首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Summary ?This paper describes the configuration of measurement systems operated continuously at the Meteorological Observatory Lindenberg with the aim of constructing combined profiles of wind and temperature – so-called composite profiles – covering the boundary layer with high temporal and vertical resolution. This is required for the forcing of a micro-α-scale model in order to simulate the atmospheric boundary layer structure over a heterogeneous landscape during the LITFASS-98 experiment. The problems of combining measurements of different remote sensing and in-situ systems are briefly discussed. Although the measuring range of individual remote sensing systems is variable, the height coverage of wind and temperature profile measurements by sodar/RASS and two wind profiler radar/RASS complement each other very well. Using a simple merging procedure composite wind and temperature profiles have been synthesized based on radiosonde, windprofiler/RASS, sodar/RASS and tower measurements. Time-height cross sections of hourly composite profiles show considerably more details of the boundary layer structure than simple radiosonde interpolation due to the higher sampling frequency, higher vertical resolution and increased accuracy at the lower levels. Finally some qualifications of the formulated algorithm are suggested for future application. Received June 18, 2001; revised May 30, 2002; accepted June 6, 2002  相似文献   

2.
Use of a High-Resolution Sodar to Study Surface-layer Turbulence at Night   总被引:1,自引:1,他引:0  
Measurements in the atmospheric surface layer are generally made with point sensors located in the first few tens of metres. In most cases, however, these measurements are not representative of the whole surface layer. Standard Doppler sodars allow a continuous display of the turbulent thermal structure and wind profiles in the boundary layer up to 1000 m, with a few points, if any, in the surface layer. To overcome these limitations a new sodar configuration is proposed that allows for a higher resolution in the surface layer. Because of its capabilities (echo recording starting at 2 m, echo intensity vertical resolution of approximately 2 m, temporal resolution of 1 s) this sodar is called the surface-layer mini-sodar (SLM-sodar). Features and capabilities of the SLM-sodar are described and compared with the sodar. The comparison of the thermal vertical structure given by the SLM-sodar and the sodar provides evidence that, in most cases, the surface layer presents a level of complexity comparable to that of the entire boundary layer. Considering its high vertical resolution, the SLM-sodar is a promising system for the study of the nocturnal surface layer. The nocturnal SLM-sodar measurements have shown that, depending on wind speed, the structure of the surface layer may change substantially within a short time period. At night, when the wind speed is greater than 3 m s−1, mechanical mixing destroys the wavy structure present in the nocturnal layer. Sonic anemometer measurements have shown that, in such cases, also the sensible heat flux varies with height, reaching a peak in correspondence with the wind speed peak. Under these conditions the assumption of horizontal homogeneity of the surface layer and the choice of the averaging time need to be carefully treated.  相似文献   

3.
Some characteristics of wavelike motions in the atmospheric boundary layer observed by sodar are considered. In an experiment carried out in February 1993 in Milan, Italy, Doppler sodar measurements were accompanied by in situ measurements of temperature and wind velocity vertical profiles using a tethered balloon up to 600 m. The oscillations of elevated wavy layers containing intense thermal turbulence, usually associated with temperature-inversion zones, were studied by using correlation and spectral analysis methods. The statistics of the occurrence of wavelike and temperature-inversion events are presented. The height distributions of Brunt–Vaisala frequency and wind shear and their correlation within elevated inversion layers were determined, with a strong correlation observed between the drift rate of the wavy layers and the vertical velocity measured by Doppler sodar inside these layers. Spectral analysis showed similarities regarding their frequency characteristics. The phase speed and propagation direction of waves were estimated from the time delay of the signals at three antennae to provide estimates of wavelength. Moreover, wavelengths were estimated from the intrinsic frequency obtained from sodar measurements of the Doppler vertical velocity and oscillations of wavy turbulent layers. The two wavelength estimates are in good agreement.  相似文献   

4.
A simple method is described for estimating the sensible heat flux by using a Doppler sodar system and a thermal probe. This method, which can be applied to a convective boundary layer in morning hours, is based on knowing the zero heat flux level from the reflectivity and the vertical wind speed.  相似文献   

