首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Urban air temperature studies usually focus on the urban canopy heat island phenomenon, whereby the city center experiences higher near surface air temperatures compared to its surrounding non-urban areas. The Land Surface Temperature (LST) is used instead of urban air temperature to identify the Surface Urban Heat Island (SUHI). In this study, the nighttime LST and SUHI characteristics and trends in the seventeen largest Mediterranean cities were investigated, by analyzing satellite observations for the period 2001–2012. SUHI averages and trends were based on an innovative approach of comparing urban pixels to randomly selected non-urban pixels, which carries the potential to better standardize satellite-derived SUHI estimations. A positive trend for both LST and SUHI for the majority of the examined cities was documented. Furthermore, a 0.1 °C decade?1 increase in urban LST corresponded to an increase in SUHI by about 0.04 °C decade?1. A longitudinal differentiation was found in the urban LST trends, with higher positive values appearing in the eastern Mediterranean. Examination of urban infrastructure and development factors during the same period revealed correlations with SUHI trends, which can be used to explain differences among cities. However, the majority of the cities examined show considerably increased trends in terms of the enhancement of SUHI. These findings are considered important so as to promote sustainable urbanization, as well as to support the development of heat island adaptation and mitigation plans in the Mediterranean.  相似文献   

2.
结合夜间灯光数据、高程数据及地表分类数据,提出一种针对山地城市郊区背景划分的方法,并采用城乡二分法定量评估2001—2020年重庆市主城都市区热岛效应时空变化特征。结果显示传统缓冲区法和综合缓冲区法提取的郊区背景存在明显差异。利用传统缓冲区法提取郊区背景估算的热岛存在大量假热岛像元,导致传统缓冲区法估算的热岛面积明显大于综合缓冲区法。综合缓冲区法估算结果表明:主城都市区热岛主要分布在中心城区、长寿区、涪陵区以及各区县驻地附近,冷岛分布在东南部高海拔地区及中心城区部分山脉处。2001—2020年主城都市区热岛面积占比随时间呈波动上升趋势,且具有明显的季节变化特征,夏季最强、冬季最弱。  相似文献   

3.
This case study highlights the implications of the 2003 heat wave for the city of Strasbourg, France. The urban centers of France and other European countries were particularly affected by the heat wave. In some urban areas, the mortality rate was 60% above the expected value (Institute de Veille Sanitaire, 2003). The 2003 heat wave demonstrated once again that populations in urban centers are much more affected by extreme meteorological events than people living in rural areas. The aim of this analysis is to explore differences in thermal comfort conditions of (a) the city center of Strasbourg, and (b) its hinterland. The differences in thermal conditions existing between rural and urban areas are quantified by using a bio-climatological index termed physiologically equivalent temperature (PET). This index is based on the human energy balance and builds a relevant index for the quantification of the thermal environment of humans. We calculate the PET for the years 2003 and 2004 to highlight the temporal changes in the severity of climate extremes. The spatial scope of this study is improved compared to previous works in the field through the inclusion of PET calculations for five different sites on a central place in Strasbourg (Place Kléber). The calculations are characterized by different sky view factors and are compared to the reference site, which is located in a rural area. In the rural hinterland (Entzheim), the analysis of PET indicates a strong cold thermal stress during the winter months but no significant stress in summer. In 2003, summer temperatures were sensed as warmer compared to other years, but did not reach the extreme temperatures that may cause severe heat stress. For both the rural and the urban study sites PET was higher in the summer of 2003 than in 2004, which reflects the inferior thermal conditions in the urban area during the heat wave in 2003. For the entire study period, urban and rural day-time PET reached similar maximal values. Strong differences in PET, however, were observed between the rural and urban areas at night-time. The study of PET for several study sites on a central place in the city (Place Kléber) of Strasbourg for the years 2003 and 2004 showed that the sites with a higher sky view factor present higher values than sites with a lower sky view factor. The comparison of these PET values (Place Kléber) to the results for the rural area showed that during the day and the night the rural city of Entzheim has the lowest PET. During the day, the site at Place Kléber, which is located under a tree, has the lowest PET. The comparison of PET for the years 2003 and 2004 shows that PET in 2003 was about 5 to 7 K higher.  相似文献   

