首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Current glacier ablation models have difficulty simulating the high-melt transition zone between clean and debris-covered ice. In this zone, thin debris cover is thought to increase ablation compared to clean ice, but often this cover is patchy rather than continuous. There is a need to understand ablation and debris dynamics in this transition zone to improve the accuracy of ablation models and the predictions of future debris cover extent. To quantify the ablation of partially debris-covered ice (or ‘dirty ice’), a high-resolution, spatially continuous ablation map was created from repeat unmanned aerial systems surveys, corrected for glacier flow in a novel way using on-glacier ablation stakes. Surprisingly, ablation is similar (range ~ 5 mm w.e. per day) across a wide range of percentage debris covers (~ 30–80%) due to the opposing effects of a positive correlation between percentage debris cover and clast size, countered by a negative correlation with albedo. Once debris cover becomes continuous, ablation is significantly reduced (by 61.6% compared to a partial debris cover), and there is some evidence that the cleanest ice (<~ 15% debris cover) has a lower ablation than dirty ice (by 3.7%). High-resolution feature tracking of clast movement revealed a strong modal clast velocity where debris was continuous, indicating that debris moves by creep down moraine slopes, in turn promoting debris cover growth at the slope toe. However, not all slope margins gain debris due to the removal of clasts by supraglacial streams. Clast velocities in the dirty ice area were twice as fast as clasts within the continuously debris-covered area, as clasts moved by sliding off their boulder tables. These new quantitative insights into the interplay between debris cover characteristics and ablation can be used to improve the treatment of dirty ice in ablation models, in turn improving estimates of glacial meltwater production. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

2.
Glaciological controls on debris cover formation are investigated from the perspective of primary dispersal of supraglacial debris across a melting ice surface. This involves the migration of angled debris septa outcrops across a melting, thinning glacier ablation zone. Three measures of a glacier's ability to evacuate supraglacial debris are outlined: (1) a concentration factor describing the focusing of englacial debris into specific supraglacial mass loads; (2) the rate of migration of a septum outcrop relative to the local ice surface; and (3) a downstream velocity differential between a slower septum outcrop and the faster ice surface velocity. Measures (1) and (2) are inversely related, while measure (3) increases down‐glacier to explain why slow‐moving, thinning ice rapidly becomes debris covered. Data from Glacier d'Estelette (Italian Alps) are used to illustrate these processes, and to explore the potential for debris cover formation and growth in different glaciological environments. The transition from a ‘clean’, transport‐dominated to a debris‐covered ablation‐dominated glacier is explained by the melting out of more closely‐spaced debris septa, in combination with the geometric interactions of angled septa and ice surface in a field of reducing flow and increasing ablation. The growth and shrinkage of debris covers are most sensitive to glaciological changes at glaciers with gently‐dipping debris‐bearing foliation, but less sensitive at high‐compression glaciers whose termini are constrained by moraine dams and other forms of obstruction. These findings show that a variety of debris‐covered glacier types will show a spectrum of response characteristics to negative mass balance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Thick supraglacial debris layers often have an undulating, hummocky topography that influences the lateral transport of debris and meltwater and provides basins for supraglacial ponds. The role of ablation and other processes associated with supraglacial debris in giving rise to this hummocky topography is poorly understood. Characterizing hummocky topography is a first step towards understanding the feedbacks driving the evolution of debris-covered glacier surfaces and their potential impacts on mass balance, hydrology and glacier dynamics. Here we undertake a geomorphological assessment of the hummocky topography on five debris-covered glaciers in the Everest region of the central Himalaya. We characterize supraglacial hummocks through statistical analyses of their vertical relief and horizontal geometry. Our results establish supraglacial hummocks as a distinct landform. We find that a typical hummock has an elongation ratio of 1.1:1 in the direction of ice flow, length of 214 ± 109 m and width of 192 ± 88 m. Hummocky topography has a greater amplitude across-glacier (15.4 ± 10.9 m) compared to along the glacier flow line (12.6 ± 8.3 m). Consequently, hummock slopes are steeper in the across-glacier direction (8.7 ± 4.3°) than in the direction of ice flow (5.6 ± 4.0°). Longer, wider and higher-amplitude hummocks are found on larger glaciers. We postulate that directional anisotropy in the hummock topography arises because, while the pattern of differential ablation driving topography evolution is moderated by processes including the gravitational redistribution of debris across the glacier surface, it also inherits an orientation preference from the distribution of englacial debris in the underlying ice. Our morphometric data inform future efforts to model these interactions, which should account for additional factors such as the genesis of supraglacial ponds and ice cliffs and their impact on differential ablation.  相似文献   

4.