5.
利用2015年1月15—27日在苏州东山气象观测站系留气艇观测数据以及细颗粒物浓度观测资料,对东山大气边界层结构特征及其对污染物垂直结构分布的影响进行分析研究。结果表明:苏州东山地区冬季空气污染过程的边界层结构演变比较典型,夜间稳定边界层高度约为200 m,白天最大边界层高度可达1 000 m。边界层内污染物垂直结构分布易受边界层高度的影响,较低的大气边界层高度可使细颗粒物在近地层持续累积;反之,边界层高度较高,湍流发展旺盛,颗粒物垂直分布均匀。夜间大气边界层稳定,逆温结构多发,导致近地面出现细颗粒物堆积。风的垂直结构对细颗粒物空间分布也存在显著影响,在风速较小的低空层细颗粒分布较多,而风速较大的中高层的分布较少。   相似文献   

6.
Summary This paper presents a brief synopsis of past, current and anticipated progress and problems in the use of acoustic remote sensing for basic and applied research of the lower atmosphere. The potential and reality of the sodar for determination of meteorological parameters and turbulence characteristics is discussed. Sodars’ place alongside other ground-based remote sensors, including radar wind profilers, radioacoustic sounding systems (RASS) and lidars, is elucidated. Areas of atmospheric research where Doppler sodar has certain advantages are described such as cost, sensitivity, spatial and temporal resolution and surface layer measurements. The use of sodar in networks of integrated radar/RASS systems designed to supply uninterrupted monitoring of atmospheric parameters for improvements in forecasts of weather and air quality is demonstrated. The special potential role of sodar in education and training of specialists is suggested to aid in developing and using new methods of atmospheric measurements and meeting the requirements of modern environmental science. A number of problems are formulated whose solution would favor further advancement of acoustic remote sensing in integrated systems for remote monitoring of the atmospheric boundary layer. Received November 23, 1998 Revised January 29, 1999  相似文献   

7.
Discussed are the results of applying a dynamic stochastic method based on the use of the two-dimensional model and the Kalman filtering algorithm for solving the problem of the very short-range (from 0.5 to 6 hours) fore cast of air temperature and orthogonal components of the wind speed in the atmospheric boundary layer realized using the data of radio metric, sodar, and in creased-frequency radiosonde measurements. It is demonstrated that the pro posed technique and the appropriate algorithm give a rather high ac cu racy of very short-range fore casting of temperature and wind within the lead time range under consideration.  相似文献   

8.
Summary Within the Mesoscale Alpine Programme MAP conducted in autumn 1999, the vertical structure and the temporal evolution of the planetary boundary layer (PBL) in the Rhine Valley 2km south of Lake Constance were observed with a Remtech PA2 sodar (sound-detection-and-ranging instrument) rendering half-hour averages of the three-dimensional wind profile within the lowest kilometre above ground. During Foehn events, tethered balloon soundings and wind profiler measurements were conducted in addition to the rawinsonde network which was built up for the MAP field campaign.The remote sensing instrument renders a surprisingly high number of valid data during south Foehn. Due to the frequent formation of a cold air pool with stable conditions below the Foehn flow with near-neutral static stability, even more sodar data is valid during Foehn periods than during no Foehn periods. A significant reduction of the sodar data quality is only observed during Foehn events with grounding of the Foehn at the sodar site due to high background noise. At higher levels, a Foehn signal can be detected from the sodar wind and turbulence intensitiy information. With Foehn, higher wind speeds and larger turbulence intensities occur than without Foehn. Comparisons to rawinsonde and tethersonde soundings and wind profiler measurements at sites nearby reveal the spatial inhomogeneity of the Foehn flow within this part of the valley as well as instrumental short-comings. Different methods to determine the mixing height using the vertical sounding devices lead to some uncertainty of mixing height estimates which however can reasonably be explained.  相似文献   

