首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Results of gravity measurements performed in 1977 along a WE-profile situated in the GDR area are discussed. Systematic influences caused by the variations of the hydrologic conditions in the local regions of the observation points reach 100 nm s–2. From the results of the yearly repeated gravity measurements (1970/77) a mean yearly gravity variation of about 20 nm s–2 a–1 was calculated for the sedimentary eastern part of the profile.  相似文献   

2.
Repeated gravity measurements were carried out from 1991 until 1999 at sites SE of Vatnajökull, Iceland, to estimate the mass flow and deformation accompanying the shrinking of the ice cap. Published GPS data show an uplift of about 13 ± 5 mm/a near the ice margin. A gravity decrease of –2 ± 1 μGal/a relative to the Höfn base station, was observed for the same sites. Control measurements at the Höfn station showed a gravity decrease of –2 ± 0.5 µGal/a relative to the station RVIK 5473 at Reykjavík (about 250 km from Höfn). This is compatible, as a Bouguer effect, with a 10 ± 3 mm/a uplift rate of the IGS point at Höfn and an uplift rate of ~20 mm/a near the ice margin. Although the derived gravity change rates at individual sites have large uncertainties, the ensemble of the rates varies systematically and significantly with distance from the ice. The relationship between gravity and elevation changes and the shrinking ice mass is modelled as response to the loading history. The GPS data can be explained by 1-D modelling (i.e., an earth model with a 15-km thick elastic lithosphere and a 7·1017 Pa·s asthenosphere viscosity), but not the gravity data. Based on 2-D modelling, the gravity data favour a low-viscosity plume in the form of a cylinder of 80 km radius and 1017 to 1018 Pa·s viscosity below a 6 km-thick elastic lid, embedded in a layered PREM-type earth, although the elevation data are less well explained by this model. Strain-porosity-hydrology effects are likely to enhance the magnitude of the gravity changes, but need verification by drilling. More accurate data may resolve the discrepancies or suggest improved models.  相似文献   

3.
A gravity network was established by a crew of gravity measurement in July, 1981, with three LCR gravimeters. The measurement errors are less than 100 nm/s2. The detectable changes in gravity with time in the Beijing-Tianjin-Tangshan area are described. The results show that the gravity has increased 1000 nm/s2 in Tianjin area where the ground has been subsiding at a rate of 7–8 cm/a and at the center of subsidence gravity has increased. At other stations, such as Baodi, Tangerli, etc., gravity has also increased gradually, but with an amplitude smaller than that of Tianjin. In the area surveyed gravity tendentiously decreases from south-east to north-east.  相似文献   

4.
The Indus River has been progressively transformed in the last decades into a tightly regulated system of dams and channels, to produce food and energy for the rapidly growing population of Pakistan. Nevertheless, Indus River sands as far as the delta largely retain their distinct feldspar- and amphibole-rich composition, which is unique with respect to all other major rivers draining the Alpine–Himalayan belt except for the Brahmaputra. Both the Indus and Brahmaputra Rivers flow for half of their course along the India–Asia suture zone, and receive major contributions from both Asian active-margin batholiths and upper-amphibolite-facies domes rapidly exhumed at the Western and Eastern Himalayan syntaxes.Composition of Indus sands changes repeatedly and markedly in Ladakh and Baltistan, indicating overwhelming sediment flux from each successive tributary as the syntaxis is approached. Provenance estimates based on our integrated petrographic–mineralogical data set indicate that active-margin units (Karakorum and Transhimalayan arcs) provide ∼81% of the 250±50 106 t of sediments reaching the Tarbela reservoir each year. Partitioning of such flux among tributaries and among source units allows us to tentatively assess sediment yields from major subcatchments. Extreme yields and erosion rates are calculated for both the Karakorum Belt (up to 12,500±4700 t/km2 year and 4.5±1.7 mm/year for the Braldu catchment) and Nanga Parbat Massif (8100±3500 t/km2 year and 3.0±1.3 mm/year). These values approach denudation rates currently estimated for South Karakorum and Nanga Parbat crustal-scale antiforms, and highlight the major influence that rapid tectonic uplift and focused glacial and fluvial erosion of young metamorphic massifs around the Western Himalayan Syntaxis have on sediment budgets of the Indus system.Detailed information on bulk petrography and heavy minerals of modern Indus sands not only represents an effective independent method to constrain denudation rates obtained from temperature–time histories of exposed bedrock, but also provides an actualistic reference for collision-orogen provenance, and gives us a key to interpreting provenance and paleodrainage changes recorded by clastic wedges deposited in the Himalayan foreland basin and Arabian Sea during the Cenozoic.  相似文献   

