首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A multi-anvil device was used to synthesize 24 mg of pure γ-Fe2SiO4 crystals at 8.5 GPa and 1,273 K. The low-temperature heat capacity (C p) of γ-Fe2SiO4 was measured between 5 and 303 K using the heat capacity option of a physical properties measurement system. The measured heat capacity data show a broad λ-transition at 11.8 K. The difference in the C p between fayalite and γ-Fe2SiO4 is reduced as the temperature increases in the range of 50–300 K. The gap in C p data between 300 and 350 K of γ-Fe2SiO4 is an impediment to calculation of a precise C p equation above 298 K that can be used for phase equilibrium calculations at high temperatures and high pressures. The C p and entropy of γ-Fe2SiO4 at standard temperature and pressure (S°298) are 131.1 ± 0.6 and 140.2 ± 0.4 J mol−1 K−1, respectively. The Gibbs free energy at standard pressure and temperature (Δ f,298) is calculated to be −1,369.3 ± 2.7 J mol−1 based on the new entropy data. The phase boundary for the fayalite–γ-Fe2SiO4 transition at 298 K based on current thermodynamic data is located at 2.4 ± 0.6 GPa with a slope of 25.4 bars/K, consistent with extrapolated results of previous experimental studies.  相似文献   

2.
The heat capacity of eskolaite Cr2O3(c) was determined by adiabatic vacuum calorimetry at 11.99–355.83 K and by differential calorimetry at 320–480 K. Experimental data of the authors and data compiled from the literature were applied to calculate the heat capacity, entropy, and the enthalpy change of Cr2O3 within the temperature range of 0–1800 K. These functions have the following values at 298.15 K: C p 0 (298.15) = 121.5 ± 0.2 J K−1mol−1, S 0(298.15) = 80.95 ± 0.14 J K−1mol−1, and H 0(298.15)-H 0(0) = 15.30±0.02 kJ mol−1. Data were obtained on the transitions from the antiferromagnetic to paramagnetic states at 228–457 K; it was determined that this transition has the following parameters: Neel temperature T N = 307 K, Δ tr S = 6.11 ± 0.12 J K−1mol−1 and δ tr H = 1.87 ± 0.04 kJ mol−1.  相似文献   

3.
The heat capacity at constant pressure, C p, of chlorapatite [Ca5(PO4)3Cl – ClAp], and fluorapatite [Ca5(PO4)3F – FAp], as well as of 12 compositions along the chlorapatite–fluorapatite join have been measured using relaxation calorimetry [heat capacity option of the physical properties measurement system (PPMS)] and differential scanning calorimetry (DSC) in the temperature range 5–764 K. The chlor-fluorapatites were synthesized at 1,375–1,220°C from Ca3(PO4)2 using the CaF2–CaCl2 flux method. Most of the chlor-fluorapatite compositions could be measured directly as single crystals using the PPMS such that they were attached to the sample platform of the calorimeter by a crystal face. However, the crystals were too small for the crystal face to be polished. In such cases, where the sample coupling was not optimal, an empirical procedure was developed to smoothly connect the PPMS to the DSC heat capacities around ambient T. The heat capacity of the end-members above 298 K can be represented by the polynomials: C pClAp = 613.21 − 2,313.90T −0.5 − 1.87964 × 107 T −2 + 2.79925 × 109 T −3 and C pFAp = 681.24 − 4,621.73 × T −0.5 − 6.38134 × 106 T −2 + 7.38088 × 108 T −3 (units, J mol−1 K−1). Their standard third-law entropy, derived from the low-temperature heat capacity measurements, is S° = 400.6 ± 1.6 J mol−1 K−1 for chlorapatite and S° = 383.2 ± 1.5 J mol−1 K−1 for fluorapatite. Positive excess heat capacities of mixing, ΔC pex, occur in the chlorapatite–fluorapatite solid solution around 80 K (and to a lesser degree at 200 K) and are asymmetrically distributed over the join reaching a maximum of 1.3 ± 0.3 J mol−1 K−1 for F-rich compositions. They are significant at these conditions exceeding the 2σ-uncertainty of the data. The excess entropy of mixing, ΔS ex, at 298 K reaches positive values of 3–4 J mol−1 K−1 in the F-rich portion of the binary, is, however, not significantly different from zero across the join within its 2σ-uncertainty.  相似文献   