4.
In a surface urban heat island (SUHI), the urban land surface temperature (LST) is usually higher than the temperature of the surrounding rural areas due to human activities and surface characteristics. Because a SUHI has many adverse impacts on urban environment and human health, SUHI mitigation strategies are very important. This paper investigates the mechanism of a SUHI based on the basic physical laws that control the formation of a SUHI; five mitigation strategies are proposed, namely: sprinkling and watering; paving a pervious surface; reducing the anthropogenic heat (AH) release; using a “white roof”; increasing the fractional vegetation cover or leaf area index (LAI). To quantify the effect of these mitigation strategies, 26 sets of experiments are designed and implemented by running the integrated urban land model (IUM). The results of the sensitivity analysis indicate that sprinkling and watering is an effective measure for mitigating a SUHI for an entire day. Decreasing the AH release is also useful for both night- and daytime SUHI mitigation; however, the cooling extent is proportional to the diurnal cycle of AH. Increasing the albedo can reduce the LST in the daytime, especially when the solar radiation is significant; the cooling extent is approximately proportional to the diurnal cycle of the net radiation. Increasing the pervious surface percentage can mitigate the SUHI especially in the daytime. Increasing the fractional vegetation cover can mitigate the SUHI in the daytime but may aggravate the SUHI at night.  相似文献   

5.
西安市气候变暖与城市热岛效应问题研究   总被引:26,自引:2,他引:26       下载免费PDF全文
选取1961—2003年西安站和周围4站月平均气温资料, 利用西安站与周围4站气温距平滑动平均变化趋势的差异, 发现该站平均气温有两个明显的上升期, 热岛效应使西安站平均升温1.07 ℃, 并建立了西安市城市热岛效应模型。在此基础上分离了气候变暖过程中由于城市热岛效应引起的增温作用。  相似文献   

6.
Compared with other large cities Vienna shows different urban development characteristics. The city has had a zero population growth during 1951–1995, a period of rapid growth elsewhere. In spite of its stagnating population of about 1,6 million Vienna has had development in other areas: a doubling of living floor space, a two and a half-fold increase in total energy consumption, a 60% rise of traffic area. In contrast, forests have been reduced by 20% and grasslands within the city borders by 30%. Of the 34 temperature recording stations in the study area of 1450 km2, nine series passed the quality tests after careful homogenization. Three of these were in the rural environment and were used as reference series for the urban temperature excess at the other six stations in the urbanized area. The urban excess temperatures vary from site to site: from 0.2 K in suburban areas up to 1.6 K in densely built-up areas. The Vienna case study illustrates two features of more than local interest which should be considered in urban climatology as well as in time series studies where the urban temperature excess is regarded as a bias. Firstly, in a city with constant population the urban heat excess shows significant to strongly significant trends of up to 0.6 K in 45 years due to changes in urban morphology and energy consumption. Secondly, the urban heat island and its trend cannot be regarded simply for the city as a whole. There are different absolute levels, different annual variations and different increases of the urban temperature excess in different parts of a city. The urban effect is more strongly influenced by the local surroundings of the site than by the city as a whole. So, if possible, urban heat islands should not be described by a two station approach only (the typical airport-downtown comparison), nor should it rely on regression between population number and heat island.  相似文献   