5.
Since microphysics cannot say definitively whether the rheology of the mantle is linear or non-linear, the aim of this paper is to constrain mantle rheology from observations related to the glacial isostatic adjustment (GIA) process—namely relative sea-levels (RSLs), land uplift rate from GPS and gravity-rate-of-change from GRACE. We consider three earth model types that can have power-law rheology (n = 3 or 4) in the upper mantle, the lower mantle or throughout the mantle. For each model type, a range of A parameter in the creep law will be explored and the predicted GIA responses will be compared to the observations to see which value of A has the potential to explain all the data simultaneously. The coupled Laplace finite-element (CLFE) method is used to calculate the response of a 3D spherical self-gravitating viscoelastic Earth to forcing by the ICE-4G ice history model with ocean loads in self-gravitating oceans. Results show that ice thickness in Laurentide needs to increase significantly or delayed by 2 ka, otherwise the predicted uplift rate, gravity rate-of-change and the amplitude of the RSL for sites inside the ice margin of Laurentide are too low to be able to explain the observations. However, the ice thickness elsewhere outside Laurentide needs to be slightly modified in order to explain the global RSL data outside Laurentide. If the ice model is modified in this way, then the results of this paper indicate that models with power-law rheology in the lower mantle (with A  10−35 Pa−3 s−1 for n = 3) have the highest potential to simultaneously explain all the observed RSL, uplift rate and gravity rate-of-change data than the other model types.  相似文献   

6.
《Journal of Geodynamics》2009,47(3-5):118-130
Since microphysics cannot say definitively whether the rheology of the mantle is linear or non-linear, the aim of this paper is to constrain mantle rheology from observations related to the glacial isostatic adjustment (GIA) process—namely relative sea-levels (RSLs), land uplift rate from GPS and gravity-rate-of-change from GRACE. We consider three earth model types that can have power-law rheology (n = 3 or 4) in the upper mantle, the lower mantle or throughout the mantle. For each model type, a range of A parameter in the creep law will be explored and the predicted GIA responses will be compared to the observations to see which value of A has the potential to explain all the data simultaneously. The coupled Laplace finite-element (CLFE) method is used to calculate the response of a 3D spherical self-gravitating viscoelastic Earth to forcing by the ICE-4G ice history model with ocean loads in self-gravitating oceans. Results show that ice thickness in Laurentide needs to increase significantly or delayed by 2 ka, otherwise the predicted uplift rate, gravity rate-of-change and the amplitude of the RSL for sites inside the ice margin of Laurentide are too low to be able to explain the observations. However, the ice thickness elsewhere outside Laurentide needs to be slightly modified in order to explain the global RSL data outside Laurentide. If the ice model is modified in this way, then the results of this paper indicate that models with power-law rheology in the lower mantle (with A  10−35 Pa−3 s−1 for n = 3) have the highest potential to simultaneously explain all the observed RSL, uplift rate and gravity rate-of-change data than the other model types.  相似文献   