Debris cover on glaciers is an important component of glacial systems as it influences climate–glacier dynamics and thus the lifespan of glaciers. Increasing air temperatures, permafrost thaw and rock faces freshly exposed by glacier downwasting in accumulation zones result in increased rockfall activity and debris input. In the ablation zone, negative mass balances result in an enhanced melt-out of englacial debris. Glacier debris cover thus represents a clear signal of climate warming in mountain areas. To assess the temporal development of debris on glaciers of the Eastern Alps, Austria, we mapped debris cover on 255 glaciers using Landsat data at three time steps. We applied a ratio-based threshold classification technique and analysed glacier catchment characteristics to understand debris sources better. Across the Austrian Alps, debris cover increased by more than 10% between 1996 and 2015 while glaciers retreated in response to climate warming. Debris cover distribution shows significant regional variability, with some mountain ranges being characterised by mean debris cover on glaciers of up to 75%. We also observed a general rise of the mean elevation of debris cover on glaciers in Austria. The debris cover distribution and dynamics are highly variable due to topographic, lithological and structural settings that determine the amount of debris delivered to and stored in the glacier system. Despite strong variation in debris cover, all glaciers investigated melted at increasing rates. We conclude that the retarding effects of debris cover on the mass balance and melt rate of Austrian glaciers is strongly subdued compared with other mountain areas. The study indicates that, if this trend continues, many glaciers in Austria may become fully debris covered. However, since debris cover seems to have little impact on melt rates, this would not lead to prolonged existence of debris-covered ice compared with clean ice glaciers.  相似文献   

5.
As debris‐covered glaciers become a more prominent feature of a shrinking mountain cryosphere, there is increasing need to successfully model the surface energy and mass balance of debris‐covered glaciers, yet measurements of the processes operating in natural supraglacial debris covers are sparse. We report measurements of vertical temperature profiles in debris on the Ngozumpa glacier in Nepal, that show: (i) conductive processes dominate during the ablation season in matrix‐supported diamict; (ii) ventilation may be possible in coarse surface layers; (iii) phase changes associated with seasonal change have a marked effect on the effective thermal diffusivity of the debris. Effective thermal conductivity determined from vertical temperature profiles in the debris is generally ~30% higher in summer than in winter, but values depend on the volume and phase of water in the debris. Surface albedo can vary widely over small spatial scales, as does the debris thickness. Measurements indicate that debris thickness is best represented as a probability density function with the peak debris thickness increasing down‐glacier. The findings from Ngozumpa glacier indicate that the probability distribution of debris thickness changes from positively skewed in the upper glacier towards a more normal distribution nearer the terminus. Although many of these effects remain to be quantified, our observations highlight aspects of spatial and temporal variability in supraglacial debris that may require consideration in annual or multi‐annual distributed modelling of debris‐covered glacier surface energy and mass balance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