7.
北京地区城郊极端温度事件的变化趋势及差异分析   总被引:1,自引:0,他引:1  
利用北京地区城郊16个气象观测站1979~2008年逐日平均、最高和最低温度的均一化资料,分析了近30年北京地区城、郊区极端温度事件发生频次(强度)的变化趋势,并对比了城郊差异以及城市热岛强度对城郊差异的影响.研究结果显示:从发生频次来看,近30年城区极端低温事件的减小幅度[5.94 d (10 a)-1]高于郊区的减小幅度[-5.28 d (10 a)-1],而极端高温事件的增加幅度在城区[4.33 d (10 a)-1]和郊区[4.42 d (10 a)-1]之间差别不大,定量化的诊断结果进一步证明了城区和郊区在极端温度事件发生频次上的差别很小.从发生强度来看,近30年城区极端温度事件的年平均发生强度明显高于郊区,但在变化趋势上,城区极端低温事件的减弱幅度略高于极端高温事件的增强幅度,相差0.042℃(10 a)-1,而在郊区极端低温事件的减弱幅度却略低于极端高温事件的增强幅度,相差0.052℃(10 a)-1.城郊差异的定量化分析结果表明,极端温度事件在城区强度一般大于郊区强度,城区与郊区强度差值均为正值(除1982年和1985年极端高温事件强度差值为负).热岛强度与极端温度事件城郊差异的相关性统计发现,极端温度事件发生频次和发生强度在城郊之间的差别与热岛强度均没有明显的相关特征,该结果说明城市热岛效应对北京超大城市市区和郊区影响基本一致,其差异性是有限的.  相似文献   

8.
This study demonstrates that thermal satellite images combined with ‘in situ’ ground data can be used to examine models of heat island genesis and thus identify the main causes of urban heat islands (UHIs). The models, although proposed over 30 years ago, have not been thoroughly evaluated due to a combination of inadequate ground data and the low resolution of thermal satellite data. Also there has been limited understanding of the relevance of satellite-derived surface temperatures to local and regional scale air temperatures. A cloud-free ASTER thermal image of urban and rural areas of Hong Kong was obtained on a winter night with a well-developed heat island, accompanied by a 148 km vehicle traverse of air temperatures. Over the whole traverse a high R2 of 0.80 was observed between surface and air temperatures, with the two datasets showing a similar amplitude and general trend, but with the surface exhibiting much higher local variability than air temperature. Gradients in both surface and air temperature could be related to differences in land cover, with little evidence of large scale advection, thus supporting the population/physical structure model of UHI causation, rather than the advection model. However, the much higher surface and air temperatures observed over the largest urban area, Kowloon, than over any smaller urban centre with similar physical structure in the New Territories, would seem more indicative of the advection model. The image and ground data suggest that Kowloon's urban canopy layer climate is mainly influenced by local city structure, but it is also modified by a strongly developed, regional scale urban boundary layer which has developed over the largest urban centre of Kowloon, and reinforces heating from both above and below.  相似文献   

9.
Summary This paper deals with variability in the air temperature field of an urban area during thermal advection, associated with frontal zones, and its interaction with an urban heat island (UHI). Thermal changes experienced in Wrocław, Poland form the basis of this case study analysis. The discussion also contributes to questions concerning the definition of the UHI and ways to select UHI episodes from existing data sets. It is shown that changes in temperature generated during periods of advection are of short duration, only a few hours at most, but thermal contrasts between various parts of a city at such times are sometimes large, reaching an intensity of 5–6 K, even as large as 9 K. Thus, their intensity is comparable with that of the UHI occurring on cloudless and windless nights. The thermal influence of advection is often greater than that due to urban factors; it is only on occasions with less dynamic advection, that a concentric temperature field is formed due to the modified physical properties of the city. In the majority of cases, the thermal field is non-concentric and this is linked with the location of a frontal zone at any given time. The thermal effects of advection recorded in a data set might easily be viewed as episodes of UHI existence, especially if analysis is conducted based on the data derived from just two stations – one urban the other rural. On occasions when such ‘quasi-UHI’ occur the role of the location of the rural, reference station is also evaluated. Precise definition of the urban heat island can be of significance when conducting comparative studies of the UHI in cities located in different geographical zones and when making an urban climate synthesis.  相似文献   

