首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
The dynamics of energetic electrons (E e =0.17–8 MeV) and protons (E p =1 MeV) of the outer radiation belt during the magnetic storm of May 15, 2005, at high (GOES-10 and LANL-84 geosynchronous satellites) and low (Meteor-3M polar satellite) altitudes is analyzed. The data have been compared to the density, plasma velocity, solar wind, and magnetic field measurements on the ACE satellite and geomagnetic disturbances. During the magnetic storm main phase, the nighttime boundary of the region of trapped radiation and the center of westward electrojet shifted to L ~ 3. Enhancements of only low-energy electrons were observed on May 15, 2005. The belt of relativistic electrons with a maximum at L ~ 4 was formed during the substorm, the amplitude of which reached its maximum at ~0630 UT on May 16. The results are in good agreement with the regularity relating the position of a maximum of the new relativistic electron belt, boundaries of the trapped radiation region, and extreme low-latitude position of westward electrojet center to the Dst variation amplitude.  相似文献   

2.
FY2G卫星新一代高能带电粒子探测器观测数据分析   总被引:1,自引:0,他引:1       下载免费PDF全文
风云二号系列卫星是我国开展动态空间天气事件和空间环境监测及预警业务的重要观测平台,各系列星上均安装有高能带电粒子探测仪器开展卫星轨道空间带电粒子辐射环境连续实时的动态监测.FY2G卫星于2015年1月发射,星上采用了全新的高能粒子探测器,包括:一台高能电子探测器可监测200keV-4 MeV的高能电子,一台高能质子重离子探测器可监测4~300 MeV的高能质子,从而实现对带电粒子更宽、更精细能谱的监测.本文给出了FY2G高能带电粒子探测器在2015年1月至2015年10月期间几起典型的带电粒子动态观测结果,结合太阳和地磁活动相关参数,对高能带电粒子通量在亚暴、磁暴和太阳爆发等扰动影响下细节变化过程和特征作出了较为详细的分析描述,展现了FY2G卫星高能带电粒子探测器对轨道空间粒子环境动态变化的准确响应能力,表明观测数据可开展更加精细的轨道粒子环境评估.针对FY2G高能带电粒子探测结果进一步开展了与GOES系列卫星同期观测的比对分析,结果反映出在较小的扰动条件下多星观测到的带电粒子响应和通量变化可基本趋于一致或保持相对稳定的偏差,而扰动条件的显著变化会加大多星观测带电粒子响应和通量变化的差异,这些结果可为今后开展多星数据同化应用提供参考,也为发展磁层对扰动响应的更加复杂的图像提供了新的可能.  相似文献   

3.
The results of studying the intensity of fluxes of 30–80 keV ions from the data of measurements of the NOAA (POES) sun-synchronous satellites during geomagnetic storms of different intensity are presented. For 15 geomagnetic storms with |Dst|max from ~37 to ~422 nT, the storm-time maximum ion fluxes in the near-equatorial region (trapped particles) and at high latitudes (precipitating particles) have been considered. It is shown that the maximum fluxes of trapped particles, which are considered a ring-current proxy, increase with the storm power. In this case, if a smooth growth of fluxes is recorded for storms with |Dst|max < 250 nT in the near-equatorial region, a significantly steeper growth of fluxes of trapped particles is observed when storm power increases during storms with |Dst|max > 250 nT. This may be evidence of both an increasing of the contribution of the ring current relative to magnetotail currents to the development of high-intensity storms and to a nonlinear link between the ring current and ion fluxes at low altitudes in the near-equatorial region. Despite large variations in fluxes of precipitating particles in the polar region above the boundary of isotropization, a decreasing tendency, as a whole, in fluxes of these particles is observed with increasing the storm intensity. This is the evidence of the effect of saturation of magnetotail currents and of an increase in the relative role of the ring current during strong magnetic storms.  相似文献   

