首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variations in the density of the ionospheric F2 layer maximum (NmF2) under the action of the zonal plasma drift perpendicularly to the magnetic (B) and electric (E) fields in the direction geomagnetic west-geomagnetic east have been studied using the three-dimensional nonstationary theoretical model of electron and ion densities (N e and N i ) and temperatures (T e and T i ) in the low-latitude and midlatitude ionospheric F region and plasmasphere. The method of numerical calculations of N e , N i , T e , and T i , including the advantages of the Lagrangian and Eulerian methods, is used in the model. A dipole approximation of the geomagnetic field (B), taking into account the non-coincidence of the geographic and geomagnetic poles and differences between the positions of the Earth’s and geomagnetic dipole centers, is accepted in the calculations. The calculated NmF2 and altitudes of the F2 layer maximum (hmF2) have been compared with these quantities measured at 16 low-latitude ionospheric sounding stations during the geomagnetically quiet period October 11–12, 1958. This comparison made it possible to correct the input model parameters: the NRLMSISE-00 model [O], the meridional component of the neutral wind velocity according to the HWW90 model, and the meridional component of the equatorial plasma drift due to the electric field specified by the empirical model. It has been indicated that the effect of the zonal E × B plasma drift on NmF2 can be neglected under daytime conditions and changes in NmF2 and hmF2 under the action of this drift are insignificant under nighttime conditions north of 25° and south of ?26° geomagnetic latitude. The effect of the zonal E × B plasma drift on NmF2 and hmF2 is most substantial in the nightside ionosphere approximately from ?20° to 20° geomagnetic latitude, and the neglect of this drift results in an up to 2.4-fold underestimation of NmF2. The found dependence of the effect of the zonal E × B plasma drift on NmF2 and hmF2 on geomagnetic latitude is related to the longitudinal asymmetry of B, asymmetry of the neutral wind about the geomagnetic equator, and changes in the meridional E × B plasma drift at a change in geomagnetic longitude.  相似文献   

2.
Using model simulations, the morphological picture (revealed earlier) of the disturbances in the F 2 region of the equatorial ionosphere under quiet geomagnetic conditions (Q-disturbances) is interpreted. It is shown that the observed variations in the velocity of the vertical E × B plasma drift, related to the zonal E y component of the electric field, are responsible for the formation of Q-disturbances. The plasma recombination at altitudes of the lower part of the F 2 region and the dependence of the rate of this process on heliogeophysical conditions compose the mechanism of Q-disturbance formation at night. The daytime positive Q-disturbances are caused exclusively by a decrease in the upward E × B drift, and this type of disturbances could be related to the known phenomenon of counter electrojet. Possible causes of formation of the daytime negative Q-disturbances are discussed.  相似文献   

3.
We model the macroseismic damage distribution of four important intermediate-depth earthquakes of the southern Aegean Sea subduction zone, namely the destructive 1926 M?=?7.7 Rhodes and 1935 M?=?6.9 Crete earthquakes, the unique 1956 M?=?6.9 Amorgos aftershock (recently proposed to be triggered by a shallow event), and the more recent 2002 M?=?5.9 Milos earthquake, which all exhibit spatially anomalous macroseismic patterns. Macroseismic data for these events are collected from published macroseismic databases and compared with the spatial distribution of seismic motions obtained from stochastic simulation, converted to macroseismic intensity (Modified Mercalli scale, IMM). For this conversion, we present an updated correlation between macroseismic intensities and peak measures of seismic motions (PGA and PGV) for the intermediate-depth earthquakes of the southern Aegean Sea. Input model parameters for the simulations, such as fault dimensions, stress parameters, and attenuation parameters (e.g. back-arc/along anelastic attenuation) are adopted from previous work performed in the area. Site-effects on the observed seismic motions are approximated using generic transfer functions proposed for the broader Aegean Sea area on the basis of VS30 values from topographic slope proxies. The results are in very good agreement with the observed anomalous damage patterns, for which the largest intensities are often observed at distances >?100 km from the earthquake epicenters. We also consider two additional “prediction” but realistic intermediate-depth earthquake scenarios, and model their macroseismic distributions, to assess their expected damage impact in the broader southern Aegean area. The results suggest that intermediate-depth events, especially north of central Crete, have a prominent effect on a wide area of the outer Hellenic arc, with a very important impact on modern urban centers along northern Crete coasts (e.g. city of Heraklion), in excellent agreement with the available historical information.  相似文献   