7.
Freshwater resources in the arid Arabian Peninsula, especially transboundary aquifers shared by Saudi Arabia, Jordan, and Iraq, are of critical environmental and geopolitical significance. Monthly Gravity Recovery and Climate Experiment (GRACE) satellite‐derived gravity field solutions acquired over the expansive Saq transboundary aquifer system were analysed and spatiotemporally correlated with relevant land surface model outputs, remote sensing observations, and field data to quantify temporal variations in regional water resources and to identify the controlling factors affecting these resources. Our results show substantial GRACE‐derived terrestrial water storage (TWS) and groundwater storage (GWS) depletion rates of ?9.05 ± 0.25 mm/year (?4.84 ± 0.13 km3/year) and ?6.52 ± 0.29 mm/year (?3.49 ± 0.15 km3/year), respectively. The rapid decline is attributed to both climatic and anthropogenic factors; observed TWS depletion is partially related to a decline in regional rainfall, while GWS depletions are highly correlated with increasing groundwater extraction for irrigation and observed water level declines in regional supply wells.  相似文献   

8.
Summary With the aid of a simplified model, the gravitational effect of the anomalous part of the atmosphere was analysed theoretically and formulae were derived for numerical computation. It was found that under extreme meteorological conditions this effect is of the same order as the present accuracy of absolute gravity observations, i.e. ±100–150 nm s–2. It is, therefore, recommended to reduce these observations to some model of the normal atmosphere by introducing computational corrections.  相似文献   

9.
We evaluated 2011–2015 mobile relative gravity data from the Hexi monitoring network that covers the epicenter of the 2016 Menyuan Ms6.4 earthquake, Qinghai Province, China and examined the spatiotemporal characteristics of the gravity field at the focal depth. In addition, we assessed the regional gravity field and its variation the half-year before the earthquake. We use first different interpolation algorithms to build a grid for the gravity data and then introduce potential field interpolation–cutting separation techniques and adaptive noise filtering. The results suggest that the gravity filed at the focal depth of 11.12 km separated from the total gravity field at about–400~150 × 10?8 m/s2 in the second half of 2015, which is larger than that in the same period in 2011 to 2014 (±30 × 10?8 m/s2). Moreover, at the same time, the gravity field changed fast from September 2014 to May 2015 and May 2015 to September 2015, reflecting to some extent material migration deep in the crust before the Menyuan earthquake.  相似文献   

10.
New data for the direct measurement of the isotopic composition of neodymium in Atlantic Ocean seawater are compared with previous measurements of Pacific Ocean seawater and ferromanganese sediments from major ocean basins. Data for Atlantic seawater are in excellent agreement with Nd isotopic measurements made on Atlantic ferromanganese sediments and are distinctly different from the observed compositions of Pacific samples. These results clearly demonstrate the existence of distinctive differences in the isotopic composition of Nd in the waters of the major ocean basins and are characteristic of the ocean basin sampled. The average εNd(0) values for the major oceans as determined by data from seawater and ferromanganese sediments are as follows: Atlantic Ocean,εNd(0) ? ?12 ± 2; Indian Ocean,εNd(0) ? ?8 ± 2; Pacific Ocean,εNd(0) ? ?3 ± 2. These values are considerably less than εNd(0) value sources with oceanic mantle affinities indicating that the REE in the oceans are dominated by continental sources. The difference in the absolute abundance of143Nd between the Pacific and Atlantic Oceans corresponds to ~106 atoms143Nd per gram of seawater. The correspondence between the143Nd/144Nd in seawater and in the associated sediments suggests the possible application of this approach to paleo-oceanography.Distinctive differences in εNd(0) values are observed in the Atlantic Ocean between deep-ocean water associated with North Atlantic Deep Water and near-surface water. This suggests that North Atlantic Deep Water may be relatively well mixed with respect to Nd isotopic composition whereas near-surface water may be quite heterogeneous, reflecting different sources for surface waters relative to deep water. This suggests that it may be possible to distinguish the sources of water masses within an ocean basin on the basis of Nd isotopic composition.The Nd isotopic variations in seawater are used to relate the residence time of Nd and mixing rates between the oceans.  相似文献   