4.
环电流区中性原子观测特性模拟研究   总被引:2,自引:1,他引:2       下载免费PDF全文
为了给双星计划中性原子(ENA)探测仪的研制提供可靠 的理论依据,并为未来中性原子探测数据的分析及研究做好准备,针对双星轨道初步模拟计 算了双星ENA探测仪对磁暴时中性原子的观测特性. 建立了磁暴主相期间环电流离子分布的 一 个近似理论模式,并模拟计算了极轨卫星在极区上空、赤道面以及其他位置上对不同强度磁 暴主相期间环电流区ENA空间角分布及能谱的观测结果. 研究表明,存在环电流区方向和南 北极区环电流粒子沉降带两个中性原子强度极大区域;磁暴越强烈,注入区高度越低,环电 流区观测到的ENA通量越高;处于有利位置的ENA探测器可分辨注入区内边界或注入前沿;EN A探测器能够分辨环电流带离子分布的不均匀性;由于离子交换截面的差异,H,O,He 3种E NA的能谱分布不同;在10~80keV能谱范围内通量较强,易于观测;环电流区H,O两种ENA 通 量较强,有利于观测;而环电流区He ENA通量很弱,不易于观测. 模拟计算研究表明,双星 极轨卫星能够对环电流区ENA进行有效探测;低纬轨道上的ENA探测器也能够对环电流区ENA 进行一些观测;ENA探测器的研制应重视低、中能量范围ENA的探测.  相似文献   

5.
本文通过对TC-2卫星上搭载的中性原子成像仪(NUADU)在2004年11月发生的一次大磁暴期间观测到的一系列中性原子(ENA)图像的分析,试图给出环电流在磁暴期间的演化模式.研究表明,南向的行星际磁场(IMF)分量在离子从磁尾向内磁层注入和随后的环电流增长过程中起着关键的作用.IMF转为北向后,离子注入随即很快停止.在离子注入增强期间,离子的漂移路径是开放的,以致大量环电流离子从黄昏侧注入后快速地损失在黄昏至正午的磁层顶.所以,环电流往往在离子漂移路径从开放变为封闭后才达到最大强度,而不是在这之前,尽管那时的离子注入强度更大.在该磁暴主相期间,离子注入发生在17∶00~22∶00 LT范围内,形成极其不对称的环电流分布形态.而在恢复相期间,由于受大的IMF By分量的影响,离子注入区的地方时分布范围东向扩张.对称环电流在磁尾对流减小、离子漂移路径变为封闭形态之后形成.在磁暴恢复相后期,从ENA图像看环电流基本衰减到平静时期的水平,而Dst指数仍然显示较强的磁扰动,这说明越尾电流对Dst指数有很重要的影响.  相似文献   

6.
The energy spectrum of electrons with energies of 0.8–6.0 MeV has been analyzed based on the data of the Express-A2 geostationary satellite and time variations in the fluxes of electrons with energies higher than 0.6 and 2 MeV (according to the GOES-10 satellite data) before and after a weak geomagnetic storm on April 9–10, 2002, which developed during the prolonged (about ten days) recovery phase of a strong magnetic storm on April 6, 2000. The effect of the secondary injection and acceleration caused by an intensification of substorm activity during a weak storm on the electron flux dynamics has been studied for the first time. The energy spectra and time variations in the electron flux dynamics before and after a weak storm have been described based on analytical solutions to the kinetic equation for the electron distribution function with regard to the stochastic acceleration and loss rates. It has been established that there were different acceleration and loss rates before and after the weak storm of April 9–10, 2000.  相似文献   

7.
The high-latitude geomagnetic effects of an unusually long initial phase of the largest magnetic storm (SymH ~–220 nT) in cycle 24 of the solar activity are considered. Three interplanetary shocks characterized by considerable solar wind density jumps (up to 50–60 cm–3) at a low solar wind velocity (350–400 km/s) approached the Earth’s magnetosphere during the storm initial phase. The first two dynamic impacts did not result in the development of a magnetic storm, since the IMF Bz remained positive for a long time after these shocks, but they caused daytime polar substorms (magnetic bays) near the boundary between the closed and open magnetosphere. The magnetic field vector diagrams at high latitudes and the behaviour of high-latitude long-period geomagnetic pulsations (ipcl and vlp) made it possible to specify the dynamics of this boundary position. The spatiotemporal features of daytime polar substorms (the dayside polar electrojet, PE) caused by sudden changes in the solar wind dynamic pressure are discussed in detail, and the singularities of ionospheric convection in the polar cap are considered. It has been shown that the main phase of this two-stage storm started rapidly developing only when the third most intense shock approached the Earth against a background of large negative IMF Bz values (to–39 nT). It was concluded that the dynamics of convective vortices and the related restructing of the field-aligned currents can result in spatiotemporal fluctuations in the closing ionospheric currents that are registered on the Earth’s surface as bay-like magnetic disturbances.  相似文献   