We apply the process‐based, distributed TOPKAPI‐ETH glacio‐hydrological model to a glacierized catchment (19% glacierized) in the semiarid Andes of central Chile. The semiarid Andes provides vital freshwater resources to valleys in Chile and Argentina, but only few glacio‐hydrological modelling studies have been conducted, and its dominant hydrological processes remain poorly understood. The catchment contains two debris‐free glaciers reaching down to 3900 m asl (Bello and Yeso glaciers) and one debris‐covered avalanche‐fed glacier reaching to 3200 m asl (Piramide Glacier). Our main objective is to compare the mass balance and runoff contributions of both glacier types under current climatic conditions. We use a unique dataset of field measurements collected over two ablation seasons combined with the distributed TOPKAPI‐ETH model that includes physically oriented parameterizations of snow and ice ablation, gravitational distribution of snow, snow albedo evolution and the ablation of debris‐covered ice. Model outputs indicate that while the mass balance of Bello and Yeso glaciers is mostly explained by temperature gradients, the Piramide Glacier mass balance is governed by debris thickness and avalanches and has a clear non‐linear profile with elevation as a result. Despite the thermal insulation effect of the debris cover, the mass balance and contribution to runoff from debris‐free and debris‐covered glaciers are similar in magnitude, mainly because of elevation differences. However, runoff contributions are distinct in time and seasonality with ice melt starting approximately four weeks earlier from the debris‐covered glacier, what is of relevance for water resources management. At the catchment scale, snowmelt is the dominant contributor to runoff during both years. However, during the driest year of our simulations, ice melt contributes 42 ± 8% and 67 ± 6% of the annual and summer runoff, respectively. Sensitivity analyses show that runoff is most sensitive to temperature and precipitation gradients, melt factors and debris cover thickness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The water storage and energy transfer roles of supraglacial ponds are poorly constrained, yet they are thought to be important components of debris‐covered glacier ablation budgets. We used an unmanned surface vessel (USV) to collect sonar depth measurements for 24 ponds to derive the first empirical relationship between their area and volume applicable to the size distribution of ponds commonly encountered on debris‐covered glaciers. Additionally, we instrumented nine ponds with thermistors and three with pressure transducers, characterizing their thermal regime and capturing three pond drainage events. The deepest and most irregularly‐shaped ponds were those associated with ice cliffs, which were connected to the surface or englacial hydrology network (maximum depth = 45.6 m), whereas hydrologically‐isolated ponds without ice cliffs were both more circular and shallower (maximum depth = 9.9 m). The englacial drainage of three ponds had the potential to melt ~100 ± 20 × 103 kg to ~470 ± 90 × 103 kg of glacier ice owing to the large volumes of stored water. Our observations of seasonal pond growth and drainage with their associated calculations of stored thermal energy have implications for glacier ice flow, the progressive enlargement and sudden collapse of englacial conduits, and the location of glacier ablation hot‐spots where ponds and ice cliffs interact. Additionally, the evolutionary trajectory of these ponds controls large proglacial lake formation in deglaciating environments. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier.In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d’Arolla, Switzerland.The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the Østrem curve. Its large number of parameters might be a limitation, but we show that the model is transferable in time and space to a second glacier with little loss of performance. We thus suggest that the new DETI model can be included in continuous mass balance models of debris-covered glaciers, because of its limited data requirements. As such, we expect its application to lead to an improvement in simulations of the debris-covered glacier response to climate in comparison with models that simply recalibrate empirical parameters to prescribe a constant across glacier reduction in melt.  相似文献   

9.