11.
Inner gorges often result from the propagation of erosional waves related to glacial/interglacial climate shifts. However, only few studies have quantified the modern erosional response to this glacial conditioning. Here, we report in situ 10Be data from the 64 km2 Entlen catchment (Swiss Alps). This basin hosts a 7 km long central inner gorge with two tributaries that are >100 m‐deeply incised into thick glacial till and bedrock. The 10Be concentrations measured at the downstream end of the gorge yield a catchment‐wide erosion rate of 0.42 ± 0.04 mm yr‐1, while erosion rates are consistently lower upstream of the inner gorge, ranging from 0.14 ± 0.01 mm yr‐1 to 0.23 ± 0.02 mm yr‐1. However, 10Be‐based sediment budget calculations yield rates of ~1.3 mm yr‐1 for the inner gorge of the trunk stream. Likewise, in the two incised tributary reaches, erosion rates are ~2.0 mm yr‐1 and ~1.9 mm yr‐1. Moreover, at the erosional front of the gorge, we measured bedrock incision rates ranging from ~2.5 mm yr‐1 to ~3.8 mm yr‐1. These rates, however, are too low to infer a post‐glacial age (15–20 ka) for the gorge initiation. This would require erosion rates that are between 2 and 6 times higher than present‐day estimates. However, the downcutting into unconsolidated glacial till favored high erosion rates through knickzone propagation immediately after the retreat of the LGM glaciers, and subsequent hillslope relaxation led to a progressive decrease in erosion rates. This hypothesis of a two‐ to sixfold decrease in erosion rates does not conflict with the 10Be‐based erosion rate budgets, because the modern erosional time scale recorded by 10Be cover the past 2–3 ka only. These results point to the acceleration of Holocene erosion in response to the glacial overprint of the landscape. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Polar regions such as Greenland, Svalbard and Antarctica are deforming today because of both the present-day ice-mass (PDIM) change of glaciers and the glacial isostatic adjustment (GIA) following the Pleistocene deglaciation. Observations handled in these areas contain both the contributions from the PDIM change and GIA. This study aims at separating them by considering two specific gravity variation-to-vertical displacement ratios. We first review the case of the viscoelastic rebound (GIA) subsequent to the Pleistocene deglaciation leading to a ratio C v . The outcome of previous studies is that C v is approximately equal to ?0.15?μGal/mm and almost independent of the deglaciation history, ice geometry and viscosity profile of the mantle. Similarly we consider the elastic deformation resulting from PDIM change which leads to a second ratio C e,N . Several studies have shown that $C^{e,N} \approx {-}0.26\, \mu$ Gal/mm if one assumes that the changing glaciers are thin layers over the surface of a spherical Earth model. In this case, we show that the separation between the contributions from PDIM change and GIA is unique if both gravity and height changes observations are available at the same station. Next, we focus on C e,N and show that according to the deglaciation/glaciation context and from colocated gravity variation and ground vertical velocity measurements one can deduce a range of possible values for C e,N . Studying the influence of the topography on C e,N we first show that it tends to positive values if most of surrounding ice-mass changes above the altitude of the observation site and to values lower than ?0.26?μGal/mm if changes are below. We next apply our general formalism to the case of the past and PDIM changes in Svalbard, Norway. We compute the ratio C e,N at the geodetic observatory at Ny-?lesund and show the influence of the topography of the surrounding glaciers on the measured gravity and uplift rates. We show that if the ice-mass change is spatially uniform, C e, N does not depend on the speed of ice-mass change, and hence the separation of the contributions from PDIM changes and GIA can still be done univocally. However, if the ice-mass change is not spatially uniform, C e, N depends on both the speed of ice-mass change and the volume of ice-change rate.  相似文献   