8.
Simulations of quiet time terrestrial H-ENA fluxes are shown. The simulations are obtained by using average proton differential fluxes from AMPTE-CCE/CHEM. A functional form which provides the ring current quiet time proton fluxes as a function of energy, L-shell and magnetic local time is also used. The energy neutral atom (ENA) fluxes are simulated at a specific location along the Geotail spacecraft orbit, where ENA data have been collected by the HEP-LD spectrometer. A detailed analysis of the ENA generation along the instrument look directions is presented, in order to evaluate the significance of the ENA signal with respect to the locations of ion sources and to the instrument energy resolution. At energies above 70 keV, we show that the ENA energy is directly related to the ion source location.  相似文献   

9.
We investigate the flux evolution of geostationary orbit energetic electrons during a strong storm on 24 August 2005(event A,the storm index Dst<200 nT,the average substorm index AE=436 nT)and a weak storm on 28 October 2006(event B,Dst>50 nT,average AE=320 nT).Data collected by LANL and GOES-12 satellites show that energetic electron fluxes increase by a factor of 10 during the recovery phase compared to the prestorm level for both events A and B.As the substorm continued,the Cluster C4 satellite observed strong whistler-mode chorus waves(with spectral density approaching 10 5nT2/Hz).The wave amplitude correlates with the substorm AE index,but is less correlated with the storm Dst index.Using a Gaussian distribution fitting method,we solve the Fokker-Planck diffusion equation governing the wave-particle interaction.Numerical results demonstrate that chorus waves efficiently accelerate~1 MeV energetic electrons,particularly at high pitch angles.The calculated acceleration time scale and amplitude are comparable to observations.Our results provide new observational support for chorus-driven acceleration of radiation belt energetic electrons.  相似文献   

10.
The ring current dynamics during the magnetic storm has been studied in the work. The response of the magnetospheric current systems to the external influence of the solar wind, specifically, resulting in the development of the asymmetric ring current component, has been calculated using the magnetic field paraboloid model. The asymmetric ring current has been considered as a family of spatial current circuits in the Northern and Southern hemispheres, composed of the zones of the partial ring current in the geomagnetic equator plane, which close through the system of field-aligned currents into the ionosphere. The value of the total partial ring current has been estimated by comparing the calculated asymmetry of the magnetospheric magnetic field at the geomagnetic equator with the value of the Asym-H geomagnetic index. The variations in the symmetric and asymmetric components of the ring current magnetic field have been calculated for the magnetic storm of November 6–14, 2004. The contributions of the magnetospheric current systems to the Dst and AU geomagnetic indices have been calculated.  相似文献   

11.
Characteristics of isolated substorms selected by variations in the 1-min values of the AL index are analyzed. The substorms were divided into several types with respect to the behavior of the Bz component of the interplanetary magnetic field (IMF) during the expansion phase. The probability of observations of substorms associated with the northward turn of the Bz component of IMF was ~19%, while the substorms taking place at Bz < 0 were observed in 53% of cases. A substantial number of events in which no substorm magnetic activity was observed in the auroral zone after a long (>30 min) period of the southward IMF and a following sharp turn of the Bz component of IMF before the north was detected. The data suggest that a northward IMF turn is neither a necessary nor sufficient condition for generating substorms. It has been shown for substorms of the both types that the average duration of the southward IMF to moment T 0 and the average intensity of the magnetic perturbation in the maximum are approximately the same and amount to ~80 min and–650 nT, respectively. However, for substorms at Bz < 0, their mean duration, including the expansive and recovery phases, is on average 30 min longer than that at a northward turn of IMF. Correlations between the loading–unloading processes in the magnetosphere in the periods of magnetospheric substorms were investigated with different functions that determine the efficiency of the energy transfer from the solar wind to the magnetosphere. It has been shown that the highest correlation coefficient (r = 0.84) is observed when the function suggested by Newell et al. (2007) is used. It has been detected that a simple function VB S yields a high correlation coefficient (r = 0.75).  相似文献   

