首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Alxa region, located in the southernmost part of Central Asian Orogenic Belt, is a key region for understanding the tectonic processes associated with the closure of the Paleo-Asian Ocean. Issues of late Paleozoic tectonic settings and tectonic unit divisions of the Alxa region still remain controversial. In this study, we report a new ophiolitic mélange named the Tepai ophiolitic mélange in the northern Alxa region, northwest of Alxa Youqi. The tectonic blocks in the Tepai ophiolitic mélange are mainly composed of serpentinized peridotites, serpentinites, mylonitized gabbros, gabbros, basalts, and quartzites, with a matrix comprising highly deformed clastic rocks. A gabbro exhibits a zircon LA-ICP-MS Ue Pb age of278.4 ± 3.3 Ma. Gabbros exhibit high Mg O and compatible element contents, but extremely low TiO_2,totally rare earth element and high field strength element contents. These rocks exhibit light rare earth element depleted patterns, and display enriched in large-ion lithophile elements and depleted in high field strength elements. Boninite-like geochemical data show that they were formed in a subductionrelated environment, and derived from an extremely depleted mantle source infiltrated by subduction-derived fluids and/or melts. The Tepai ophiolitic mélange exhibits similar zircon U-Pb-O isotopic compositions and whole-rock geochemical characteristics to those of the Quagan Qulu ophiolite.Therefore, we propose that the Tepai ophiolitic mélange may have been the western continuation of the Quagan Qulu ophiolite. Our new finding proves the final closure of the Paleo-Asian Ocean might have taken place later than the early Permian.  相似文献   

2.
The Xiaohuangshan ophiolite of the Beishan (Inner Mongolia) is located in the southern margin of the Central Asian Orogenic Belt. It consists of several blocks composed dominantly of serpentinized ultramafic rocks, cumulative gabbros and basalts. The geochemical data of gabbros and basalts obtained from the Xiaohuangshan ophiolite are similar to tholeiitic rocks. They all have low TiO2 and high Al2O3 contents. Their light rare earth elements are slightly enriched, (La/Yb)N = 3.62–6.80, similar to the typical enriched mid-ocean ridge basalts. The mafic rocks display enrichments in large ion lithophile elements and depletions in high field strength elements, as well as significant Nb–Ta–Ti negative anomalies, similar to subduction-derived rocks. All these geochemical characteritics indicate that the Xiaohuangshan ophiolite would form in a subduction zone from a slightly enriched mantle source. Ion microprobes (SHRIMP) U–Pb dating were conducted on zircons from the basalt and gabbro. The weighted mean ages are 336.4 ± 4.1 Ma and 345 ± 14 Ma, which are considered as the crystallization ages of the basalt and gabbro, respectively. Together with other two units, the Dongqiyishan arc belt and the Yueyashan–Xichangjing ophiolite, the Xiaohuangshan ophiolite forms a Late Paleozoic arc-basin system, indicating that the Paleo-Asian Ocean did not close in the early Carboniferous. Based on the geochemical characteristics of adjacent geological bodies and their settings, the Xiaohuangshan ophiolite is considered as an indicator of a suture zone between the different epicontinental belts in the Beishan region.  相似文献   

3.
Numerous small dismembered ophiolite fragments occur in South Mongolia, but they are very poorly studied. The lack of age data and geochemical analysis hampers our understanding of the Paleozoic tectonic evolution of the region. We conducted detailed studies on the Manlay ophiolitic complex and Huree volcanic rocks south of the Main Mongolian Lineament (MML) to provide some constraints on these rocks. The Manlay ophiolite consists of dunite, harzburgite, pyroxenite, gabbro, plagiogranite, basalt and chert, locally with chromite mineralization in dunite. The gabbro and plagiogranite yielded SHRIMP zircon weighted mean 206Pb/238U ages of 509 ± 5 Ma and 482 ± 4 Ma, respectively. The basalt and dolerite samples of this complex show enrichment in LREE and LILE and negative Nb, Ta and Ti anomalies, and the chrome spinel from the chromitite lens in the dunite is characterized by high Cr# and low TiO2 contents. These features suggest a supra-subduction zone (SSZ) origin for the ophiolitic complex. The Huree volcanic rocks, ranging from basalt to dacite, display enrichment in LREE and LILE, weak Eu anomalies and distinctly negative Nb, Ta and Ti anomalies, consistent with those of typical magmas in a subduction environment. An andesite sample from this arc yielded a SHRIMP 206Pb/238U zircon age of 487 ± 5 Ma, which is the oldest reliable age for an island arc in South Mongolia. Recognition of an Early Paleozoic ophiolitic complex and a coeval island arc indicates that South Mongolia underwent a period of active volcanism during Late Cambrian to Ordovician. Additionally, the tuff overlying the ophiolitic complex and a granite intruding the ophiolite have SHRIMP zircon U–Pb ages of 391 ± 5 Ma and 304 ± 4 Ma, respectively. Combining the available data, we propose that the Early Paleozoic subduction–accretionary complexes likely constitute the basement of the Late-Paleozoic arc formations and correlate with the Lake Zone in western Mongolia.  相似文献   