9.
根据2017、2019年7月塔克拉玛干沙漠腹地GPS探空和地面观测数据,利用位温廓线法等方法,对比分析了沙漠腹地夏季晴天和沙尘暴天气大气边界层结构变化特征。结果表明:晴天和沙尘暴天气大气边界层结构特征显著不同。晴天大气边界层各气象要素垂直分布较为均一,白天对流边界层深厚,高度接近5 km,夜间稳定边界层一般在500 m左右。沙尘暴天气边界层内位温和比湿垂直变化较小,风速较大,可达24.0 m/s,其白天对流边界层在1.5 km左右,夜间稳定边界层在1 km左右。晴天辐射强烈,地表升温迅速,湍流旺盛,是形成晴天深厚对流边界层的主要因素。大尺度天气系统冷平流的动力条件,以及云和沙尘减弱了到达地表的辐射强度是形成沙尘暴天气独特的大气边界层结构的主要因素。  相似文献   

10.
The wind speed shear in the case of stable stratification in the linear part of the profile spreading high above the surface layer of constant flows is studied using the data of long-term sodar measurements in the atmospheric boundary layer. The wind speed shear in this part remains almost invariable during several hours at the significant change in parameters of the Monin-Obukhov theory. The length of this linear part can be associated with the layer of the critical Richardson number. In the case of the pronounced temperature inversion (with the positive gradient of more than 1°C per 100 m), the wind speed profile is close to the linear function in the most part of the nocturnal mixing layer. Proposed is a scale characterizing the height of the surface layer of constant flows.  相似文献   

11.
Sodar measurements have been made at La Spezia, Italy during land- and sea-breeze conditions. The backscatter returns are discussed qualitatively, including their relation to the vertical structure of the boundary layer as revealed by vertical soundings of wind and temperature. During inversion conditions, the sodar signals may be difficult to interpret especially when there is a land breeze flowing over irregular terrain.  相似文献   

12.
Abstract

During moist weather under stably stratified and light wind conditions very often “dot” shaped echoes, either distributed randomly or arranged in a stratified layer, have been observed on sodar echograms. They last from a couple of hours to ten hours. Their horizontal widths are up to 200 m while their vertical sizes are up to 40 m. It is argued that dot echoes represent clusters of water vapour translated by the wind in the boundary layer, the back‐scattered acoustic energy being the contribution of correlated fluctuations in temperature and humidity (turbulent mixing) in the inertial subrange.  相似文献   

13.
Convective plume patterns, characteristic of clear sky and light wind daytime boundary layers over land, were observed for two nights with a tri-axial Doppler sodar operated in the central area of Rome during the summer of 1994. An urban heat island effect, combined with a continuation of a breeze from the sea late into night during both days, is believed to be responsible for the observed nocturnal convection. Estimates of the surface heat flux and the vertical velocity scaling parameter are obtained from profiles of vertical velocity variance, and the Raman lidar water vapor measurements are used to obtain the humidity scaling parameter. Convective scaling results for vertical wind and humidity fairly agree with the results of other experiments and models. On the basis of available measurements, it appears that mixed-layer similarity formulations used to characterize the daytime convective boundary layer over horizontally homogeneous surfaces can also be applied to the nocturnal urban boundary layer during periods of reasonable convective activity.  相似文献   

14.
The structure of turbulence in an inversion layer and in an homogeneous convective field of the planetary boundary layer is described. In the first part of the paper, we validate the sodar estimates of turbulent dissipation, by using measurements with an hot-wire anemometric system in situ. Limitations of an ε measurement technique using structure function calculations are given, taking account of atmospheric properties and acoustic Doppler instrumental effects. By comparison between isopleths of backscattering intensity and of turbulent dissipation rates, we observe that in the early morning, turbulence is advected by mechanical turbulence generated by wind shear. The same mechanism seems to be operating in the case of an inversion layer capping thermal instability, when the convective activity is not too greatly developed. A turbulent kinetic energy budget is examined using aircraft, sodar, and tower measurements. This indicates a constant turbulent dissipation profile through a deep convective layer.  相似文献   

15.
The characteristics of wind speed and wind direction in the boundary atmospheric layer measured at the meteorological station in Akhtopol (Bulgaria) are presented. The measurements were carried out with the Scintec sodar and MK-15 automatic meteorological station. The sodar measurement data on wind parameters at different heights in different months are presented as well as the frequency of inshore and offshore wind directions, that enables to trace the intensity of the breeze circulation. The frequency of calms and wind speeds at the heights of 50, 100, and 200 m according to gradations for different months and the probability of wind of various speeds depending on the direction are also given. The breeze front characteristics in June–September of 2009 are computed from the speed and direction of surface wind measured with the acoustic anemometer of MK-15 complex.  相似文献   