13.
Calculation of lava effusion rates from Landsat TM data   总被引:1,自引:0,他引:1  
 We present a thermal model to calculate the total thermal flux for lava flowing in tubes, on the surface, or under shallow water. Once defined, we use the total thermal flux to estimate effusion rates for active flows at Kilauea, Hawaii, on two dates. Input parameters were derived from Landsat Thematic Mapper (TM), field and laboratory measurements. Using these parameters we obtain effusion rates of 1.76±0.57 and 0.78±0.27 m3 s–1 on 23 July and 11 October 1991, respectively. These rates are corroborated by field measurements of 1.36±0.14 and 0.89±0.09 m3 s–1 for the same dates (Kauahikaua et al. 1996). Using weather satellite (AVHRR) data of lower spatial resolution, we obtain similar effusion rates for an additional 26 dates between the two TM-derived measurements. We assume that, although total effusion rates at the source declined over the period, the shut down of the ocean entry meant that effusion rates for the surface flows alone remained stable. Such synergetic use of remotely sensed data provides measurements that can (a) contribute to monitoring flow-field evolution, and (b) provide reliable numerical data for input into rheological and thermal models. We look forward to being able to produce estimates for effusion rates using data from high-spatial-resolution sensors in the earth observing system (EOS) era, such as Landsat 7, the hyperspectral imager, the advanced spaceborne thermal emission spectrometer, and the advanced land imager. Received: 25 July 1997 / Accepted: 26 February 1998  相似文献   

14.
Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8‐yr record of proglacial suspended sediment yield. Non‐glacial lowering rates range from 1·8 ± 0·5 mm yr?1 to 8·5 ± 3·4 mm yr?1 from estimates of rock fall and debris‐flow fan volumes. An average erosion rate of 0·08 ± 0·04 mm yr?1 from eight convex‐up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice‐cover), it was found that nonglacial processes account for an annual sediment flux of 2·3 ± 1·0 × 106 t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2·9 ± 1·0 × 106 t, corresponding to an erosion rate of 1·8 ± 0·6 mm yr?1: nonglacial sources therefore account for 80 ± 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub‐basin (32% ice‐cover) to determine an erosion rate of 12·1 ± 6·9 mm yr?1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ± 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice‐free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Mean annual sea level (MASL) data for 25 Greek stations were analyzed for the time period 1969–1982. The data from 4 of these were unacceptably poor, and the record of 3 stations showed unexplained step functions that were interpreted as errors. Relative MASL between stations showed crustal stability at 10 of the 18 useful stations. The standard deviation from the long-term average of these stations was ±1.8 cm. We conclude that if station records are carefully kept in this area crustal movements in excess of 5 cm can be detected by relative MASL. A comparison of MASL data with gravity changes measured in the Peloponnese and Central Greece suggests that vertical movements occurred along a gradient equal to or larger than the free air gradient. We conclude that the gravity network should be reoccupied frequently such that the non-tectonic effects to be determined from the probable observed gravity changes, and the tectonic vertical movements may be better understood. A co-seismic subsidence of about 5 cm is inferred to have taken place near Korinth during the 1981,M s =6.8, earthquake, which occurred 20 km N of this tide gauge (Posidonia). During 2.5 years before the 1968 Thessaloniki,M s =6.6, earthquake, sea level was lower than average suggesting possible crustal elevation of 3.6 cm at about 28 km epicentral distance. Because of the small amplitude of this change we are not certain that it represents crustal uplift. At station Myrina (on Limnos) a strong and consistent trend of subsidence accumulated a 15 cm change between 1975 and 1980. Chios showed a trend of emergence (total accumulation about +5 cm), while Volos showed a trend of subsidence (approximately ?5 cm total). Kefalinia appears to have subsided about 10 cm during the data period. The six stations along the Hellenic arc plate boundary showed nearly constant MASL, suggesting that crustal stability existed there during the last 14 years. We conclude that MASL data in Greece can be useful for understanding tectonic processes, especially if these data are gathered carefully and at numerous locations, and are cross-correlated to high precision repeat gravity measurements, and geodetic releveling. Also, MASL data on active volcanic islands have excellent potential for detecting uplift before future eruptions.  相似文献   