4.
The time of termination of orogenesis for the southern Altaids has been controversial. Systematic investigations of field geology, geochronology and geochemistry on newly discriminated mafic–ultramafic rocks from northern Alxa in the southern Altaids were conducted to address the termination problem. The mafic–ultramafic rocks are located in the Bijiertai, Honggueryulin, and Qinggele areas, stretching from west to east for about 100 km. All rocks occur high-grade gneisses as tectonic lenses that are composed of peridotite, pyroxenite, gabbro, and serpentinite, most of which have undergone pronounced alteration, i.e., serpentinization and chloritization. Geochemically, the rocks are characterized by uniform compositional trends, i.e., with low SiO2-contents (42.51–52.21 wt.%) and alkalinity (Na2O + K2O) (0.01–5.45 wt.%, mostly less than 0.8 wt.%), and enrichments in MgO (7.37–43.36 wt.%), with Mg# = 52.75–91.87. As the rocks have been strongly altered and have a wide range of loss-on-ignition (LOI: 0.44–14.07 wt.%) values, they may have been subjected to considerable alteration by either seawater or metamorphic fluids. The REE and trace element patterns show a relatively fractionated trend with LILE enrichment and HFSE depletion, similar to that of T-MORB between N-MORB and E-MORB, indicating that the parental melt resulted from the partial melting of oceanic lithospheric mantle overprinted by fluid alteration of island-arc origin. The ultramafic rocks are relics derived from the magma after a large degree of partial melting of oceanic lithospheric mantle with superposed island arc processes under the influence of mid-ocean-ridge magmatism. LA-ICP MS U–Pb zircon ages of gabbros from three spots are 274 ± 3 Ma (MSWD = 0.35), 306 ± 3 Ma (MSWD = 0.49), 262 ± 5 Ma (MSWD = 1.2), respectively, representing the formation ages of the mafic–ultramafic rocks. Therefore, considering other previously published data, we suggest that the mafic–ultramafic rocks were products of south-dipping subduction, most probably with a slab window caused by ridge subduction, of the Paleo-Asian Ocean plate beneath the Alxa block in the Late Carboniferous to Late Permian before the Ocean completely closed. This sheds light on the controversial tectonic history of the southern Altaids and supports the concept that the termination of orogenesis was in the end-Permian to Triassic.  相似文献   

5.
In the southern Chinese Tianshan, the southernmost part of the Central Asian Orogenic Belt (CAOB), widespread ophiolitic mélanges form distinct tectonic units that are crucial for understanding the formation of the CAOB. However, the timing of tectonic events and the subduction polarity are still in controversy. In order to better understand these geological problems, a comprehensive study was conducted on the Heiyingshan ophiolitic mélange in the SW Chinese Tianshan. Detailed structural analysis reveals that the ophiolitic mélange is tectonically underlain by sheared and weakly metamorphosed pre-Middle Devonian rocks, and unconformably overlain by non-metamorphic and undeformed lower Carboniferous (Serpukhovian) to Permian strata. The igneous assemblage of the mélange comprises OIB-like alkali basalt and andesite, N-MORB-like tholeiitic basalt, sheeted diabase dikes, cumulate gabbro and peridotite. Mafic rocks display supra-subduction signatures, and some bear evidence of contamination with the continental crust, suggesting a continental marginal (back-arc) basin setting. Zircons of a gabbro were dated at 392 ± 5 Ma by the U–Pb LA-ICP-MS method. Famennian–Visean radiolarian microfossils were found in the siliceous matrix of the ophiolitic mélange. Mylonitic phyllite which displays northward-directed kinematic evidence yielded muscovite 40Ar/39Ar plateau ages of 359 ± 2 Ma and 356 ± 2 Ma.These new data, combined with previously published results, suggest that the mafic protoliths originally formed in a back-arc basin in the Chinese southern Tianshan during the late Silurian to Middle Devonian and were subsequently incorporated into the ophiolitic mélange and thrust northward during the Late Devonian to early Carboniferous. Opening of the back-arc basin was probably induced by south-dipping subduction of the Paleo-Tianshan Ocean in the early Paleozoic, and the Central Tianshan block was rifted away from the Tarim block. Closure of the back-arc basin in the early Carboniferous formed the South Tianshan Suture Zone and re-amalgamated the two blocks.  相似文献   