4.
 Phase A, Mg7Si2O8(OH)6, is a dense hydrous magnesium silicate whose importance as a host of H2O in the Earth’s mantle is a subject of debate. We have investigated the low-pressure stability of phase A in experiments on the reaction phase A=brucite+forsterite. Experiments were conducted in piston-cylinder and multi-anvil apparatus, using mixtures of synthetic phase A, brucite and forsterite. The reaction was bracketed between 2.60 and 2.75 GPa at 500° C, between 3.25 and 3.48 GPa at 600° C and between 3.75 and 3.95 GPa at 650° C. These pressures are much lower than observed in the synthesis experiments of Yamamoto and Akimoto (1977). At 750° C the stability field of brucite + chondrodite was entered. The enthalpy of formation and entropy of phase A at 1 bar (105 Pa), 298 K, were derived from the experimental brackets on the reaction phase A=brucite+forsterite using a modified version of the thermodynamic dataset THERMOCALC of Holland and Powell (1990), which includes a new equation of state of H2O derived from the molecular dynamics simulations of Brodholt and Wood (1993). The data for phase A are: ΔH o f =−7126±8 kJ mol-1, S o=351 J K-1 mol-1. Incorporating these data into THERMOCALC allows the positions of other reactions involving phase A to be calculated, for example the reaction phase A + enstatite=forsterite+vapour, which limits the stability of phase A in equilibrium with enstatite. The calculated position of this reaction (753° C at 7 GPa to 937° C at 10 GPa) is in excellent agreement with the experimental brackets of Luth (1995) between 7 and 10 GPa, supporting the choice of equation of state of H2O used in THERMOCALC. Comparison of our results with calculated P-T paths of subducting slabs (Peacock et al. 1994) suggests that, in the system MgO–SiO2–H2O, phase A could crystallise in compositions with Mg/Si>2 at pressures as low as 3 GPa. In less Mg rich compositions phase A could crystallise at pressures above approximately 6 GPa. Received: 3 July 1995/Accepted: 14 December 1995  相似文献   

5.
Diffusion coefficients of Cr and Al in chromite spinel have been determined at pressures ranging from 3 to 7 GPa and temperatures ranging from 1,400 to 1,700°C by using the diffusion couple of natural single crystals of MgAl2O4 spinel and chromite. The interdiffusion coefficient of Cr–Al as a function of Cr# (=Cr/(Cr + Al)) was determined as D Cr–AlD 0 exp {−(Q′ + PV*)/RT}, where D 0 = exp{(10.3 ± 0.08) × Cr#0.54±0.02} + (1170 ± 31.2) cm2/s, Q′ = 520 ± 81 kJ/mol at 3 GPa, and V* = 1.36 ± 0.25 cm3/mol at 1,600°C, which is applicable up to Cr# = 0.8. The estimation of the self-diffusion coefficients of Cr and Al from Cr–Al interdiffusion shows that the diffusivity of Cr is more than one order of magnitude smaller than that of Al. These results are in agreement with patterns of multipolar Cr–Al zoning observed in natural chromite spinel samples deformed by diffusion creep.  相似文献   

6.
The thermoelastic parameters of synthetic Ca3Al2Si3O12 grossular garnet were examined in situ at high-pressure and high-temperature by energy dispersive X-ray diffraction, using a Kawai-type multi-anvil press apparatus coupled with synchrotron radiation. Measurements have been conducted at pressures up to 20 GPa and temperatures up to 1,650 K: this P, T range covered the entire high-P, T stability field of grossular garnet. The analysis of room temperature data yielded V 0,300 = 1,664 ± 2 ?3 and K 0 = 166 ± 3 GPa for K0 K^{\prime}_{0} fixed to 4.0. Fitting of our PVT data by means of the high-temperature third order Birch–Murnaghan or the Mie–Grüneisen–Debye thermal equations of state, gives the thermoelastic parameters: (∂K 0,T /∂T) P  = −0.019 ± 0.001 GPa K−1 and α 0,T  = 2.62 ± 0.23 × 10−5 K−1, or γ 0 = 1.21 for fixed values q 0 = 1.0 and θ 0 = 823 (Isaak et al. Phys Chem Min19:106–120, 1992). From the comparison of fits from two different approaches, we propose to constrain the bulk modulus of grossular garnet and its pressure derivative to K T0 = 166 GPa and KT0 K^{\prime}_{T0}  = 4.03–4.35. Present results are compared with previously determined thermoelastic properties of grossular-rich garnets.  相似文献   