4.
In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and L1-norm regularization, and use alternating optimization to directly estimate the primary reflection coefficients and source wavelet. The 3D curvelet transform is used as a sparseness constraint when inverting the primary reflection coefficients, which results in avoiding the prediction subtraction process in the surface-related multiples elimination (SRME) method. The proposed method not only reduces the damage to the effective waves but also improves the elimination of multiples. It is also a wave equationbased method for elimination of surface multiple reflections, which effectively removes surface multiples under complex submarine conditions.  相似文献   

5.
The relation of the Kp index of geomagnetic activity to the solar wind electric field (E SW) and the projection of this field onto the geomagnetic dipole has been estimated. An analysis indicated that the southward component of the IMF vector (B z < 0) is the main geoeffective parameter, as was repeatedly indicated by many researchers. The presence of this component in any combinations of the interplanetary medium parameters is responsible for a high correlation between such combinations and geomagnetic activity referred to by the authors of different studies. Precisely this field component also plays the main role in the relation between the Kp index and the relative orientation of E SW and the Earth’ magnetic moment.  相似文献   

6.
In this paper, we analyzed the strong ground motion from the November 12, 2017, Kermanshah earthquake in western Iran with moment magnitude (M) of 7.3. Nonlinear and linear amplification of ground motion amplitudes were observed at stations with soft soil condition at hypocentral distances below and above 100 km, respectively. Observation of large ground motion amplitudes dominated with long-period pulses on the strike-normal component of the velocity time series suggests a right-lateral component of movement and propagation of rupture towards southeast. Comparison of the horizontal peak ground acceleration (PGA) from the M 7.3 earthquake with global PGA values showed a similar decay in ground motion amplitudes, although it seems that PGA from the M 7.3 Kermanshah earthquake is higher than global values for NEHRP site class B. We also found that the bracketed duration (Db) was higher in the velocity domain than in the acceleration domain for the same modified Mercalli intensity (MMI) threshold. For example, Db reached ~?30 s at the maximum PGA while it was ~?50 s at the maximum peak ground velocity above the threshold of MMI?=?5. Although the standard design spectrum from Iranian Code of Practice for Seismic Resistant Design of Buildings (standard No. 2800) seems to include appropriate values for the design of structures with fundamental period of 1 s and higher, it is underestimated for near-field ground motions at lower periods.  相似文献   

7.
平面波域反数据处理压制多次波方法研究   总被引:9,自引:2,他引:7       下载免费PDF全文
在地震勘探领域,尤其是海洋地震勘探中,多次波一直是影响地震处理与解释的主要因素之一.本文基于x-t域的反馈模型及多次波衰减的理论,详尽推导了x-t域反数据处理的方法;基于平面波域多次波的产生机制,借鉴x-t域反数据处理的方法,推导出在平面波域进行反数据处理的原理.文中给出一个有限差分的模拟数据进行测试,处理结果表明,本方法可以有效地衰减表层相关多次波,提高地震数据分析的精确性,在保护了一次波能量的同时,可以更加有效快捷地去除多次波.  相似文献   

8.
The IMF statistical characteristics, depending on duration of the averaging intervals, are studied based on the ACE spacecraft measurements. The distributions of the induction (B) vector directions and the estimates of the variance and excess coefficient of the vector components are presented. The polymodal model of the density distribution function of the vector (B) component variations is proposed. The parameters of this model, which make it possible to approximate empirical distributions accurate within several hundredths of percent, are presented.  相似文献   