6.
《Gondwana Research》2014,25(2):820-841
The Huoshishan–Niujuanzi ophiolitic mélange (HNO) is located near the central part of the Beishan Orogenic Belt in the southernmost Altaids. The HNO consists of ultramafic rocks, cumulate gabbros, gabbros, plagiogranites, diorites, diabases, basalts, andesites, rhyolitic volcaniclastic rocks and siliceous sedimentary rocks, many of which are in a schist matrix (Gongpoquan Group). Geochemical data of the mafic rocks indicate a calc-alkaline or a mixture of calc-alkaline and tholeiitic rocks with negative Nb, Ta and positive Pb, Ba and La anomalies, suggesting formation in an island arc or supra-subduction zone setting. A gabbro from a block in the mélange in the Niujuanzi area has a zircon age of 435.0 ± 1.9 Ma and a plagiogranite with an age of 444.3 ± 1.9 Ma, and another gabbro from the Huoshishan area has an age of 410.5 ± 3.7 Ma. The schist matrix has a zircon age of 512 ± 5.3 Ma and contains Silurian, Devonian and Carboniferous fossils, thus the mélange formed in the late Carboniferous or later. Our structural analysis of fault planes in the HNO, the crenulation cleavages (S2) of the schist, and fold axial planes of early Permian sandy limestone/quartz veins and late Permian sandstones indicates that the mélange underwent a north-to-south compression, and the orientation of stretching lineations, slickensides and fold hinge lines implies that the HNO experienced top-to-the north (or -northwest) movement. The entire planar and linear structural data set suggests that the subduction polarity was probably to the south in the late Paleozoic. The emplacement age of the HNO was probably near the end-Permian based on the age of the youngest rocks in the ophiolitic mélange, and by the presence of a late Permian unconformity. From our work, integrated with published regional data, we outline a comprehensive geodynamic model for the central BOC.  相似文献   

7.
Late Paleozoic peperites have been identified for the first time at the bottom of Tailegula Formation in West Junggar, China. This finding is significant for the reconstruction of Late Paleozoic evolution in the Junggar region. The peperites form successions up to 500 m thick interbedded with basaltic lava and sedimentary rocks. Four types of peperites are described and interpreted as resulting from basaltic lava bulldozed into wet, unconsolidated sediments at their basal contacts. Zircon LA-ICP-MS U–Pb dating of a tuff lens enclosed by lava showed that the peperites formed in the Late Devonian (ca. 364 Ma). The peperite-bearing units probably formed at a water depth of less than 3 km and are generally undeformed, occurring in continuous stratigraphic sections distributed regionally over a distance of 100 km on either side of the Darbut and Baijiantan ophiolitic belts, in contrast to the highly deformed slices of ophiolite. They demonstrate that the Darbut and Baijiantan ophiolitic belts should not be interpreted as significant plate boundaries and represent the underlying ocean crust uplifted along tectonic lineaments within a continuous shallow remnant ocean basin. The peperites formed during the spreading phase of the remnant ocean basin and represent the final stages of creation of oceanic crust.  相似文献   

8.
The intermediate–mafic–ultramafic rocks in the Jianzha Complex (JZC) at the northern margin of the West Qinling Orogenic Belt have been interpreted to be a part of an ophiolite suite. In this study, we present new geochronological, petrological, geochemical and Sr–Nd–Hf isotopic data and provide a different interpretation. The JZC is composed of dunite, wehrlite, olivine clinopyroxenite, olivine gabbro, gabbro, and pyroxene diorite. The suite shows characteristics of Alaskan-type complexes, including (1) the low CaO concentrations in olivine; (2) evidence of crystal accumulation; (3) high calcic composition of clinopyroxene; and (4) negative correlation between FeOtot and Cr2O3 of spinels. Hornblende and phlogopite are ubiquitous in the wehrlites, but minor orthopyroxene is also present. Hornblende and biotite are abundant late crystallized phases in the gabbros and diorites. The two pyroxene-bearing diorite samples from JZC yield zircon U–Pb ages of 245.7 ± 1.3 Ma and 241.8 ± 1.3 Ma. The mafic and ultramafic rocks display slightly enriched LREE patterns. The wehrlites display moderate to weak negative Eu anomalies (0.74–0.94), whereas the olivine gabbros and gabbros have pronounced positive Eu anomalies. Diorites show slight LREE enrichment, with (La/Yb)N ratios ranging from 4.42 to 7.79, and moderate to weak negative Eu anomalies (Eu/Eu1 = 0.64–0.86). The mafic and ultramafic rocks from this suite are characterized by negative Nb–Ta–Zr anomalies as well as positive Pb anomalies. Diorites show pronounced negative Ba, Nb–Ta and Ti spikes, and typical Th–U, K and Pb peaks. Combined with petrographic observations and chemical variations, we suggest that the magmatism was dominantly controlled by fractional crystallization and crystal accumulation, with limited crustal contamination. The arc-affinity signature and weekly negative to moderately positive εNd(t) values (−2.3 to 1.2) suggest that these rocks may have been generated by partial melting of the juvenile sub-continental lithospheric mantle that was metasomatized previously by slab-derived fluids. The lithologies in the JZC are related in space and time and originated from a common parental magma. Geochemical modeling suggests that their primitive parental magma had a basaltic composition. The ultramafic rocks were generated through olivine accumulation, and variable degrees of fractional crystallization with minor crustal contamination produced the diorites. The data presented here suggest that the subduction in West Qinling did not cease before the early stage of the Middle Triassic (∼242 Ma), a back-arc developed in the northern part of West Qinling during this period, and the JZC formed within the incipient back-arc.  相似文献   