There exists a need to advance our understanding of debris-covered glacier surfaces over relatively short timescales due to rapid, climatically induced areal expansion of debris cover at the global scale, and the impact debris has on mass balance. We applied unpiloted aerial vehicle structure-from-motion (UAV-SfM) and digital elevation model (DEM) differencing with debris thickness and debris stability modelling to unravel the evolution of a 0.15 km2 region of the debris-covered Miage Glacier, Italy, between June 2015 and July 2018. DEM differencing revealed widespread surface lowering (mean 4.1 ± 1.0 m a-1; maximum 13.3 m a-1). We combined elevation change data with local meteorological data and a sub-debris melt model, and used these relationships to produce high resolution, spatially distributed maps of debris thickness. These maps were differenced to explore patterns and mechanisms of debris redistribution. Median debris thicknesses ranged from 0.12 to 0.17 m and were spatially variable. We observed localized debris thinning across ice cliff faces, except those which were decaying, where debris thickened. We observed pervasive debris thinning across larger, backwasting slopes, including those bordered by supraglacial streams, as well as ingestion of debris by a newly exposed englacial conduit. Debris stability mapping showed that 18.2–26.4% of the survey area was theoretically subject to debris remobilization. By linking changes in stability to changes in debris thickness, we observed that slopes that remain stable, stabilize, or remain unstable between periods almost exclusively show net debris thickening (mean 0.07 m a-1) whilst those which become newly unstable exhibit both debris thinning and thickening. We observe a systematic downslope increase in the rate at which debris cover thickens which can be described as a function of the topographic position index and slope gradient. Our data provide quantifiable insights into mechanisms of debris remobilization on glacier surfaces over sub-decadal timescales, and open avenues for future research to explore glacier-scale spatiotemporal patterns of debris remobilization. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

10.
Many glaciers in alpine regions are currently rapidly receding and thinning at historically unobserved rates causing changes in the velocity field and in normal and shear stresses affecting the surface expression of structures within the ice. We studied the distribution of brittle and ductile structures at the surface of Pasterze Glacier during a 14-year period by analysing orthophotos and digital elevation models of five stages (1998, 2003, 2006, 2009 and 2012). A structural glaciological mapping key was applied. Normal faults, strike-slip faults, en échelon structures (systematic stepping of fractures), thrust faults, and band ogives were distinguished. Results indicate substantial deceleration and glacier thinning in 1998–2012. Glacier thinning was not homogenous over time related to the uneven distribution of supraglacial debris causing differential ablation or the selective ablation effects of subglacial water channels. Peculiar supraglacial features observed are circular collapse structures with concentric crevasses which form when the ice between the surface and the roof of water channels decreases. The total length of brittle structures increased from 38.4 km to 56.9 km whereas the extent of the glacier tongue decreased by 25%. The fracture density doubled from 0.009 to 0.018 m/m2. Areas of the glacier tongue which were up to 100 m away from the nearest brittle structure increased by 16%. The visual appearance of thrust faults shifted upglacier due to decreasing glacier velocity causing horizontal shortening or due to exhumation of faults that did not previously extend to the surface. A large number of brittle structures are progressively independent from glacier motion. Our study suggests that glacier tongues which are in a state of rapid decay and thinning are prone to fracturing due to normal fault formation and glacier disintegration. Water further increases ablation rates substantially if rather large amounts drain through supra-, en- or subglacial water channels. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

11.
In glacier‐fed rivers, melting of glacier ice sustains streamflow during the driest times of the year, especially during drought years. Anthropogenic and ecologic systems that rely on this glacial buffering of low flows are vulnerable to glacier recession as temperatures rise. We demonstrate the evolution of glacier melt contribution in watershed hydrology over the course of a 184‐year period from 1916 to 2099 through the application of a coupled hydrological and glacier dynamics model to the Hood River basin in Northwest Oregon, USA. We performed continuous simulations of glaciological processes (mass accumulation and ablation, lateral flow of ice and heat conduction through supra‐glacial debris), which are directly linked with seasonal snow dynamics as well as other key hydrologic processes (e.g. evapotranspiration and subsurface flow). Our simulations show that historically, the contribution of glacier melt to