9.
Groundwater models need to account for detailed but generally unknown spatial variability (heterogeneity) of the hydrogeologic model inputs. To address this problem we replace the large, m-dimensional stochastic vector β that reflects both small and large scales of heterogeneity in the inputs by a lumped or smoothed m-dimensional approximation γθ, where γ is an interpolation matrix and θ is a stochastic vector of parameters. Vector θ has small enough dimension to allow its estimation with the available data. The consequence of the replacement is that model function f(γθ) written in terms of the approximate inputs is in error with respect to the same model function written in terms of β, f(β), which is assumed to be nearly exact. The difference f(β) − f(γθ), termed model error, is spatially correlated, generates prediction biases, and causes standard confidence and prediction intervals to be too small. Model error is accounted for in the weighted nonlinear regression methodology developed to estimate θ and assess model uncertainties by incorporating the second-moment matrix of the model errors into the weight matrix. Techniques developed by statisticians to analyze classical nonlinear regression methods are extended to analyze the revised method. The analysis develops analytical expressions for bias terms reflecting the interaction of model nonlinearity and model error, for correction factors needed to adjust the sizes of confidence and prediction intervals for this interaction, and for correction factors needed to adjust the sizes of confidence and prediction intervals for possible use of a diagonal weight matrix in place of the correct one. If terms expressing the degree of intrinsic nonlinearity for f(β) and f(γθ) are small, then most of the biases are small and the correction factors are reduced in magnitude. Biases, correction factors, and confidence and prediction intervals were obtained for a test problem for which model error is large to test robustness of the methodology. Numerical results conform with the theoretical analysis.  相似文献   

10.
A transient model, hereafter referred to as ROM-TM, was developed to quantify river ecosystem metabolic rates and reaeration rates from field observation of changes in dissolved O2 (DO) and the ratio of 18O to 16O in DO (δ18O-DO). ROM-TM applies an inverse modeling approach and is programmed using MATLAB. Parameters describing photosynthesis, ecosystem respiration, gas exchange, and isotopic fractionation, such as maximum photosynthetic rate (P m ), photosynthetic efficiency parameter (a), respiration rate at 20 °C (R 20 ), gas exchange coefficient (K), respiration isotopic fractionation factor (a R ), and photorespiration coefficient (β R ), can be abstracted by minimizing the sum of square errors between the fitted data and the observed field data. Then DO and δ18O-DO time series can be reconstructed using estimated parameters and input variables. Besides being capable of teasing apart metabolic processes and gas exchange to provide daily average estimates of metabolic parameters at the ecosystem scale, ROM-TM can be used to address issues related to light including light saturation phenomena at the ecosystem level, the effect of cloud cover on the metabolic balance, and photorespiration. Error and uncertainty analysis demonstrates that ROM-TM is stable and robust for the random errors of DO time series. The photosynthetic parameters P m and a are more sensitive than other parameters to lower-resolution time series data.  相似文献   

11.
Tectonic activities, electrical structures, and electromagnetic environments are major factors that affect the stability of spontaneous fields. The method of correlating regional synchronization contrasts(CRSC) can determine the reliability of multi-site data trends or shortimpending anomalies. From 2008 to 2013, there were three strong earthquake cluster periods in the North–South seismic belt that lasted for 8–12 months. By applying the CRSC method to analyze the spontaneous field E_(SP) at 25 sites of the region in the past 6 years, it was discovered that for each strong earthquake cluster period, the E_(SP) strength of credible anomalous trends was present at minimum 30%of the stations. In the southern section of the Tan-Lu fault zone, the E_(SP) at four main geoelectric field stations showed significant anomalous trends after June 2015, which could be associated with the major earthquakes of the East China Sea waters(MS7.2) in November 2015 and Japan's Kyushu island(MS7.3) in April 2016.  相似文献   

12.
We compare two methods for determining the upscaled water characteristics and saturation-dependent anisotropy in unsaturated hydraulic conductivity from a field-scale injection test. In both approaches an effective medium approximation is used to reduce a porous medium of M textures to an equivalent homogenous medium. The first approach is a phenomenological approach based on homogenization and assumes that moisture-based Richards’ equation can be treated like the convective–dispersive equation (CDE). The gravity term, dKz(θ)/d(θ), analogous to the vertical convective velocity in the CDE, is determined from the temporal evolution of the plume centroid along the vertical coordinate allowing calculation of an upscaled Kz(θ). As with the dispersion tensor in the CDE, the rate of change of the second spatial moment in 3D space is used to calculate the water diffusivity tensor, D(θ), from which an upscaled K(θ) is calculated. The second approach uses the combined parameter scale inverse technique (CPSIT). Parameter scaling is used first to reduce the number of parameters to be estimated by a factor M. Upscaled parameters are then optimized by inverse modeling to produce an upscaled K(θ) characterized by a pore tortuosity–connectivity tensor, L. Parameters for individual textures are finally determined from the optimized parameters by inverse scaling using scale factors determined a priori. Both methods produced upscaled K(θ) that showed evidence of saturation dependent anisotropy. Flow predictions with the STOMP simulator, parameterized with upscaled parameters, were compared with field observations. Predictions based on the homogenization method were able to capture the mean plume behavior but could not reproduce the asymmetry caused by heterogeneity and lateral spreading. The CPSIT method captured the effects of heterogeneity and anisotropy and reduced the mean squared residual by nearly 90% compared to local-scale and upscaled parameters from the homogenization method. The Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle under Contract DE-AC05-76RL01830.  相似文献   