9.
The Waziristan Ophiolite is located in the suture zone between the Indian Plate to the east and Afghan Block to the west. It is highly dismembered and divisible into three main sheets or nappes, which from east to west are: the Vezhda Sar Nappe, entirely comprised of pillow basalts; the Boya Nappe, made up of ophiolitic melange with an intact section in its basal part; and the Datta Khel Nappe, consisting mainly of sheeted dykes with smaller proportions of other components. Faunal evidence suggests that the ophiolite is of Tithonian-Valanginian age. It was thrust over the Mesozoic shelf-slope sediments of the Indian Plate to the east during the Paleocene and is unconformably overlain by sedimentary rocks of Early to Middle Eocene age to the west. Beside the sheeted dykes, best exposed in the hanging wall of the Datta Khel Thrust ENE of Datta Khel, the ophiolite also contains isolated dykes. These are doleritic and basaltic in composition. The dykes contain high Na2O contents and high FeOt/MgO and LILE/HFSE ratios, and low TiO2 (<0.1 wt%) and K2O contents. Non-depletion of Nb and high LILE/HFSE ratio negate, respectively, an island-arc or mid-ocean ridge setting for these dykes. Enrichment in the LILE suggests the involvement of a crustal component driven by fluids along the subduction zone. Several geochemical parameters suggest that the dykes of Waziristan Ophiolite have transitional characteristics between mid-ocean ridge basalt and island-arc tholeiite. It is therefore proposed that these dykes may have originated in a back-arc basin tectonic setting.  相似文献   

10.
The composite Zhaheba ophiolite complex, exposed in Eastern Junggar in the Southern Altaids, records an unusually long record of oceanic crust and magmatic arc evolution. The Zhaheba ophiolite complex consists of ultramafic rocks, gabbro, diorite, basalt and chert intruded by diabase dikes and diorite porphyry. These rocks are overlain by a several-km-thick section of tuffaceous rocks, volcaniclastic sedimentary rocks, and intermediate volcanic rocks. The igneous rocks of the ophiolite complex show negative Nb and Ta anomalies and LREE enrichment relative to HREE, suggesting the influence of fluids derived from a subducting oceanic slab. The LA-ICPMS U–Pb age of zircons from gabbro is 495.1 ± 3.5 Ma. Zircon ages from diorite and basalt are 458.3 ± 7.2 Ma and 446.6 ± 6.0 Ma, respectively. The basalt is locally overlain by bedded chert. Diabase dikes and diorite porphyry yield the U–Pb ages of 421.5 ± 4.1 Ma and 423.7 ± 6.5 Ma, respectively. The age of stratigraphically lower part of the overlying volcanic–volcaniclastic section is constrained to be about 410 Ma, the maximum depositional age of the tuffaceous sandstone from U–Pb detrital zircon ages. Late rhyolite at the top of the stratigraphic section yielded a U–Pb zircon age of 280.3 ± 3.7 Ma. The age and stratigraphic relationships for the Zhaheba ophiolite complex and related rocks suggest that the period of ~ 70 Ma of initial supra-subduction magmatism was followed by construction of a mature island arc that spanned an additional 140 Ma. Many other ophiolites in the southern Altaids appear to record similar relationships, and are represented as substrates of oceanic island arcs covered by island arc volcanism in supra-subduction zone. The occurrence of the Zhaheba ophiolite complex with tuffaceous and intermediate to felsic volcanic rocks is different from the rock association of classic Tethyan SSZ ophiolites but similar to some ophiolites in North America. Although the Zhaheba ophiolite belt is flanked by the Dulate arc in the north and Yemaquan arc in the south, it cannot stand a suture between two arcs. It is suggested that Devonian–Carboniferous Dulate arc was built on the late Cambrian–middle Ordovician Zhaheba supra-subduction oceanic crust. The late Carboniferous rocks and early Permian rocks in Dulate arc are interpreted to form in the extensional process within Zhaheba–Dulate arc composite system.  相似文献   

11.
The northern Noorabad area in western Iran contains several gabbro and basalt bodies which were emplaced along the Zagros suture zone. The basalts show pillow and flow structures with amygdaloidal textures, and the gabbroic rocks show massive and foliated structures with coarse to fine-grained textures. The SiO2 contents of the gabbros and basalts are similar and range from 46.1–51.0 wt.%, and the Al2O3 contents vary from 12.3–18.8 wt.%, with TiO2 contents of 0.4–3.0 wt.%. The Nb concentrations of some gabbros and basalts are high and can be classified as Nb-enriched arc basalts. The positive εNd(t) values (+3.7 to +9.8) and low 87Sr/86Sr(initial) ratios (0.7031–0.7071) of both bodies strongly indicate a depleted mantle source and indicate that the rocks were formed by partial melting of a depleted lithospheric mantle and interaction with slab fluids/melts. The chemical composition of trace elements, REE pattern and initial 87Sr/86Sr-143Nd/144Nd ratios show that the rocks have affinities to tholeiitic magmatic series and suggest an extensional tectonic regime over the subduction zone for the evolution of these rocks. We propose an extensional tectonic regime due to the upwelling of metasomatized mantle after the late Cretaceous collision in the Harsin-Noorabad area. These rocks can be also considered as Eocene back arc magmatic activity along the Zagros suture zone in this area.  相似文献   