basin water supply was up to 79% at upland water management locations. We also show that supraglacial debris cover on the Hood River glaciers modulates the rate of glacier recession and progression of dry season flow at upland stream locations with debris‐covered glaciers. Our model results indicate that dry season (July to September) discharge sourced from glacier melt started to decline early in the 21st century following glacier recession that started early in the 20th century. Changes in climate over the course of the current century will lead to 14–63% (18–78%) reductions in dry season discharge across the basin for IPCC emission pathway RCP4.5 (RCP8.5). The largest losses will be at upland drainage locations of water diversions that were dominated historically by glacier melt and seasonal snowmelt. The contribution of glacier melt varies greatly not only in space but also in time. It displays a strong decadal scale fluctuations that are super‐imposed on the effects of a long‐term climatic warming trend. This decadal variability results in reversals in trends in glacier melt, which underscore the importance of long‐time series of glacio‐hydrologic analyses for evaluating the hydrological response to glacier recession. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The glaciers on Tibetan Plateau play an important role in the catchment hydrology of this region. However, our knowledge with respect to water circulation in this remote area is scarce. In this study, the HBV light model, which adopts the degree‐day model for glacial melting, was employed to simulate the total runoff, the glacier runoff and glacier mass balance (GMB) of the Dongkemadi River Basin (DRB) at the headwater of the Yangtze River on the Tibetan Plateau, China. Firstly, the daily temperature and precipitation of the DRB from 1955 to 2008 were obtained by statistical methods, based on daily meteorological data observed in the DRB (2005–2008) and recorded by four national meteorological stations near the DRB (1955–2008). Secondly, we used 4‐year daily air temperature, precipitation, runoff depth and monthly evaporation, which were observed in the DRB, as input to obtain a set of proper parameters. Then, the annual runoff, the glacier runoff and GMB (1955–2008) were calculated using the HBV model driven by interpolated meteorological data. The calculated GMB fits well with the observed results. At last, using the temperature and precipitation predicted by climate models, we predicted the changes of runoff depth and GMB of the DRB in the next 40 years. Under all climate‐change scenarios, annual glacier runoff shows a significant increase due to intensified ice melting. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Debris-covered glaciers are prone to the formation of a number of supraglacial geomorphological features, and generally speaking, their upper surfaces are far from level surfaces. Some of these features are due to radiation screening or enhancing properties of the debris cover, but theoretical explanations of the consequent surface forms are in their infancy. In this paper we consider a theoretical model for the formation of “ice sails”, which are regularly spaced bare ice features which are found on debris-covered glaciers in the Karakoram.  相似文献   

14.
Model calculations are made in order to understand the characteristics and response to climate change of runoff from a cold glacier on the Tibetan Plateau. Some 20% of meltwater is preserved at the snow–ice boundary due to refreezing, since the glaciers in mid to northern Tibet are sufficiently cooled during the previous winter. Sensitivity to alterations in meteorological parameters has revealed that a change in air temperature would cause not only an increase in melting by sensible heat, but also a drastic increase in melting due to lowering of the albedo, since some of the snowfall changes to rainfall. In addition, it was suggested that a decrease in precipitation would cause a lowering of the surface albedo, with a resulting increase in the contribution of glacier runoff to the total runoff of river water. This study shows the first quantitative evaluation of the above effects, though they have been suggested qualitatively. The seasonal sensitivity of glacier runoff was examined by changing the dates given for a meteorological perturbation for a period of only 5 days. It was revealed that changes in both air temperature and precipitation during the melting season strongly affected glacier runoff by changing the surface albedo, though these perturbations only slightly altered the annual averages. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Rock glaciers and large ice-debris complexes are common in many mountain ranges and are especially prominent in semi-arid mountains such as the Andes or the Tien Shan. These features contain a significant amount of ice but their occurrence and evolution are not well known. Here, we present an inventory of the ice-debris complexes for the Ak-Shiirak, Tien Shan's second largest glacierised massif, and a holistic methodology to investigate two characteristic and large ice-debris complexes in detail based on field investigations and remote sensing analysis using Sentinel-1 SAR data, 1964 Corona and recent high resolution stereo images. Overall, we found 74 rock glaciers and ice-debris complexes covering an area of 11.2 km2 (3.2% of the glacier coverage) with a mean elevation of about 3950 m asl. Most of the complexes are located south-east of the main ridge of Ak-Shiirak. Ground penetrating radar (GPR) measurements reveal high ice content with the occurrence of massif debris-covered dead-ice bodies in the parts within the Little Ice Age glacier extent. These parts showed significant surface lowering, in some places exceeding 20 m between 1964 and 2015. The periglacial parts are characterised by complex rock glaciers of different ages. These rock glaciers could be remnants of debris-covered ice located in permafrost conditions. They show stable surface elevations with no or only very low surface movement. However, the characteristics of the fronts of most rock glacier parts indicate slight activity and elevation gains at the fronts slight advances. GPR data indicated less ice content and slanting layers which coincide with the ridges and furrows and could mainly be formed by glacier advances under permafrost conditions. Overall, the ice content is decreasing from the upper to the lower part of the ice-debris complexes. Hence, these complexes, and especially the glacier-affected parts, should be considered when assessing the hydrological impacts of climate change. © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
Glaciers are significant freshwater storage systems in western China and contribute substantially to the summertime run‐off of many large rivers in the Tibetan Plateau. Under the scenario of climate change, discussions of glacier variability and melting contributions in alpine basins are important for understanding the run‐off composition and ensuring that water resources are adequately managed and protected in the downstream areas. Based on the multisource spatial data and long‐term ground observation of climatic and hydrologic data, using the remote sensing interpretation, degree‐day model, and ice volume method, we presented a comprehensive study of the glacier changes in number, area, and termini and their impacts on summertime run‐off and water resource in the Tuotuo River basin, located in the source region of the Yangtze River. The results indicated that climate change, especially rising temperature, accelerated the glacier melting and consequently led to hydrological change. From 1969 to 2009, the glacier retreat showed an absolutely dominant tendency with 13 reduced glaciers and lost glacier area of 45.05 km2, accompanied by limited growing glaciers in the study area. Meanwhile, it indicated that annual glacial run‐off was averagely 0.38 × 108 m3, accounting for 4.96% of the total summertime run‐off, followed by the supply from precipitation and snowmelt. The reliability of this magnitude was assessed by the classic volume method, which also showed that the water resources from glacier melting in the Tuotuo River basin increased by approximate 17.11 × 108 m3, accounting for about 3.77% of the total run‐off over the whole period of 1969–2009. Findings from this study will serve as a reference for future research about glacier hydrology in regions where observational data are deficient. Also, it can help the planning of future water management strategies in the source region of the Yangtze River.  相似文献   

17.
We present an investigation of changes taking place on the Columbia Glacier, a lake-terminating outlet of the Columbia Icefield in the Canadian Rockies. The Columbia Icefield is the largest, and one of the most important, ice bodies in the Canadian Rockies. Like other ice masses, it stores water as snow and ice during the winter and releases it during warmer summer months, sustaining river flows and the ecosystems that rely on them. However, the Columbia Glacier and Icefield is shrinking. We use Landsat and Sentinel-2 imagery to show that the Columbia Glacier has retreated increasingly rapidly in recent years, and suggest that this looks set to continue. Importantly, we identify a previously undocumented process that appears to be playing an important role in the retreat of this glacier. This process involves the ‘detachment’ of the glacier tongue from its accumulation area in the Columbia Icefield. This process is important because the tongue is cut off from the accumulation area and there is no replenishment of ice that melts in the glacier's ablation area by flow from upglacier. As a consequence, for a given rate of ablation, the ice in the tongue will disappear much faster than it would if the local mass loss by melting/calving was partly offset by mass input by glacier flow. Such a change would alter the relationship between rates of surface melting and rates of glacier frontal retreat. We provide evidence that detachment has already occurred elsewhere on the Columbia Icefield and that it is likely to affect other outlet glaciers in the future. Modelling studies forecast this detachment activity, which ultimately results in a smaller ‘perched’ icefield without active outlets. © 2019 John Wiley & Sons, Ltd.  相似文献   

18.