7.
 The heat capacity of paranatrolite and tetranatrolite with a disordered distribution of Al and Si atoms has been measured in the temperature range of 6–309 K using the adiabatic calorimetry technique. The composition of the samples is represented with the formula (Na1.90K0.22Ca0.06)[Al2.24Si2.76O10nH2O, where n=3.10 for paranatrolite and n=2.31 for tetranatrolite. For both zeolites, thermodynamic functions (vibrational entropy, enthalpy, and free energy function) have been calculated. At T=298.15 K, the values of the heat capacity and entropy are 425.1 ± 0.8 and 419.1 ±0.8 J K−1 mol−1 for paranatrolite and 381.0 ± 0.7 and 383.2 ± 0.7 J K−1 mol−1 for tetranatrolite. Thermodynamic functions for tetranatrolite and paranatrolite with compositions corrected for the amount of extraframework cations and water molecules have also been calculated. The calculation for tetranatrolite with two water molecules and two extraframework cations per formula yields: C p (298.15)=359.1 J K−1 mol−1, S(298.15) −S(0)=362.8 J K−1 mol−1. Comparing these values with the literature data for the (Al,Si)-ordered natrolite, we can conclude that the order in tetrahedral atoms does not affect the heat capacity. The analysis of derivatives dC/dT for natrolite, paranatrolite, and tetranatrolite has indicated that the water- cations subsystem within the highly hydrated zeolite may become unstable at temperatures above 200 K. Received: 30 July 2001 / Accepted: 15 November 2001  相似文献   

8.
Mantle xenoliths in within-plate Cenozoic alkaline mafic lavas from NE Spain are used to assess the local subcontinental lithospheric mantle geotherm and the influence of melting and metasomatism on its oxidation state. The xenoliths are mainly anhydrous spinel lherzolites and harzburgites and gradations between, with minor pyroxenites. Most types show protogranular textures, but transitional protogranular–porphyroclastic and equigranular lherzolites also exist. Different thermometers used in the estimates provide higher subsolidus equilibrium temperatures for harzburgites (1,062 ± 29°C) than for lherzolites (972 ± 89°C), although there is overlap; the lowest temperatures correspond to porphyroclastic lherzolites, whereas pyroxenites give the highest temperatures (up to 1,257°C). Maximum pressures for subsolidus equilibrium of peridotites are at 2.0–1.8 GPa. Later they followed adiabatic decompression and harzburgites registered lower pressures (1.02 ± 0.19 GPa) than lherzolites (1.41 ± 0.27 GPa). One pyroxenite gives values consistent with the spinel lherzolite field (1.08 GPa). The shallowest barometric data are in agreement with the highest local conductive geotherms, which implies that the lithosphere–asthenosphere boundary is at 70–60 km minimum depth. Higher equilibrium temperatures for the harzburgites could be explained by the existence of mafic magma bodies or dykes at the lower crust–mantle boundary. Paleo-fO2 conditions during partial melting as inferred from the covariation between V and MgO concentrations are mainly between QFM−1 and QFM−2 in log units. However, most thermobarometric fO2 estimates are between QFM−1 and QFM+1, suggesting oxidation caused by later metasomatism during uplift and cooling.  相似文献   