12.
In the Lesser Caucausus the Sevan-Akera ophiolites of N Armenia have lithological features of a slow-spreading oceanic lithosphere: serpentinites are frequently exposed and hydrothermalized at sea-floor level, plutonic rocks and dykes are rare. A complete differentiation trend is observed from mafic norites evolving to diorites and plagiogranites. Normal faults have exposed some of the deep magmatic rocks at sea-floor level. Geochemically, two distinct lava flow series have been distinguished: (1) a contaminated Mid-Oceanic Ridge Basalt (MORB) series evolving from gabbros to plagiogranites and from basalts to basaltic andesites, exhibiting slight calc-alkaline features (enrichments in Large Ion Lithophile Elements (LILE); negative anomalies in Nb–Ta and Ti relative to N-MORB); (2) an alkaline series evolving from basanites to trachy-andesites (on anhydrous basis). 40Ar/39Ar age on amphibole-bearing gabbros evidence a Middle Jurassic age (165.3 ± 1.7 Ma, 2σ) for oceanic crust formation. Structural data, including geological cross-sections and logs of the ophiolite along the northern part of Sevan Lake allow discussing the geodynamic evolution of that segment of the Amassia-Sevan-Akera ophiolitic suture zone.  相似文献   

13.
The Central Asian Orogenic Belt (CAOB) formed mainly in the Paleozoic due to the closure of the Paleo-Asian oceanic basins and accompanying prolonged accretion of pelagic sediments, oceanic crust, magmatic arcs, and Precambrian terranes. The timing of subduction–accretion processes and closure of the Paleo-Asian Ocean has long been controversial and is addressed in a geochemical and isotopic investigation of mafic rocks, which can yield important insight into the geodynamics of subduction zone environments. The Xilingol Complex, located on the northern subduction–accretion zone of the CAOB, mainly comprises strongly deformed quartzo-feldspathic gneisses with intercalated lenticular or quasi-lamellar amphibolite bodies. An integrated study of the petrology, geochemistry, and geochronology of a suite of amphibolites from the complex constrains the nature of the mantle source and the tectono-metamorphic events in the belt. The protoliths of these amphibolites are gabbros and gabbroic diorites that intruded at ca. 340–321 Ma with positive εHf(t) values ranging from + 2.89 to + 12.98. Their TDM1 model ages range from 455 to 855 Ma and peak at 617 Ma, suggesting that these mafic rocks are derived from a depleted continental lithospheric mantle. The primitive magma was generated by variable degrees of partial melting of spinel-bearing peridotites. Fractionation of olivine, clinopyroxene and hornblende has played a dominant role during magma differentiation with little or no crustal contamination. The mafic rocks are derived from a Late Neoproterozoic depleted mantle source that was subsequently enriched by melts affected by slab-derived fluids and sediments, or melts with a sedimentary source rock. The Carboniferous mafic rocks in the northern accretionary zone of the CAOB record a regional extensional event after the Early Paleozoic subduction of the Paleo-Asian Ocean. Both addition of mantle-derived magmas and recycling of oceanic crust played key roles in significant Late Carboniferous (ca. 340–309 Ma) vertical crustal growth in the CAOB. Amphibolite–facies metamorphism (P = 0.34–0.52 GPa, T = 675–708 °C) affected these mafic rocks in the Xilingol Complex at ca. 306–296 Ma, which may be related to the crustal thickening by northward subduction of a forearc oceanic crust beneath the southern margin of the South Mongolian microcontinent. The final formation of the Solonker zone may have lasted until ca. 228 Ma.  相似文献   