12.
The electron energy spectrum in the energy range of 0.8–6.0 MeV and the time dynamics of electron fluxes during the prolonged (~10 days) recovery phase of the magnetic storm of April 6, 2000, have been analyzed using the Express-A2 geostationary satellite data. These data have been interpreted based on the analytical solution to the nonstationary equation for the particle distribution function taking into account statistical acceleration and catastrophic particle escape from the acceleration region.  相似文献   

13.
We have studied the influence of daytime polar substorms (geomagnetic bays under the IMF Bz > 0) on variations of the vertical gradient of the atmospheric electric field potential (Ez) observed at the Polish Hornsund Station (Svalbard, Norway). Only the observations of Ez under “fair weather” conditions were used, i.e. in the absence of strong wind, precipitations, low cloud cover, etc. We studied more than 20 events of daytime polar substorms registered by the Scandinavian chain of IMAGE magnetometers in 2010–2014 during the “fair weather” periods at the Hornsund Station. Analysis of the observations showed that Ez significantly deviates from the its background variations during daytime, as a rule, when the Hornsund Station is in the region of projection of the daytime auroral oval, the position of which was determined from OVATION data. It was shown that the development of a daytime polar substorm leads to fluctuating enhance of Ez values. It was found that Ez surges are accompanied by intensification of field-aligned electric currents outflowing from the ionosphere, which were calculated from the data of low-orbit communication satellites of the AMPERE project.  相似文献   

14.
The interval 0000-1400 UT of the superstorm of November 20, 2003, has been studies based on the ACE/WIND data and the MIT2 magnetogram inversion technique. The distributions of the electric potential and currents, field-aligned currents, and Joule heat in the ionosphere have been calculated. The variable magnetotail length and powers coming into the magnetosphere, ionosphere and ring current have been estimated. The selected superstorm intervals, when it became possible to identify the disturbance mode produced by the interaction between the variable solar wind dynamic pressure and IMF effects, have been described. Spontaneous substorms, two types of driven responses to changes in IMF or in the solar wind dynamic pressure (P d ), zero events at simultaneous jumps of IMF and P d , and a previously unknown mode of saturation of the ionospheric electric field at a redistribution of the energy coming into the magnetosphere between the ionosphere and ring current are among the selected modes.  相似文献   

15.
This paper addresses research achievements during roughly the period 1991–1993 pertaining to the inner magnetosphere including the radiation belts, plasmasphere, and ring current region. It also addresses issues concerning the magnetic fields, electrical currents, and particle precipitation properties that relate to this region of the solar-terrestrial system. Recent analysis and modeling of magnetospheric substorms and geomagnetic storms affecting the inner edge of the plasma sheet are discussed and the regions from the geostationary orbit inward toward the Earth are examined in light of new observational and theoretical tools.Presented at the 7th Scientific Assembly International Association of Geomagnetism and Aeronomy Buenos Aires, Argentina 8–20 August 1993.  相似文献   

16.
The fluxes of energetic particles in the radiation belts are found to be strongly controlled by the solar wind conditions. In order to understand and predict the radiation particle intensities, we have developed a physics-based Radiation Belt Environment (RBE) model that considers the influences from the solar wind, ring current and plasmasphere. Recently, an improved calculation of wave-particle interactions has been incorporated. In particular, the model now includes cross diffusion in energy and pitch-angle. We find that the exclusion of cross diffusion could cause significant overestimation of electron flux enhancement during storm recovery. The RBE model is also connected to MHD fields so that the response of the radiation belts to fast variations in the global magnetosphere can be studied. We are able to reproduce the rapid flux increase during a substorm dipolarization on 4 September 2008. The timing is much shorter than the time scale of wave associated acceleration.  相似文献   