10.
A two-dimensional time-dependent Earth-atmosphere model is developed which can be applied to the study of a class of atmospheric boundary-layer flows which owe their origin to horizontal inhomogeneities with respect to surface roughness and temperature. Our main application of the model is to explore the governing physical mechanisms of nocturnal urban atmospheric boundarylayer flow.A case study is presented in which a stable temperature stratification is assumed to exist in the rural upwind area. It is shown through integration of the numerical model that as this air passes over a city, the heat is redistributed due to increased surface friction (and hence increased turbulent mixing). This redistribution of heat results in the formation of an urban heat island.Additional numerical integrations of the model are conducted to examine the dependence of induced perturbations on: (1) the upwind temperature inversion; (2) the geostrophic wind speed; and (3) urbanization. The results show a linear relationship between heat-island intensity and the rural temperature inversion with the heat island increasing in intensity as the upwind inversion becomes stronger; that the heat-island intensity close to the surface is inversely proportional to the geostrophic wind; and that the effects of anthropogenic heat cause an increase in the perturbation temperature with the perturbation extending to higher altitudes. From this study, we conclude that with an upwind temperature inversion, a city of any size should generate a heat island as a result of increased surface roughness. The heat-island intensity should increase with city size because of two factors: larger cities are usually aerodynamically rougher; and larger cities have a larger anthropogenic heat output.Research supported in part by NSF Grant GA-16822.  相似文献   

11.
On the Urban Heat Island Effect Dependence on Temperature Trends   总被引:2,自引:0,他引:2  
For U.S., Argentine and Australian cities, yearly mean urban to rural temperature differences (Tu-r) and rural temperatures (Tr) are negatively correlated in almost every case, suggesting that urban heat island intensity depends, among other parameters on the temperature itself. This negative correlation is related to the fact that interannual variability of temperature is generally lower in urban environments than in rural areas. This seems to hold true at low frequencies leading to opposite trends in the two variables. Hence, urban stations are prone to have lower trends in absolute value than rural ones. Therefore, regional data sets including records from urban locations, in addition to urban growth bias may have a second type of urban bias associated with temperature trends. A bulk estimate of this second urban bias trend for the contiguous United States during 1901–1984 indicates that it could be of the same order as the urban growth bias and of opposite sign. If these results could be extended to global data, it could be expected that the spurious influence of urban growth on global temperature trends during warming periods will be offset by the diminishing of the urban heat island intensity.  相似文献   

12.
Urban impacts on precipitation   总被引:4,自引:0,他引:4  
Weather and climate changes caused by human activities (e.g., greenhouse gas emissions, deforestation, and urbanization) have received much attention because of their impacts on human lives as well as scientific interests. The detection, understanding, and future projection of weather and climate changes due to urbanization are important subjects in the discipline of urban meteorology and climatology. This article reviews urban impacts on precipitation. Observational studies of changes in convective phenomena over and around cities are reviewed, with focus on precipitation enhancement downwind of cities. The proposed causative factors (urban heat island, large surface roughness, and higher aerosol concentration) and mechanisms of urban-induced and/or urban-modified precipitation are then reviewed and discussed, with focus on downwind precipitation enhancement. A universal mechanism of urban-induced precipitation is made through a thorough literature review and is as follows. The urban heat island produces updrafts on the leeward or downwind side of cities, and the urban heat island-induced updrafts initiate moist convection under favorable thermodynamic conditions, thus leading to surface precipitation. Surface precipitation is likely to further increase under higher aerosol concentrations if the air humidity is high and deep and strong convection occurs. It is not likely that larger urban surface roughness plays a major role in urbaninduced precipitation. Larger urban surface roughness can, however, disrupt or bifurcate precipitating convective systems formed outside cities while passing over the cities. Such urban-modified precipitating systems can either increase or decrease precipitation over and/or downwind of cities. Much effort is needed for in-depth or new understanding of urban precipitation anomalies, which includes local and regional modeling studies using advanced numerical models and analysis studies of long-term radar data.  相似文献   