14.
《Precambrian Research》2005,136(1):67-106
A new lithotectonic framework for the northwestern Reindeer Zone of the Trans-Hudson Orogen divides rocks into five northwest- to north-dipping volcano-sedimentary assemblages: (1) at the structural base, the 1.92–1.87 Ga largely sedimentary Levesque Bay Assemblage (partly equivalent to former ‘MacLean Lake gneisses’), which lies within the confines of the Kisseynew Domain and is tectonically imbricated with metasedimentary rocks of the <1.85 Ga McLennan and Burntwood groups; (2) the turbiditic Duck Lake Assemblage, also located along the northern edge of the Kisseynew Domain; it contains detrital zircons ranging in age between 1.92 and 1.87 Ga; (3) the ?1.92 Ga mafic–ultramafic volcano-plutonic Lawrence Point Assemblage of the La Ronge Domain; (4) the ≥1.88 Ga felsic to intermediate volcano-plutonic Reed Lake Assemblage of the La Ronge Domain; and (5) the turbiditic Milton Island Assemblage of the Rottenstone Domain, which contains detrital zircons ranging in age between 2.83 and 1.86 Ga. The assemblages are intruded by a variety of 1.91–1.78 Ga mafic to felsic plutons.The Lawrence Point Assemblage is interpreted as a dismembered supra-subduction zone ophiolite. High-MgO refractory harzburgite (‘Group 1’ ultramafic rocks), at the structural base of the assemblage, is geochemically identical to the upper mantle section of selected supra-subduction zone ophiolites and mantle tectonites. Chromite and olivine compositions of the ‘Group 1’ ultramafic rocks are also comparable to those of ophiolitic harzburgite and mantle tectonite. Mafic metavolcanic rocks of the assemblage are classified as subalkaline tholeiitic basalts. Their trace element patterns and Hf, Ta, Th, Y, Nb, and La element ratios resemble those of modern back-arc basin basalts. The Reed Lake Assemblage represents a subduction-generated arc complex that was built on top of the Lawrence Point Assemblage; its mafic metavolcanic rocks are subalkaline basalts, with calc-alkaline trends, and elevated Th and Ce concentrations and negative Nb anomalies. Feldspar porphyry dykes intruding the Lawrence Point and Duck Lake assemblages constrain timing of Lawrence Point ophiolite emplacement onto the Duck Lake Assemblage to 1.86–1.84 Ga. The trace element geochemistry of the dykes suggests continued arc volcanism after ophiolite emplacement. Mafic metavolcanic rocks of the Levesque Bay Assemblage are geochemically similar to those of the Lawrence Point Assemblage. Other ultramafic rocks (peridotite to pyroxenite) are abundant in the Lawrence Point Assemblage, but have similar geochemistry to small ultramafic bodies intruding the Reed Lake, Duck Lake and Levesque Bay Assemblages. They represent a separate, later phase (?1.86 Ga) of ultramafic plutonism, which post-dates ophiolite emplacement.Timing of Lawrence Point ophiolite emplacement (between 1.86 and 1.84 Ga) and geochemistry of later felsic and mafic/ultramafic volcanism suggest that the Lawrence Point ophiolite and overlying Reed Lake arc assemblage were not accreted to the Hearne Craton prior to 1.86 Ga, but were first accreted to the Flin Flon–Glennie Complex after 1.86 Ga.  相似文献   

15.
Volcanoplutonic complexes in NE Vietnam have recently been interpreted as intraplate products of the Emeishan plume. Alternatively, mafic–ultramafic rocks have been considered as dismembered Palaeotethyan ophiolites juxtaposed along a tectonic mélange zone. New U–Pb zircon geochronological and geochemical datasets presented here suggest a complex geological history that records collision between the Indochina–South China blocks. Mafic–ultramafic rocks exposed within a tectonic mélange (Song Hien Tectonic Zone) include sub-alkaline pillow basalts that define two geochemically distinct ophiolitic suites (SH-1: N-MORB-like, SH-2: transitional E-MORB-like). Both suites have geochemical signatures suggestive of crustal contamination, compatible with a volcanic passive margin/rift setting. We suggest that SH-1 basalts may correlate with the Devonian–Carboniferous Jinshajiang–Ailaoshan–Song Ma branch of the Palaeotethys and form part of the associated Dian–Qiong belt, whereas SH-2 basalts are co-magmatic with Middle–Late Permian mafic–ultramafic intrusive rocks (dolerites, gabbros, peridotites) that developed in a rift basin, most likely on the margin of the down-going South China plate during west-vergent subduction beneath Indochina. During continental orogenesis and thrust stacking, these ophiolitic rocks were juxtaposed with other lithotectonic blocks within the Song Hien Tectonic Zone. Post-collisional relaxation led to the development of a rift basin (Song Hien rift) comprising Late Permian–Triassic volcano-sedimentary strata including < 270–265 Ma terrigenous sandstones, < 252 Ma mudstones, and c. 254–248 Ma felsic effusives. Granites and granodiorites were emplaced across NE Vietnam between c. 252 and 245 Ma in a syn- to post-collisional setting. The Late Permian–Early Triassic felsic magmatic rocks best correlate with coeval rocks in SW Guangxi and the Central and Western Ailaoshan fold belts (China) and the Truong Son fold belt (Vietnam); together they signal the final to post-collisional stages of Indochina–South China collision. We demonstrate that the analysed magmatic rocks in the Lo-Gam–Song Hien domains of NE Vietnam are not genetically linked to the Emeishan Large Igneous Province in the Yangtze block of South China, as has been previously widely proposed.  相似文献   