13.
海水与空气间的强波阻抗界面使得海洋地震数据普遍发育自由表面相关多次波,多次波信息的利用是提高海洋地震资料成像品质的新突破点.近年来发展了一系列多次波成像方法,干涉假象是制约其应用推广的关键问题之一.为了避免假象影响,本文提出了不同阶次自由表面相关多次波预测与成像方法,首先,修改了传统SRME(表面相关多次波衰减)方法中的边界条件,通过多次波升阶次与匹配相减的方法预测出不同阶次自由表面相关多次波;其次,基于单程波偏移算子和"面炮"偏移策略,以一次反射波或第(N-1)阶自由表面相关多次波为下行波场正向延拓,以第1阶多次或第N阶多次波为上行波场逆向延拓,并在每一层互相关成像得到第1阶或N阶多次波单独成像.本方法避免了低阶多次波和高阶多次波产生的相关假象,且相对于全波算子的偏移方法具有较高的计算效率,增强了多次波成像方法的实用性.单层模型和三层模型测试验证了本方法的正确性,并在我国某深海探区实际资料处理中得到了成功应用.相对于传统一次波成像,分阶次多次波成像具有更高的照明均衡度、垂向分辨率和信噪比.本研究表明,海洋多次波成像是一次波成像的有力补充,对于稳定海底沉积的深海地区,具有一定的应用前景.  相似文献   