9.
 Physical properties including the equation of state, elasticity, and shear strength of pyrite have been measured by a series of X-ray diffraction in diamond-anvil cells at pressures up to 50 GPa. A Birch–Murnaghan equation of state fit to the quasihydrostatic pressure–volume data obtained from laboratory X-ray source/film techniques yields a quasihydrostatic bulk modulus K 0T =133.5 (±5.2) GPa and bulk modulus first pressure derivative K 0T =5.73 (±0.58). The apparent equation of state is found to be strongly dependent on the stress conditions in the sample. The stress dependency of the high-pressure properties is examined with anisotropic elasticity theory from subsequent measurements of energy-dispersive radial diffraction experiments in the diamond-anvil cell. The calculated values of K 0T depend largely upon the angle ψ between the diffracting plane normal and the maximum stress axis. The uniaxial stress component in the sample, t3−σ1, varies with pressure as t=−3.11+0.43P between 10 and 30 GPa. The pressure derivatives of the elastic moduli dC 11/dP=5.76 (±0.15), dC 12/dP=1.41 (±0.11) and dC 44/dP=1.92 (±0.06) are obtained from the diffraction data assuming previously reported zero-pressure ultrasonic data (C 11=382 GPa, C 12=31 GPa, and C 44=109 GPa). Received: 21 December 2000 / Accepted: 11 July 2001  相似文献   

10.
 In situ synchrotron X-ray experiments in the system SnO2 were made at pressures of 4–29 GPa and temperatures of 300–1400 K using sintered diamond anvils in a 6–8 type high-pressure apparatus. Orthorhombic phase (α-PbO2 structure) underwent a transition to a cubic phase (Pa3ˉ structure) at 18 GPa. This transition was observed at significantly lower pressures in DAC experiments. We obtained the isothermal bulk modulus of cubic phase K 0 = 252(28) GPa and its pressure derivative K =3.5(2.2). The thermal expansion coefficient of cubic phase at 25 GPa up to 1300 K was determined from interpolation of the P-V-T data obtained, and is 1.7(±0.7) × 10−5 K−1 at 25 GPa. Received: 7 December 1999 / Accepted: 27 April 2000  相似文献   

11.
 Calorimetric and PVT data for the high-pressure phase Mg5Al5Si6O21(OH)7 (Mg-sursassite) have been obtained. The enthalpy of drop solution of three different samples was measured by high-temperature oxide melt calorimetry in two laboratories (UC Davis, California, and Ruhr University Bochum, Germany) using lead borate (2PbO·B2O3) at T=700 C as solvent. The resulting values were used to calculate the enthalpy of formation from different thermodynamic datasets; they range from −221.1 to −259.4 kJ mol−1 (formation from the oxides) respectively −13892.2 to −13927.9 kJ mol−1 (formation from the elements). The heat capacity of Mg5Al5Si6O21(OH)7 has been measured from T=50 C to T=500 C by differential scanning calorimetry in step-scanning mode. A Berman and Brown (1985)-type four-term equation represents the heat capacity over the entire temperature range to within the experimental uncertainty: C P (Mg-sursassite) =(1571.104 −10560.89×T −0.5−26217890.0 ×T −2+1798861000.0×T −3) J K−1 mol−1 (T in K). The P V T behaviour of Mg-sursassite has been determined under high pressures and high temperatures up to 8 GPa and 800 C using a MAX 80 cubic anvil high-pressure apparatus. The samples were mixed with Vaseline to ensure hydrostatic pressure-transmitting conditions, NaCl served as an internal standard for pressure calibration. By fitting a Birch-Murnaghan EOS to the data, the bulk modulus was determined as 116.0±1.3 GPa, (K =4), V T,0 =446.49 3 exp[∫(0.33±0.05) × 10−4 + (0.65±0.85)×10−8 T dT], (K T/T) P  = −0.011± 0.004 GPa K−1. The thermodynamic data obtained for Mg-sursassite are consistent with phase equilibrium data reported recently (Fockenberg 1998); the best agreement was obtained with Δf H 0 298 (Mg-sursassite) = −13901.33 kJ mol−1, and S 0 298 (Mg-sursassite) = 614.61 J K−1 mol−1. Received: 21 September 2000 / Accepted: 26 February 2001  相似文献   