16.
A major Mesoproterozoic paleo-plate boundary in the southwestern Amazonian Craton, the Guaporé Suture Zone, is investigated by U–Pb zircon geochronology, Sr–Nd isotope geochemistry and aeromagnetic data. This suture zone is constituted dominantly by ophiolitic mafic–ultramafic rocks of the Trincheira Complex, and minor proportion of tonalites of the Rio Galera and São Felipe complexes, Colorado Complex, amphibolites of the Rio Alegre Terrane and syn- to late-kinematic mafic to felsic plutonic rocks. The ophiolitic Trincheira Complex formed during an accretionary phase from 1470 to 1430 Ma and was overprinted by upper amphibolite–granulite facies metamorphism during the collisional phase of the Ectasian followed by syntectonic emplacement of gabbro and granite plutons (1350–1340 Ma). The ophiolites were intruded by syntectonic tonalitic–plagiogranitic plutons ca. 1435 Ma. Mafic–ultramafic rocks of the Trincheira ophiolites show moderate to highly positive initial epsilon Nd (t = 1.46 Ga) values (+2.6 to +8.8) and very low initial 87Sr/86Sr ratio (0.7013–0.7033). It is suggested that these magmas originated from a depleted mantle source in an island-arc–back-arc setting. The identification of a fossil ophiolite in the Guaporé Suture Zone early as 1470–1435 Ma and later collisional phase, as late as 1350 Ma, marks the impingement of the proto-Amazonian Craton against the Paragua Block, before the formation of the Rodinia supercontinent. The results provide important insights into the geodynamic history of the SW Amazonian Craton, with evidence for both accretionary orogen and subduction of oceanic lithosphere in the Mesoproterozoic, and provide information that allows other workers to evaluate the configuration of supercontinents.  相似文献   

17.
In northeastern Vietnam, Late Paleozoic and Permo-Triassic granitic plutons are widespread, but their tectonic significance is controversial. In order to understand the regional magmatism and crustal evolution processes of the South China block (SCB), this study reports integrated in situ U–Pb, Hf–O and Sr–Nd isotope analyses of granitic rocks from five plutons in northeastern Vietnam. Zircon SIMS U–Pb ages of six granitic samples cluster around in two groups 255–228 Ma and 90 Ma. Bulk-rock εNd (t) ranges from −11 to −9.7, suggesting that continental crust materials were involved in their granitic genesis. In situ zircon Hf–O isotopic measurements for the granitic samples yield a mixing trend between the mantle- and supracrustal-derived melts. It is suggested that the granitic rocks were formed by re-melting of the continental crust. These new data are compared with the Paleozoic and Mesozoic granitic rocks of South China. We argue that northeastern Vietnam belongs to the South China block. Though still speculated, an ophiolitic suture between NE Vietnam and South China, so-called Babu ophiolite, appears unlikely. The Late Paleozoic to Mesozoic magmatism in the research area provides new insights for the magmatic evolution of the South China block.  相似文献   

18.
The Archean tectonic realm of the North China Craton (NCC) is considered in recent models as a collage of several microblocks which were amalgamated along zones of ocean closure during late Neoarchean. Here we report the finding of a dismembered ophiolite suite from the southern margin of the Jiaoliao microblock in the interior of the unified Eastern Block of the NCC. The suite is composed of lherzolite, pyroxenite, noritic and hornblende gabbro, and hornblendite intruded by veins and sheets of leuco granite. Together with transposed layers and bands of metavolcanics and amphibolites, banded iron formation (BIF), and diabase dykes in the adjacent locations, the Yishui complex corresponds well with a dismembered suprasubduction zone ophiolite suite. Clinopyroxene in the pyroxenite and gabbroic rocks is Mg rich and range in composition from augite to diopside. Among orthopyroxenes, those in lherzolite show the highest XMg of 0.84–0.85. Plagioclase in hornblende gabbro shows high anorthite content (An50–64). Calcic amphiboles in the gabbroic rocks range in composition from ferropargasite to ferro-edenite, edenite and pargasite. Spinel inclusions in lherzolite are Cr-rich magnesiospinel. Geochemically, the mafic rocks from Yishui complex show subalkaline basaltic source, whereas the granitoids show volcanic arc affinity. The hornblende gabbro and gabbro, lherzolite and hornblendite show compositional similarity to E-MORB and N-MORB respectively. The lherzolite and hornblendite possess arc-related ultramafic cumulate nature, with overall features straddling the fields of IAT and IAT-MORB. The geochemical features are consistent with evolution in a suprasubduction regime with no significant crustal contamination. The majority of zircon grains in the Yishui suite exhibit magmatic texture and high Th/U ratios. Zircon grains from hornblendite define 207Pb/206Pb upper intercept age of 2538 ± 30 Ma. Zircons from the granite show ages of 2538 ± 16 Ma and 2503 ± 21 Ma, and those from the gabbros yield ages of 2503 ± 16 Ma and 2495 ± 10 Ma. The well defined major age peak at 2500 Ma is broadly coeval with Neoarchean ages reported from the microblocks in the North China Craton. The zircon Lu–Hf data from the Yishui suite display εHf(t) values between − 2.5 and 5.0, with corresponding model ages suggesting magma derivation from Neoarchean juvenile sources together with limited reworked Paleo-Mesoarchean crustal components.Our study is the first report of Neoarchean suprasubduction-type ophiolites from a locality far from the margins of the major crustal blocks and suture zones in the NCC and strengthens the concept that the craton is a mosaic of several microblocks with intervening oceans that closed along multiple subduction zones. We envisage that the amalgamation between the Xuhuai and the Jiaoliao microblocks resulted in the accretion of the Yishui suprasubduction zone ophiolitic assemblages onto the southern margin of the Jiaoliao microblock. The Neoarchean microblock amalgamation in the North China Craton provides new insights into continental growth in the early Earth and confirms that modern style plate tectonics might have been initiated early in the history of our planet.  相似文献   