13.
Urban greening can enhance quality of life by generating ecosystem services and has been proposed as a way of mitigating adverse consequences of global warming for human health. However, there is limited knowledge on global trends in urban vegetation and their relation to economic development and climate change. Here we studied 1,688 major cities worldwide and show that 70% (1,181) show an increase in vegetation derived from satellite observations (2000–2018). For 68% (1,138) of the cities studied, the increase in the urban vegetation is less strong as compared to the vegetation increase found in the surroundings of these cities. Overall, positive vegetation trends are widely observed in cities in Europe and North America, whereas negative vegetation trends in cities occur primarily in Africa, South America and Asia. Gross Domestic Product growth, population growth as well as temperature are found to be the main underlying drivers of the observed contrasts in changes in urban vegetation as compared to surrounding areas across continents. From a global synthesis of urban vegetation change, we quantify the role of social-economic development and climate change in regulating urban vegetation growth, and the contrasting imprint on cities of developed and developing countries.  相似文献   

14.
Flow and turbulence above urban terrain is more complex than above rural terrain, due to the different momentum and heat transfer characteristics that are affected by the presence of buildings (e.g. pressure variations around buildings). The applicability of similarity theory (as developed over rural terrain) is tested using observations of flow from a sonic anemometer located at 190.3 m height in London, U.K. using about 6500 h of data. Turbulence statistics—dimensionless wind speed and temperature, standard deviations and correlation coefficients for momentum and heat transfer—were analysed in three ways. First, turbulence statistics were plotted as a function only of a local stability parameter z/Λ (where Λ is the local Obukhov length and z is the height above ground); the σ i /u * values (i = u, v, w) for neutral conditions are 2.3, 1.85 and 1.35 respectively, similar to canonical values. Second, analysis of urban mixed-layer formulations during daytime convective conditions over London was undertaken, showing that atmospheric turbulence at high altitude over large cities might not behave dissimilarly from that over rural terrain. Third, correlation coefficients for heat and momentum were analyzed with respect to local stability. The results give confidence in using the framework of local similarity for turbulence measured over London, and perhaps other cities. However, the following caveats for our data are worth noting: (i) the terrain is reasonably flat, (ii) building heights vary little over a large area, and (iii) the sensor height is above the mean roughness sublayer depth.  相似文献   

15.
Urban growth is increasing the demand for freshwater resources, yet surprisingly the water sources of the world's large cities have never been globally assessed, hampering efforts to assess the distribution and causes of urban water stress. We conducted the first global survey of the large cities’ water sources, and show that previous global hydrologic models that ignored urban water infrastructure significantly overestimated urban water stress. Large cities obtain 78 ± 3% of their water from surface sources, some of which are far away: cumulatively, large cities moved 504 billion liters a day (184 km3 yr−1) a distance of 27,000 ± 3800 km, and the upstream contributing area of urban water sources is 41% of the global land surface. Despite this infrastructure, one in four cities, containing $4.8 ± 0.7 trillion in economic activity, remain water stressed due to geographical and financial limitations. The strategic management of these cities’ water sources is therefore important for the future of the global economy.  相似文献   

16.
This paper discusses the scale at which the weather is experienced and modified by human activities in urban environment. The climates of built-up areas differ from their non-urban counterparts in many aspect: wind-flows, radiation, humidity, precipitation and air quality all change in the presence of human settlement, transforming each city into a singularity within its regional weather system. Yet this pervasive category of anthropogenic climate change has always tended to be hidden and difficult to discern. The paper first describes the sequence of discovery of the urban heat island since the early nineteenth century, and the emergence and consolidation of a scientific field devoted to the climatology of cities. This is followed by a discussion of various attempts to apply knowledge of climatic factors to the design and management of settlement. We find that real-world application of urban climatology has met with limited success. However, the conclusion suggests that global climate change gives a new visibility and practical relevance to urban-scale climate science.  相似文献   