12.
 The crystal structure of a synthetic Rb analog of tetra-ferri-annite (Rb–TFA) 1M with the composition Rb0.99Fe2+ 3.03(Fe3+ 1.04 Si2.96)O10.0(OH)2.0 was determined by the single-crystal X-ray diffraction method. The structure is homooctahedral (space group C2/m) with M1 and M2 occupied by divalent iron. Its unit cell is larger than that of the common potassium trioctahedral mica, and similar lateral dimensions of the tetrahedral and octahedral sheets allow a small tetrahedral rotation angle α=2.23(6)°. Structure refinements at 0.0001, 1.76, 2.81, 4.75, and 7.2 GPa indicate that in some respects the Rb–TFA behaves like all other micas when pressure increases: the octahedra are more compressible than the tetrahedra and the interlayer is four times more compressible than the 2:1 layer. However, there is a peculiar behavior of the tetrahedral rotation angle α: at lower pressures (0.0001, 1.76, 2.81 GPa), it has positive values that increase with pressure [from 2.23(6)° to 6.3(4)°] as in other micas, but negative values −7.5(5)° and −8.5(9)° appear at higher pressures, 4.75 and 7.2 GPa, respectively. This structural evidence, together with electrostatic energy calculations, shows that Rb–TFA has a Franzini A-type 2:1 layer up to at least 2.81 GPa that at higher pressure yields to a Franzini B-type layer, as shown by the refinements at 4.75 and 7.2 GPa. The inversion of the α angle is interpreted as a consequence of an isosymmetric displacive phase transition from A-type to B-type structure between 2.81 and 4.75 GPa. The compressibility of the Rb–TFA was also investigated by single-crystal X-ray diffraction up to a maximum pressure of 10 GPa. The lattice parameters reveal a sharp discontinuity between 3.36 and 3.84 GPa, which was associated with the phase transition from Franzini-A to Franzini-B structure. Received: 21 October 2002 / Accepted: 25 February 2003  相似文献   

13.
The low-temperature heat capacity (C p) of Si-wadeite (K2Si4O9) synthesized with a piston cylinder device was measured over the range of 5–303 K using the heat capacity option of a physical properties measurement system. The entropy of Si-wadeite at standard temperature and pressure calculated from the measured heat capacity data is 253.8 ± 0.6 J mol−1 K−1, which is considerably larger than some of the previous estimated values. The calculated phase transition boundaries in the system K2O–Al2O3–SiO2 are generally consistent with previous experimental results. Together with our calculated phase boundaries, seven multi-anvil experiments at 1,400 K and 6.0–7.7 GPa suggest that no equilibrium stability field of kalsilite + coesite intervenes between the stability field of sanidine and that of coesite + kyanite + Si-wadeite, in contrast to previous predictions. First-order approximations were undertaken to calculate the phase diagram in the system K2Si4O9 at lower pressure and temperature. Large discrepancies were shown between the calculated diagram compared with previously published versions, suggesting that further experimental or/and calorimetric work is needed to better constrain the low-pressure phase relations of the K2Si4O9 polymorphs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
 The thermoelastic parameters of natural andradite and grossular have been investigated by high-pressure and -temperature synchrotron X-ray powder diffraction, at ESRF, on the ID30 beamline. The PVT data have been fitted by Birch-Murnaghan-like EOSs, using both the approximated and the general form. We have obtained for andradite K 0=158.0(±1.5) GPa, (dK/dT )0=−0.020(3) GPa K−1 and α0=31.6(2) 10−6 K−1, and for grossular K 0=168.2(±1.7) GPa, (dK/dT)0=−0.016(3) GPa K−1 and α0=27.8(2) 10−6 K−1. Comparisons between the present issues and thermoelastic properties of garnets earlier determined are carried out. Received: 7 July 2000 / Accepted: 20 October 2000  相似文献   