17.
本文采用基于ENA(Energetic Neutral Atoms)次生电子起始脉冲高度分布,统计拟合分离中能段ENA两种主要成分氢和氧的方法,研发了实现ENA氢与氧分离的TWINS卫星原始数据处理软件;其中所需要的脉高分布模型,参照已有理论公式,利用TWINS(Two Wide-angle Imaging Neutral-atom Spectrometers)卫星标定数据进行拟合确定未知参数,再加以计算得到.将上述方法用于TWINS卫星实测数据,分离得到一次大磁暴主相期间ENA-H和ENA-O微分通量随观测视线的分布及其随主相增长的变化.分析发现:(1)ENA-H与ENA-O微分通量的强度和随观测视线的分布特征都有明显差别,从某种角度反映出ENA之源的O~+与H~+离子强度和分布之间的差异;(2)接近主相极大时,ENA-H有很强的低高度发射(LAE,Low Altitude Emission),出现在磁地方时午夜前极光和亚极光纬度区,意味着该区域较强的等离子片和环电流质子沉降,进入到外层基底以下较低高度大气层;而ENA-O则未有明显LAE产生;ENA-O强通量观测视线主要穿过广大环电流区,磁地方时主要在午夜之后以及黄昏前和黎明前后;(3)在磁暴主相快速增长期,ENA-O平均总通量持续增大,而ENA-H同步减小,ENA-O与ENA-H平均总通量的比率随环电流指数Dst绝对值的增大而大致成正比增长.  相似文献   

18.
利用TC1、Cluster和Polar结合极光和同步高度及地磁的观测,研究了2004年9月14日1730~1930 UT时间段的亚暴偶极化过程.此前行星际磁场持续南向几个小时.亚暴初发(Onset)开始于1823 UT.2 min之后,同步高度的LANL 02A在子夜附近观测到了明显的能量电子增强(Injection)事件,而TC1在1827UT左右在磁尾(-10,-2, 0)RE (GSE)观测到了磁场BX的突然下降,伴随着等离子体压强和温度的突然增加及磁场的强烈扰动.在(-16, 1, 3)RE (GSE) 的Cluster上相同的仪器观测到相同的现象,只是比TC1观测到的晚大约23 min,在1850 UT左右.虽然Polar在更靠近地球的较高纬度(-75, 35, -40)RE (GSE)附近,也在1855 UT左右观测到了这种磁场偶极化现象.以上的观测时序表明TC1、Cluster观测到的磁场偶极化比亚暴偶极化初始发生分别晚4 min和27 min.说明偶极化由近磁尾向中磁尾传播.详细计算表明偶极化源区的位置大约在X=-77RE~-86RE,而传播速度大约为70 km·s-1.在这个事件中亚暴的物理图像可能是中磁尾的近地重联产生的地向高速流到达近磁尾,为近磁尾的亚暴触发创造了条件;亚暴在近磁尾触发之后,磁场偶极化峰面向中磁尾传播.  相似文献   

19.
本文利用低纬地磁台站的Pi1、Pi2地磁脉动(Pi1-2)资料和地球同步轨道的Pc5地磁脉动资料,对2004年1月到2006年12月38个磁暴事件的地磁脉动参数进行了统计分析.在此基础上,考虑相对论电子的局部加速机制,并加入损失机制,建立了一个初步的磁暴期间地球同步轨道相对论电子通量对数值的预报模型.利用该模型,我们对上述38个磁暴事件进行预报试验,最优化结果是:相对论电子通量对数值的预测值和观测值之间的线性相关系数为0.82,预报效率为0.67.这说明该模式具有较好的预报效果,也表明利用地磁脉动参数进行相对论电子通量预报是可行的.  相似文献   

20.
The relation of the fluxes of relativistic electrons in geostationary orbit during magnetic storms to the state of the magnetosphere and variations in the solar wind parameters is studied based on the GOES satellite data (1996–2000). It has been established that, in ~52–65% of all storms, the fluxes of electrons with energies higher than 0.6 and 2 MeV during the storm recovery phase are more than twice as high as the electron fluxes before a storm. It has been indicated that the probability of such cases is closely related to the prestorm level of fluxes and to a decrease in fluxes during the storm main phase. It has been found that the solar wind velocity on the day of the storm main phase and the geomagnetic activity indices at the beginning of the storm recovery phase are also among the best indicators of occurrence of storms with increased fluxes at the storm recovery phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号