14.
15.
Rock masses contain ubiquitous multiscale heterogeneities, which (or whose boundaries) serve as the surfaces of discontinuity for some characteristics of the stress state, e.g., for the orientation of principal stress axes. Revealing the regularities that control these discontinuities is a key to understanding the processes taking place at the boundaries of the heterogeneities and for designing the correct procedures for reconstructing and theoretical modeling of tectonic stresses. In the present study, the local laws describing the refraction of the axes of extreme principal stresses T 1 (maximal tension in the deviatoric sense) and T 3 (maximal compression) of the Cauchy stress tensor at the transition over the elementary area n of discontinuity whose orientation is specified by the unit normal n are derived. It is assumed that on the area n of discontinuity, frictional contact takes place. No hypotheses are made on the constitutive equations, and a priori constraints are not posed on the orientation on the stress axes. Two domains, which adjoin area n on the opposite sides and are conventionally marked + and ?, are distinguished. In the case of the two-dimensional (2D) stress state, any principal stress axis on passing from domain ? to domain + remains in the same quadrant of the plane as the continuation of this axis in domain +. The sign and size of the refraction angle depend on the sign and amplitude of the jump of the normal stress, which is tangential to the surface of discontinuity. In the three-dimensional (3D) case, the refraction of axes T 1 and T 3 should be analyzed simultaneously. For each side, + and ?, the projections of the T 1 and T 3 axes on the generally oriented plane n form the shear sectors S + and S ?, which are determined unambiguously and to whose angular domains the possible directions p + and p ? of the shear stress vectors belong. In order for the extreme stress axes T 1 + ,T 3 + and T 1 ? , T 3 ? to be statically compatible on the generally oriented plane n, it is required that sectors S + and S ? had a nonempty intersection. The direction vectors p + and p ? are determined uniquely if, besides axes T 1 ? , T 3 ? and T 1 + , T 3 + , also the ratios of differential stresses R + and R ? (0 ≤ R ± ≤ 1) are known. This is equivalent to specifying the reduced stress tensors T R + and T R ? The necessary condition for tensors T R + and T R ? being statically compatible on plane n is the equality p + = p ?. In this paper, simple methods are suggested for solving the inverse problem of constructing the set of the orientations of the extreme stress axes from the known direction p of the shear stress vector on plane n and from the data on the shear sector. Based on these methods and using the necessary conditions of local equilibrium on plane n formulated above, all the possible orientations of axes T 1 + , T 3 + are determined if the projections of axes T 1 ? , T 3 ? axes on side — are given. The angle between the projections of axes T 1 + , T 1 ? and/or T 3 + , T 3 ? on the plane can attain 90°. Besides the general case, also the particular cases of the contact between the degenerate stress states and the special position of plane n relative to the principal stress axes are thoroughly examined. Generalization of the obtained results makes it possible to plot the local diagram of the orientations of axes T 1 + , T 3 + for a given sector S ?. This diagram is a so-called stress orientation sphere, which is subdivided into three pairs of areas (compression, tension, and compression-extension). The tension and compression zones cannot contain the poles of T 3 + and T 1 + axes, respectively. The compression-extension zones can contain the poles of either T 1 + or T 3 + axis but not both poles simultaneously. In the particular case when the shear stress vector has a unique direction p ? on side ?, the areas of compression-extension disappear and the diagram is reduced to a beach-ball plot, which visualizes the focal mechanism solution of an earthquake. If area n is a generally oriented plane and if the orientation of the pairs of the statically compatible axes T 1 ? , T 3 ? and T 1 + , T 3 + is specified, then, the stress values on side + are uniquely determined from the known stress values on side ?. From the value of differential stress ratio R ?, one can calculate the value of R +, and using the values of the principal stresses on side ?, determine the total stress tensor T + on side +. The obtained results are supported by the laboratory experiments and drilling data. In particular, these results disclose the drawbacks of some established notions and methods in which the possible refraction of the stress axes is unreasonably ignored or taken into account improperly. For example, it is generally misleading to associate the slip on the preexisting fault with the orientation of any particular trihedron of the principal stress axes. The reconstruction should address the potentially statically compatible principal stress axes, which are differently oriented on opposite sides of the fault plane. The fact that, based on the orientation of the intraplate principal stresses at the base of the lithosphere, one cannot make a conclusion on the active or passive influence of the mantle flows on the lithospheric plate motion is another example. The present relationships linking the stress values on the opposite sides of the fault plane on which the orientations of the principal stress axes are known demonstrate the incorrectness of the existing methods, in which the reduced stress tensors within the material domains are reconstructed without allowance for the dynamic interaction of these domains with their neighbors. In addition, using the obtained results, one can generalize the notion of the zone of dynamical control of a fault onto the case of the existence of discontinuities in this region and analyze the stress transfer across the system of the faults.  相似文献   

16.
Ground motion prediction equations (GMPEs) have a major impact on seismic hazard estimates, because they control the predicted amplitudes of ground shaking. The prediction of ground-motion amplitudes due to mega-thrust earthquakes in subduction zones has been hampered by a paucity of empirical ground-motion data for the very large magnitudes (moment magnitude (M) $>$ 7) of most interest to hazard analysis. Recent data from Tohoku M9.0 2011 earthquake are important in this regard, as this is the largest well-recorded subduction event, and the only such event with sufficient data to enable a clear separation of the overall source, path and site effects. In this study, we use strong-ground-motion records from the M9 Tohoku event to derive an event-specific GMPE. We then extend this M9 GMPE to represent the shaking from other M $>$ 7 interface events in Japan by adjusting the source term. We focus on events in Japan to reduce ambiguity that results when combining data in different regions having different source, path and site effect attributes. Source levels (adjustment factors) for other Japanese events are determined as the average residuals of ground-motions with respect to the Tohoku GMPE, keeping all other coefficients fixed. The mean residuals (source terms) scale most steeply with magnitude at the lower frequencies; this is in accord with expectations based on overall source-scaling concepts. Interpolating source terms over the magnitude range of 7.0–9.0, we produce a GMPE for large interface events of M7–M9, for NEHRP B/C boundary site conditions (time-averaged shear-wave velocity of 760 m/s over the top 30 m) in both fore-arc and back-arc regions of Japan. We show how these equations may be adjusted to account for the deeper soil profiles (for the same value of $\hbox {V}_\mathrm{S30})$ in western North America. The proposed GMPE predicts lower motions at very long periods, higher motions at short periods, and similar motions at intermediate periods, relative to the simulation-based GMPE model of Atkinson and Macias (2009) for the Cascadia subduction zone.  相似文献   