15.
 The structural behavior of synthetic gahnite (ZnAl2O4) has been investigated by X-ray powder diffraction at high pressure (0–43 GPa) and room temperature, on the ID9 beamline at ESRF. The equation of state of gahnite has been derived using the models of Birch–Murnaghan, Vinet and Poirier–Tarantola, and the results have been mutually compared (the elastic bulk modulus and its derivatives versus P determined by the third-order Birch–Murnaghan equation of state are K 0=201.7(±0.9) GPa, K 0=7.62(±0.09) and K 0=−0.1022 GPa−1 (implied value). The compressibilities of the tetrahedral and octahedral bond lengths [0.00188(8) and 0.00142(5) GPa−1 at P=0, respectively], and the␣polyhedral volume compressibilities of the four-␣and␣sixfold coordination sites [0.0057(2) and 0.0041(2) GPa−1 at P=0, respectively] are discussed. Received: 15 January 2001 / Accepted: 23 April 2001  相似文献   

16.
The heat capacity of gadolinium orthophosphate (GdPO4) measured in the temperature range 11.15–344.11 K by adiabatic calorimetry and available literature data were used to calculate its thermodynamic functions at 0–1600 K. At 298.15 K, these functions are as follows: C p 0(298.15 K) = 101.85 ± 0.05 J K−1 mol−1, S 0(298.15 K) = 123.82 ± 0.18 J K−1 mol−1, H 0(298.15 K)–H 0(0) = 17.250 ± 0.012 kJ mol−1, and Φ 0(298.15 K) = 65.97 ± 0.18 J K−1 mol−1 The calculated Gibbs free energy of formation from the elements of GdPO4 is Δ f G 0 (298.15 K) = −1844.3 ± 4.7 kJ mol−1.  相似文献   

17.
Low-temperature isobaric heat capacities (C p ) of MgSiO3 ilmenite and perovskite were measured in the temperature range of 1.9–302.4 K with a thermal relaxation method using the Physical Properties Measurement System. The measured C p of perovskite was higher than that of ilmenite in the whole temperature range studied. From the measured C p , standard entropies at 298.15 K of MgSiO3 ilmenite and perovskite were determined to be 53.7 ± 0.4 and 57.9 ± 0.3 J/mol K, respectively. The positive entropy change (4.2 ± 0.5 J/mol K) of the ilmenite–perovskite transition in MgSiO3 is compatible with structural change across the transition in which coordination of Mg atoms is changed from sixfold to eightfold. Calculation of the ilmenite–perovskite transition boundary using the measured entropies and published enthalpy data gives an equilibrium transition boundary at about 20–23 GPa at 1,000–2,000 K with a Clapeyron slope of −2.4 ± 0.4 MPa/K at 1,600 K. The calculated boundary is almost consistent within the errors with those determined by high-pressure high-temperature in situ X-ray diffraction experiments.  相似文献   

18.
The high-pressure X-ray diffraction study of a natural arsenopyrite was investigated up to 28.2 GPa using in situ angle-dispersive X-ray diffraction and a diamond anvil cell at National Synchrotron Light Source, Brookhaven National Laboratory. The 16:3:1 methanol–ethanol–water mixture was used as a pressure-transmitting medium. Pressures were measured using the ruby-fluorescence method. No phase change has been observed up to 28.2 GPa. The isothermal equation of state (EOS) was determined. The values of K 0, and K′ 0 refined with a third-order Birch–Murnaghan EOS are K 0 = 123(9) GPa, and K′ 0 = 5.2(8). Furthermore, we confirm that the linear compressibilities (β) along a, b and c directions of arsenopyrite is elastically isotropic (β a  = 6.82 × 10−4, β b  = 6.17 × 10−4 and β c  = 6.57 × 10−4 GPa−1).  相似文献   

