REE content of Kalahari 009 as well as the depletion in Sm and the lack of a KREEP-like signature in Kalahari 008 point to a possible source far from the influence of the Procellarum-KREEP Terrane, possibly the lunar farside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号