17.
In this study, the urban heat island of Toronto was characterized and estimated in order to examine the impact of the selection of rural sites on the estimation of urban heat island (UHI) intensity (?T u-r). Three rural stations, King Smoke Tree (KST), Albion Hill, and Millgrove, were used for the analysis of UHI intensity for two urban stations, Toronto downtown (Toronto) and Toronto Pearson (Pearson) using data from 1970 to 2000. The UHI intensity was characterized as winter dominating and summer dominating, depending on the choice of the rural station. The analyses of annual and seasonal trends of ?T u-r suggested that urban heat island clearly appears in winter at both Toronto and Pearson. However, due to the mitigating effect on temperature from Lake Ontario, the estimated trend of UHI intensity was found to be less at Toronto compared to that at Pearson which has no direct lake effect. In terms of the impacts of the rural stations, for both KST and Millgrove, the trends in UHI intensity were found to be statistically significant and also were in good agreement with the estimates of UHI intensities reported for other large cities in the USA. Depending on the choice of the rural station, the estimated trend for the UHI intensity at Toronto ranges from 0.01°C/decade to 0.02°C/decade, and that at Pearson ranges from 0.03°C/decade to 0.035°C/decade during 1970–2000. From the analysis of the seasonal distribution of ?T u-r, the UHI intensity was found to be higher at Toronto in winter than that at Pearson for all three rural stations. This was likely accounted for by the lower amount of anthropogenic heat flux at Pearson. Considering the results from the statistical analysis with respect to the geographic and surface features for each rural station, KST was suggested to be a better choice to estimate UHI intensity at Toronto compared to the other rural stations. The analysis from the current study suggests that the selection of a unique urban–rural pair to estimate UHI intensity for a city like Toronto is a critical task, as it will be for any city, and it is imperative to consider some key features such as the physiography, surface characteristics of the urban and rural stations, the climatology such as the trends in annual and seasonal variation of UHI with respect to the physical characteristics of the stations, and also more importantly the objectives of a particular study in the context of UHI effect.  相似文献   

18.
朱丽  苗峻峰  高阳华 《大气科学》2020,44(3):657-678
利用中尺度模式WRF(V3.9)对2016年8月17~18日重庆一次城市热岛环流个例进行了数值模拟,探讨了山地城市热岛环流的三维结构和演变特征,分析了热岛环流期间湍流动能和各项湍流通量的特征。结果表明:15:00(北京时,下同)乡村风开始出现,随着热岛强度增强乡村风增大,18:00热岛环流结构最显著,次日02:00热岛环流结构被破坏,仅低层存在微弱的乡村风。其中,重庆市城市热岛环流最强时,水平尺度约城市尺度的1.5~2倍,垂直厚度约1.3 km,水平风速约2~4 m s?1,最大上升速度约0.5 m s?1。受地形、河流以及背景风的影响,环流呈现非对称的结构,且强度较弱。湍流特征分析结果表明,城市区域的湍流动能明显大于其它区域。此外,城市热岛环流通过湍流运动将郊区的水汽输向城市;高层湍流动量补充边界层中因热岛环流发展而造成的动量耗散。  相似文献   

19.
郑州城市气候环境的观测研究   总被引:8,自引:0,他引:8       下载免费PDF全文
程炳岩  朱业玉  王记芳 《气象》2004,30(2):50-54
通过对郑州城市环境气候观测资料分析 ,揭示了郑州市区环境温度的季节分布、不同性质地面环境对温度分布的影响及郑州城市热岛强度的时空变化特点。结果表明 :郑州城市建设规模及其特殊的地面物理性质 ,对气候环境已产生较明显的影响 ,年、季环境温度分布都以市中心温度为高 ,向郊区逐渐降低 ,存在着明显的城市“热岛”现象 ;郑州城市热岛强度的年、季变化与我国北方城市的变化趋势比较一致 ,具有冬强夏弱的特点  相似文献   

20.
城市热岛效应监测方法研究进展   总被引:16,自引:0,他引:16  
城市热岛效应是一种由于城市建筑及人们活动导致的热量在城区空间范围内聚集的现象,是城市气候最明显的特征之一.由于城市热岛影响因素以及相互关系的复杂性,为了精确细致地描述其时空分布,人们采用了多种方法来研究城市热岛现象,主要归纳为:气象站法、定点观测法、运动样带法、遥感测定法以及模拟预测等.最后,认为各种测定方法都存在一定的缺陷,建议多种测定方法综合运用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号