17.
The available geological, gravimetric, and seismological data suggest that island arcs, deep-sea trenches, and seismofocal zones of Indonesia (as a part of the Alpine-Indonesian mobile belt) differ significantly from structures of the same names of the Pacific ring proper. Thus, seismofocal zones of the ring are characterized by the stress-strain conditions of subhorizontal across-strike compression at depths of 0–400 km. In seismofocal zones of the mobile belt, such conditions exist only in the depth interval ~(0–40) km. At depths of about 40 to 400 km, lengthening (the T axis) is oriented along the dip-updip direction of a zone, whereas shortening (the P axis) is oriented along the strike of a seismofocal zone or, if individual P axes are not well ordered in this depth interval, they are scattered near the plane normal to the lengthening axis. We relate these distinctions to the fact that the mobile belt inherits a geosynclinal, rather than oceanic, basin that cannot be regarded as a huge bay of the paleo-Pacific. The aforementioned data imply that SW Melanesia (the New Guinea Islands, Bismarck Archipelago, and Solomon Islands) includes the recent Bismarck geosynclinal zone located on the strike of the Indonesian segment of the Alpine-Indonesian mobile belt.  相似文献   

18.
In this work we study mixed finite element approximations of Richards’ equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61–78]), the Raviart–Thomas mixed finite element method (RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565–581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373–394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869–1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148–167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701–724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi-Douglas-Marini element (BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is observed, which however is less significant for the accompanying solute transport.  相似文献   

19.
On the basis of the model of the three-dimensional (3D) generalized Kadomtsev-Petviashvili equation for magnetic field h = B ~/B the formation, stability, and dynamics of 3D soliton-like structures, such as the beams of fast magnetosonic (FMS) waves generated in ionospheric and magnetospheric plasma at a low-frequency branch of oscillations when β = 4πnT/B 2 ? 1 and β > 1, are studied. The study takes into account the highest dispersion correction determined by values of the plasma parameters and the angle θ = (B, k), which plays a key role in the FMS beam propagation at those angles to the magnetic field that are close to π/2. The stability of multidimensional solutions is studied by an investigation of the Hamiltonian boundness under its deformations on the basis of solving of the corresponding variational problem. The evolution and dynamics of the 3D FMS wave beam are studied by the numerical integration of equations with the use of specially developed methods. The results can be interpreted in terms of the self-focusing phenomenon, as the formation of a stationary beam and the scattering and self-focusing of the solitary beam of FMS waves. These cases were studied with a detailed investigation of all evolutionary stages of the 3D FMS wave beams in the ionospheric and magnetospheric plasma.  相似文献   

20.
A multi-event and multi-station inverse method is presented in the paper to simultaneously estimate the seismic moments (M 0) and source corner frequencies (f c) of several Jiashi (Xinjiang, China) earthquakes, as well as the apparent Lg Q models for the paths from Jiashi to eight seismic stations (WMQ, AAK, TLG, MAKZ, KUR, VOS, ZRN and CHK) in Central Asia. The resultant seismic moments correlate well with the M 0 values obtained by Harvard University using the centroid moment tensor (CMT) inversion and the surface-wave magnitudes as well. After the correction by a typical value of average radiation coefficient for regional SV waves, the M 0 values from Lg spectral inversion are still close to the corresponding values obtained from CMT inversion. The obtained apparent Q 0Lg values (Lg Q at 1 Hz) are consistent with the tectonic features of corresponding propagation paths. The Q 0Lg values are 351±87, 349±86 and 300±27 for the paths from Jiashi to AAK, TLG and MAKZ, respectively. They are smaller than Q 0Lg values for the paths to KUR, VOS, ZRN and CHK, which are 553±72, 569±58, 550±57 and 603±65, respectively. These results agree with the condition that the paths to AAK, TLG and MAKZ mainly propagate through the mountainous Tianshan area where relatively strong seismic activities and large variations of topography are exhibited, while the paths to KUR, VOS, ZRN and CHK mainly propagate through the stable area of Kazak platform. The Q 0Lg value for the path to WMQ is 462±56. This is also in agreement with the condition that the path to WMQ is basically along the border area between Tianshan Mountain and Tarim Basin, and along this path the variations of topography and crustal thickness are moderate in comparison with that along the path to MAKZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号