This research demonstrates the spatiotemporal variations of albedo on nine glaciers in western China during 2000–2011, by the albedo derived from two types of datasets: Landsat TM/ETM + images and MOD10A1 product. Then, the influence factors of glacier albedo and its relationship with glacier mass balance are also analyzed by the correlation approach, which is frequently used in geostatistics. The paper finds that there are different spatiotemporal variations over the glaciers in western China: (1) For a single glacier, the albedo varies gently with altitude on its tongue and increases fast in the middle part, while in the accumulation zones, the albedo value appears in the form of fluctuation. This could provide a quantitative method to retrieve the snowline by determining the threshold albedo value of snowpack and bare ice. (2) For the glaciers in western China, the albedo decreases with distance to the center of Tibetan Plateau (TP). This may relate to the elevation of glacier, for the speed of glacier retreat highly depends on air temperature. (3) In the summer period, albedo on most glaciers declines over the last 12 years, and it decreases much faster in southeastern TP than other regions, for which air temperature overwhelms the black carbon concentration. In addition, the trend of glacier albedo in summer is greatly correlated with that of measured glacier mass balance, which implies that the long‐term albedo datasets by remote sensing technology could be used to monitor and predict the change of glacier mass balance in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Glaciers and snow cover are important constituents of the surface of the Tibetan Plateau. The responses of these phenomena to global environmental changes are sensitive, rapid and intensive due to the high altitudes and arid cold climate of the Tibetan Plateau. Based on multisource remote sensing data, including Landsat images, MOD10A2 snow product, ICESat, Cryosat-2 altimetry data and long-term ground climate observations, we analysed the dynamic changes of glaciers, snow melting and lake in the Paiku Co basin using extraction methods for glaciers and lake, the degree-day model and the ice and lake volume method. The interaction among the climate, ice-snow and the hydrological elements in Paiku Co is revealed. From 2000 to 2018, the basin tended to be drier, and rainfall decreased at a rate of −3.07 mm/a. The seasonal temperature difference in the basin increased, the maximum temperature increased at a rate of 0.02°C/a and the minimum temperature decreased at a rate of −0.06°C/a, which accelerated the melting from glaciers and snow at rates of 0.55 × 107 m3/a and 0.29 × 107 m3/a, respectively. The rate of contribution to the lake from rainfall, snow and glacier melted water was 55.6, 27.7 and 16.7%, respectively. In the past 18 years, the warmer and drier climate has caused the lake to shrink. The water level of the lake continued to decline at a rate of −0.02 m/a, and the lake water volume decreased by 4.85 × 108 m3 at a rate of −0.27 × 108 m3/a from 2000 to 2018. This evaluation is important for understanding how the snow and ice melting in the central Himalayas affect the regional water cycle.  相似文献   

20.
Arctic glaciers are rapidly responding to global warming by releasing organic carbon (OC) to downstream ecosystems. The glacier surface is arguably the most biologically active and biodiverse glacial habitat and therefore the site of important OC transformation and storage, although rates and magnitudes are poorly constrained. In this paper, we present measurements of OC fluxes associated with atmospheric deposition, ice melt, biological growth, fluvial transport and storage (in superimposed ice and cryoconite debris) for a supraglacial catchment on Foxfonna glacier, Svalbard (Norway), across two consecutive years. We found that in general atmospheric OC input (averaging 0.63 ± 0.25 Mg a-1 total organic carbon, i.e. TOC, and 0.40 ± 0.22 Mg a-1 dissolved organic carbon, i.e. DOC) exceeded fluvial OC export (0.46 ± 0.04 Mg a-1 TOC and 0.36 ± 0.03 Mg a-1 DOC). Early in the summer, OC was mobilised in snowmelt but its release was delayed by temporary storage in superimposed ice on the glacier surface. This delayed the export of 28.5% of the TOC in runoff. Biological production in cryoconite deposits was a negligible potential source of OC to runoff, while englacial ice melt was far more important on account of the glacier's negative ice mass balance (–0.89 and –0.42 m a-1 in 2011 and 2012, respectively). However, construction of a detailed OC budget using these fluxes shows an excess of inputs over outputs, resulting in a net retention of OC on the glacier surface at a rate that would require c. 3 years to account for the OC stored as cryoconite debris. © 2018 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号