19.
The thermoelastic behavior of a natural clintonite-1M [with composition: Ca1.01(Mg2.29Al0.59Fe0.12)Σ3.00(Si1.20Al2.80)Σ4.00O10(OH)2] has been investigated up to 10 GPa (at room temperature) and up to 960°C (at room pressure) by means of in situ synchrotron single-crystal and powder diffraction, respectively. No evidence of phase transition has been observed within the pressure and temperature range investigated. PV data fitted with an isothermal third-order Birch–Murnaghan equation of state (BM-EoS) give V 0 = 457.1(2) ?3, K T0 = 76(3)GPa, and K′ = 10.6(15). The evolution of the “Eulerian finite strain” versus “normalized stress” shows a linear positive trend. The linear regression yields Fe(0) = 76(3) GPa as intercept value, and the slope of the regression line leads to a K′ value of 10.6(8). The evolution of the lattice parameters with pressure is significantly anisotropic [β(a) = 1/3K T0(a) = 0.0023(1) GPa−1; β(b) = 1/3K T0(b) = 0.0018(1) GPa−1; β(c) = 1/K T0(c) = 0.0072(3) GPa−1]. The β-angle increases in response to the applied P, with: βP = β0 + 0.033(4)P (P in GPa). The structure refinements of clintonite up to 10.1 GPa show that, under hydrostatic pressure, the structure rearranges by compressing mainly isotropically the inter-layer Ca-polyhedron. The bulk modulus of the Ca-polyhedron, described using a second-order BM-EoS, is K T0(Ca-polyhedron) = 41(2) GPa. The compression of the bond distances between calcium and the basal oxygens of the tetrahedral sheet leads, in turn, to an increase in the ditrigonal distortion of the tetrahedral ring, with ∂α/∂P ≈ 0.1°/GPa within the P-range investigated. The Mg-rich octahedra appear to compress in response to the applied pressure, whereas the tetrahedron appears to behave as a rigid unit. The evolution of axial and volume thermal expansion coefficient α with temperature was described by the polynomial α(T) = α0 + α1 T −1/2. The refined parameters for clintonite are as follows: α0 = 2.78(4) 10−5°C−1 and α1 = −4.4(6) 10−5°C1/2 for the unit-cell volume; α0(a) = 1.01(2) 10−5°C−1 and α1(a) = −1.8(3) 10−5°C1/2 for the a-axis; α0(b) = 1.07(1) 10−5°C−1 and α1(b) = −2.3(2) 10−5°C1/2 for the b-axis; and α0(c) = 0.64(2) 10−5°C−1 and α1(c) = −7.3(30) 10−6°C1/2for the c-axis. The β-angle appears to be almost constant within the given T-range. No structure collapsing in response to the T-induced dehydroxylation was found up to 960°C. The HP- and HT-data of this study show that in clintonite, the most and the less expandable directions do not correspond to the most and the less compressible directions, respectively. A comparison between the thermoelastic parameters of clintonite and those of true micas was carried out.  相似文献   

20.
The phase boundary between MnTiO3 I (ilmenite structure) and MnTiO3 II (lithium niobate structure) has been determined by analysis of quench products from reversal experiments in a cubic anvil apparatus at 1073–1673 K and 43–75 kbar using mixtures of MnTiO3 I and II as starting materials. Tight brackets of the boundary give P(kbar)=121.2−0.045 T(K). Thermodynamic analysis of this boundary gives ΔHo=5300±1000 J·mol−1, ΔSo = 1.98 ±1J·K−1· mol−1. The enthalpy of transformation obtained directly by transposed-temperature-drop calorimetry is 8359 ±2575 J·mol−1. Possible topologies of the phase relations among the ilmenite, lithium niobate, and perovskite polymorphs are constrained using the above data and the observed (reversible with hysteresis) transformation of II to III at 298 K and 20–30 kbar (Ross et al. 1989). The observed II–III transition is likely to lie on a metastable extension of the II–III boundary into the ilmenite field. However the reversed I–II boundary, with its negative dP/ dT does represent stable equilibrium between ilmenite and lithium niobate, as opposed to the lithium niobate being a quench product of perovskite. We suggest a topology in which the perovskite occurs stably at low T and high P with a triple point (I, II, III) at or below 1073 K near 70 kbar. The I–II boundary would have a negative P-T slope while the II–III and I–III boundaries would be positive, implying that entropy decreases in the order lithium niobate, ilmenite, perovskite. The inferred positive slope of the ilmenite-perovskite transition in MnTiO3 is different from the negative slopes in silicates and germanates. These thermochemical parameters are discussed in terms of crystal structure and lattice vibrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号