19.
We present petrographic and geochemical data on representative samples of the Devonian adakite, boninite, low-TiO2 and high-TiO2 basalts and associated rocks in the southern Altay areas, Xinjiang, NW China. These volcanic rocks mostly occur as tectonic blocks within suture zones between the Siberian and Junggar plates. Adakite occurs in the Suoerkuduke area ca. 40 km south of Fuyun, and actually represents a poorly-sorted massive volcaniclastic deposit, mostly consisting of a suite of hornblende andesite to pyroxene andesite. The geochemical features of the adakite suggest its generation by melting of subducted oceanic crust. Boninite occurs in the Saerbulake area ca. 20 km southwest of Fuyun, as pillowed lava or pillowed breccia. It is associated with high-TiO2 basalt/gabbro and low-TiO2 basalt. The boninites are metamorphosed, but contain relict clinopyroxene with Mg# (=100*Mg/(Mg+Fe)) of 90–92, and Cr2O3 contents of 0.5–0.7 wt% and chromian spinel with Cr/(Cr+Al) ratio of 0.84. The bulk rock compositions of the boninites are characterized by low and U-shaped REE with variable La/Yb ratios. They are classified as high-Ca boninite. The Cr-rich cpx phenocryst and Chromian spinel suggests that the boninites were formed by melting of mildly refractory mantle peridotite fluxed by a slab-derived fluid component under normal mantle potential temperature conditions. Basaltic rocks occur as massive flows, pillowed lavas, tuff breccia, lapilli tuff and blocks in tectonic mélanges. Together with gabbros, the basaltic rocks are classified into high-TiO2 (>1.7 wt%) and low-TiO2 (<1.5 wt%) types. They show variable trace element compositions, from MORB-type through transitional back-arc basin basalt to arc tholeiite, or within plate alkalic basalt. A notable feature of the Devonian formations in the southern Altay is the juxtaposition of volcanic rocks of various origins even within a limited area; i.e. the adakite and the boninites are associated with high-TiO2 and low-TiO2 basalts and/or gabbros, respectively. This is most likely produced by complex accretion and tectonic processes during the convergence in the Devonian–Carboniferous paleo-Asian Ocean between the Siberian and Junggar plates.  相似文献   

20.
We discuss here the mineralogical and geochemical characteristics of mafic intrusive rocks from the Nagaland-Manipur Ophiolites (NMO) of Indo-Myanmar Orogenic Belt, northeast India to define their mantle source and tectonic environment. Mafic intrusive sequence in the NMO is characterized by hornblende-free (type-I) and hornblende-bearing (type-II) rocks. The type-I is further categorized as mafic dykes (type-Ia) of tholeiitic N-MORB composition, having TiO2 (0.72–1.93 wt.%) and flat REE patterns (LaN/YbN = 0.76–1.51) and as massive gabbros (type-Ib) that show alkaline E-MORB affinity, having moderate to high Ti content (TiO2 = 1.18 to 1.45 wt.%) with strong LREE-HREE fractionations (LaN/YbN = 4.54–7.47). Such geochemical enrichment from N-MORB to E-MORB composition indicates mixing of melts derived from a depleted mantle and a fertile mantle/plume source at the spreading center. On the other hand, type-II mafic intrusives are hornblende bearing gabbros of SSZ-type tholeiitic composition with low Ti content (TiO2 = 0.54 wt.%–0.86 wt.%) and depleted LREE pattern with respect to HREE (LaN/YbN = 0.37–0.49). They also have high Ba/Zr (1.13–2.82), Ba/Nb (45.56–151.66) and Ba/Th (84.58–744.19) and U/Th ratios (0.37–0.67) relative to the primitive mantle, which strongly represents the melt composition generated by partial melting of depleted lithospheric mantle wedge contaminated by hydrous fluids derived from subducting oceanic lithosphere in a forearc setting. Their subduction related origin is also supported by presence of calcium-rich plagioclase (An16.6–32.3). Geothermometry calculation shows that the hornblende bearing (type-II) mafic rocks crystallized at temperature in range of 565°–625 °C ± 50 (at 10 kbar). Based on these available mineralogical and geochemical evidences, we conclude that mid ocean ridge (MOR) type mafic intrusive rocks from the NMO represent the section of older oceanic crust which was generated during the divergent process of the Indian plate from the Australian plate during Cretaceous period. Conversely, the hornblende-bearing gabbros (type-II) represent the younger oceanic crust which was formed at the forearc region by partial melting of the depleted mantle wedge slightly modified by the hydrous fluids released from the subducting oceanic slab during the initial stage of subduction of Indian plate beneath the Myanmar plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号