16.
Holocene and Pleistocene tectonic deformation of the coast in the Mexico subudction margin is recorded by geomorphic and stratigraphic markers. We document the spatial and temporal variability of active deformation on the coastal Mexican subduction margin. Pleistocene uplift rates are estimated using wave-cut platforms at ca. 0.7?C0.9?m/ka on the Jalisco block coast, Rivera-North America tectonic plate boundary. We examine reported measurements from marine notches and shoreline angle elevations in conjunction with their radiocarbon ages that indicate surface uplift rates increasing during the Holocene up to ca. 3?±?0.5?m/ka. In contrast, steady rates of uplift (ca. 0.5?C1.0?m/ka) in the Pleistocene and Holocene characterize the Michoacan coastal sector, south of El Gordo graben and north of the Orozco Fracture Zone (OFZ), incorporated within the Cocos-North America plate boundary. Significantly higher rates of surface uplift (ca. 7?m/ka) across the OFZ subduction may reflect the roughness of subducting plate. Absence of preserved marine terraces on the coastal sector across El Gordo graben likely reflects slow uplift or coastal subsidence. Stratigraphic markers and their radiocarbon ages show late Holocene (ca. last 6?ka bp) coastal subsidence on the Guerrero gap sector in agreement with a landscape barren of marine terraces and with archeological evidence of coastal subsidence. Temporal and spatial variability in recent deformation rates on the Mexican Pacific coast may be due to differences in tectonic regimes and to localized processes related to subduction, such as crustal faults, subduction erosion and underplating of subducted materials under the southern Mexico continental margin.  相似文献   

17.
Loading by atmosphere and by the Baltic Sea cause gravity change at Metsähovi, located 15 km from the open sea. Gravity is changed by both the Newtonian attraction of the loading mass and by the crustal deformation. We have performed loading calculations using appropriate Green's function for both gravity and deformation, for both atmospheric and Baltic loading. The loading by atmosphere has been computed using a detailed surface pressure field from high resolution limited area model (HIRLAM) for north Europe up to 10° distances. Baltic Sea level is modelled using tide gauge records. Calculations show that 1 m of uniform layer of water corresponds to 31 nm s−2 in gravity and −11 mm in height. Modelled loading is compared with observations of the superconducting gravimeter T020 for years 1994–2002. The combination of HIRLAM and a tide gauge record decreases RMS of gravity residuals by 14% compared to single admittance in air pressure corrections without sea level data. Regression of gravity residuals on the tide gauge record at Helsinki (at 30 km distance) gives a gravity effect of 26 nm s−2 m−1 for Baltic loading.The gravity station is co-located with a permanent GPS station. We have also associated the loading effects of the atmosphere and of the Baltic Sea with temporal height variations. The range of modelled vertical motion due to air pressure was 46 mm and that due to sea level 18 mm. The total range was 38 mm. The effects of the Baltic Sea and of the atmosphere partly cancel each other, since at longer periods the inverse barometer assumption is valid. Regression of the modelled height on local air pressure gives −0.37 mm hPa−1, corresponding approximately to width 6° for pressure system.We have tested the models using one year of daily GPS data. Multilinear regression on local air pressure and sea level in Helsinki gives the coefficient −0.34 mm hPa−1 for pressure, and −11 mm m−1 for sea level. These match model values. Loading by air pressure and Baltic Sea explains nearly 40% of the variance of daily GPS height solutions.  相似文献   