16.
In this work, the thermic structure of the atmospheric boundary layer is analyzed by means of direct measurements with radiosonde equipment, remote exploration with a three-monostatic Doppler sodar, and a boundary layer model of order one-and-a-half. Intercomparisons of radiosonde data, sodar data, and model results are made through the study of radiative nocturnal inversion, subsidence inversion, development and height of the mixing layer, and calculus of the temperature structure parameter. The ability of sodar to find the mixing layer height and to detect stable layers is enhanced when these layers are low enough.  相似文献   

17.
Turbulence structures of high Reynolds number flow in the near-neutral atmospheric boundary layer (ABL) are investigated based on observations at Shionomisaki and Shigaraki, Japan. A Doppler sodar measured the vertical profiles of winds in the ABL. Using the integral wavelet transform for the time series of surface wind data, the pattern of a descending high-speed structure with large vertical extent (from the surface to more than 200-m level) is depicted from the Doppler sodar data. Essentially this structure is a specific type of coherent structure that has been previously shown in experiments on turbulent boundary-layer flows. Large-scale high-speed structures in the ABL are extracted using a long time scale (240 s) for the wavelet transform. The non-dimensional interval of time between structures is evaluated as 3.0–6.2 in most cases. These structures make a large contribution to downward momentum transfer in the surface layer. Quadrant analyses of the turbulent motion measured by the sonic anemometer (20-m height) suggest that the sweep motion (high-speed downward motion) plays a substantial role in the downward momentum transfer. In general, the contribution of sweep motions to the momentum flux is nearly equal to that of ejection motions (low-speed upward motions). This contribution of sweep motions is related to the large-scale high-speed structures.  相似文献   

18.
A numerical model is used to study the properties of pollutant dispersion over a large uniformly-sloped surface in the stable atmospheric boundary layer. By simulating the structure of boundary layer flow to improve the advective wind field and vertical eddy diffusivities included in the advection-diffusion equa-tion, this numerical model permits an estimation of the distribution of pollutant concentration for more real-istic atmospheric diffusion conditions.  相似文献   

19.
In-situ sodar and lidar measurements were coupled with numerical simulations for studying a sea-breeze event in a flat coastal area of the North Sea. The study’s aims included the recognition of the dynamics of a sea-breeze structure, and its effects on the lower troposphere stratification and the three-dimensional (3D) pollutant distribution. A sea breeze was observed with ground-based remote sensing instruments and analysed by means of numerical simulations using the 3D non-hydrostatic atmospheric model Meso-NH. The vertical structure of the lower troposphere was experimentally determined from the lidar and sodar measurements, while numerical simulations focused on the propagation of the sea breeze inland. The sea-breeze front, the headwind, the thermal internal boundary layer, the gravity current and the sea-breeze circulation were observed and analysed. The development of a late stratification was also observed by the lidar and simulated by the model, suggesting the formation of a stable multilayered structure. The transport of passive tracers inside the sea breeze and their redistribution above the gravity current was simulated too. Numerical modelling showed that local pollutants may travel backward to the sea above the gravity current at relatively low speed due to the shearing between the landward gravity current and the seaward synoptic wind. Such dynamic conditions may enhance an accumulation of pollutants above coastal industrial areas.  相似文献   

20.
In this study the results from a boundary layer experiment,conducted in autumn 1991 over a flat,build-up urban area in Southeast Sofia,together with some models for mixed layer growth rates are used to investigate the layered structure of the vertical atmospheric stability distribution in the Sofia Valley.Lidar measurements of aerosol layer heights and morning boundary layer development are combined with surface eddy correlation measurements of kinematic heat and moisture fluxes,profiles of temperature and humidity,wind speed and wind direction.A diagnostic method is presented for determining vertical lapse rates using surface meteorological measurements and lidar returns observed during the transition from nighttime stable stratification to daytime convective boundary layer after the sunrise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号