18.
A sediment budget for the Late Glacial and Holocene periods was calculated for the Lac Chambon watershed which is located in a formerly glaciated temperate crystalline mountain area. It appears that over 15 500 years: (1) 69 per cent of eroded particles have been displaced by gravity processes and then stored within the watershed, compared to 31 per cent that have been displaced by running water and evacuated outward; (2) the mean mechanical erosion due to gravity processes on the slopes amounted to 16·1 ±6 m and only developed on a quarter of the watershed surface, whereas the mean mechanical erosion due to running water amounted 1·24 ± 0·37 m and involved the whole watershed surface. The mean sediment yields due to gravity processes on slopes were 2300 ± 1360, 1770 ± 960 and 380 ± 100 m3 km−3 a−1, respectively, for basalts, and basic and acidic trachyandesites. Values of sediment yield due to running water were 49±15, 120±36 and 79±24 m3 km−2 a−1, respectively, during the Bôlling–Allerôd, the Younger Dryas and the Pre-Boreal–Boreal periods. They were 56±17 and 166±50 m3 km−2 a−1 during the Sub-Atlantic period before and after 1360 a BP , respectively. These values reflect variations in the natural environment and the impact of human-induced deforestation. © 1997 by John Wiley & Sons, Ltd.  相似文献   

19.
基于中国大陆1998~2007年(复测周期2~3年)流动重力观测数据,结合GPS、水准观测成果和区域地质构造动力环境,分析研究了汶川8.0级地震区域重力场动态变化演化特征和孕震机理.结果表明:区域重力场动态演化大体反映了青藏高原物质东流的动态效应和汶川大震孕育的中长期(2~10年)信息;汶川大震孕育的显著重力标志为震中西南持续多年的正重力变化(上升)和出现较大规模的重力变化梯级带,前者有利于地震能量的不断积累,后者有利于地震剪切破裂的发生;与地震孕育相关重力场变化总体呈增大—加速增大—减速增大—发震的过程;8年累积重力变化幅差最大约200×10-8m·s-2;2001年昆仑山口8.1级地震孕育发生和震后恢复调整,对区域重力场动态变化和汶川大震的孕育发展具有重要影响;松潘—甘孜块体一般呈现负重力变化,可能反映深部壳幔局部上隆、壳内温度较高而膨胀,有利于逆冲或推覆体运动的形成和大震的发生.  相似文献   

20.
Rockwall slope erosion is defined for the upper Bhagirathi catchment using cosmogenic Beryllium-10 (10Be) concentrations in sediment from medial moraines on Gangotri glacier. Beryllium-10 concentrations range from 1.1 ± 0.2 to 2.7 ± 0.3 × 104 at/g SiO2, yielding rockwall slope erosion rates from 2.4 ± 0.4 to 6.9 ± 1.9 mm/a. Slope erosion rates are likely to have varied over space and time and responded to shifts in climate, geomorphic and/or tectonic regime throughout the late Quaternary. Geomorphic and sedimentological analyses confirm that the moraines are predominately composed of rockfall and avalanche debris mobilized from steep relief rockwall slopes via periglacial weathering processes. The glacial rockwall slope erosion affects sediment flux and storage of snow and ice at the catchment head on diurnal to millennial timescales, and more broadly influences catchment configuration and relief, glacier dynamics and microclimates. The slope erosion rates exceed the averaged catchment-wide and exhumation rates of Bhagirathi and the Garhwal region on geomorphic timescales (103−105 years), supporting the view that erosion at the headwaters can outpace the wider catchment. The 10Be concentrations of medial moraine sediment for the upper Bhagirathi catchment and the catchments of Chhota Shigri in Lahul, northern India and Baltoro glacier in Central Karakoram, Pakistan show a tentative relationship between 10Be concentration and precipitation. As such there is more rapid glacial rockwall slope erosion in the monsoon-influenced Lesser and Greater Himalaya compared to the semi-arid interior of the orogen. Rockwall slope erosion in the three study areas, and more broadly across the northwest Himalaya is likely governed by individual catchment dynamics that vary across space and time. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号