首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A moderate-sized (Mw  5.3) earthquake occurred in the Dead Sea basin on February 11, 2004. A rigorous seismological analysis of the main shock and numerous aftershocks suggests that seismogenic structure was a secondary, antithetic fault within the Dead Sea fault system. The main shock is well located using all available regional seismic stations, and 43 aftershocks were precisely located relative to the main shock using a double difference algorithm. The first motion, focal mechanism for this earthquake demonstrates NNW–SSE and ENE–WSW striking nodal planes, and the aftershocks distribution is consistent with the latter — indicating a right-lateral sense of displacement. This orientation and sense of shear are consistent with similarly oriented geological faults around the Dead Sea basin — these structures are likely antithetic faults within the transform system. Although moderate in size, earthquakes that occur very close to the large Dead Sea fault system warrant consideration in the earthquake hazard assessment of the region: For example, owing to the proximity to the main fault, moderate earthquakes such as this may produce static changes in Coulomb stress along the main fault.  相似文献   

2.
During mid-Oligocene to early-Miocene times the northeastern Afro-Arabian plate underwent changes, from continental breakup along the Red Sea in the south, to continental collision with Eurasia in the north and formation of the N–S trending Dead Sea fault plate boundary. Concurrent uplift and erosion of the entire Levant area led to an incomplete sedimentary record, obscuring reconstructions of the transition between the two tectonic regimes. New well data, obtained on the continental shelf of the central Levant margin (Qishon Yam 1), revealed a uniquely undisturbed sedimentary sequence which covers this time period. Evaporitic facies found in this well have only one comparable location in the entire eastern Mediterranean area (onland and offshore) over the same time frame — the Red Sea–Suez rift system. Analysis of 4150 km of multi and single-channel seismic profiles, offshore central Levant, shows that the sequence was deposited in a narrow basin, restricted to the continental shelf. This basin (the Haifa Basin) evolved as a half graben along the NW trending Carmel fault, which at present is one of the main branches of the Dead Sea fault. Re-evaluation of geological data onland, in view of the new findings offshore, indicates that the Haifa basin is the northwestern-most of a larger series of basins, comprising a failed rift along the Qishon–Sirhan NW–SE trend. This failed rift evolved spatially parallel to the Red Sea–Suez rift system, and at the same time frame. The Carmel fault would therefore seem to be related to processes occurring several million years earlier than previously thought, before the formation of the Dead Sea fault. The development of a series of basins in conjunction with a young spreading center is a known phenomenon in other regions worldwide; however this is the only known example from across the Arabian plate.  相似文献   

3.
Recently released reflection seismic lines from the Eastern side of the Jordan River north of the Dead Sea were interpreted by using borehole data and incorporated with the previously published seismic lines of the eastern side of the Jordan River. For the first time, the lines from the eastern side of the Jordan River were combined with the published reflection seismic lines from the western side of the Jordan River. In the complete cross sections, the inner deep basin is strongly asymmetric toward the Jericho Fault supporting the interpretation of this segment of the fault as the long-lived and presently active part of the Dead Sea Transform. There is no indication for a shift of the depocenter toward a hypothetical eastern major fault with time, as recently suggested. Rather, the north-eastern margin of the deep basin takes the form of a large flexure, modestly faulted. In the N–S-section along its depocenter, the floor of the basin at its northern end appears to deepen continuously by roughly 0.5 km over 10 km distance, without evidence of a transverse fault. The asymmetric and gently-dipping shape of the basin can be explained by models in which the basin is located outside the area of overlap between en-echelon strike-slip faults.  相似文献   

4.
Salt tectonics in pull-apart basins with application to the Dead Sea Basin   总被引:1,自引:0,他引:1  
The Dead Sea Basin displays a broad range of salt-related structures that developed in a sinistral strike-slip tectonic environment: en échelon salt ridges, large salt diapirs, transverse oblique normal faults, salt walls and rollovers. Laboratory experiments are used to investigate the mechanics of salt tectonics in pull-apart systems. The results show that in an elongated pull-apart basin the basin fill, although decoupled from the underlying basement by a salt layer, remains frictionally coupled to the boundary. The basin fill, therefore, undergoes a strike-slip shear couple that simultaneously generates en échelon fold trains and oblique normal faults, trending mutually perpendicular. According to the orientation of basin boundaries, sedimentary cover deformation can be dominantly contractional or extensional, at the extremities of pull-apart basins forming either folds and thrusts or normal faults, respectively. These guidelines, applied to the analysis of the Dead Sea Basin, show that the various salt-related structures form a coherent set in the frame of a sinistral strike-slip shearing deformation of the sedimentary basin fill.  相似文献   

5.
The Dead Sea Basin is a morphotectonic depression along the Dead Sea Transform. Its structure can be described as a deep rhomb-graben (pull-apart) flanked by two block-faulted marginal zones. We have studied the recent tectonic structure of the northwestern margin of the Dead Sea Basin in the area where the northern strike-slip master fault enters the basin and approaches the western marginal zone (Western Boundary Fault). For this purpose, we have analyzed 3.5-kHz seismic reflection profiles obtained from the northwestern corner of the Dead Sea. The seismic profiles give insight into the recent tectonic deformation of the northwestern margin of the Dead Sea Basin. A series of 11 seismic profiles are presented and described. Although several deformation features can be explained in terms of gravity tectonics, it is suggested that the occurrence of strike-slip in this part of the Dead Sea Basin is most likely. Seismic sections reveal a narrow zone of intensely deformed strata. This zone gradually merges into a zone marked by a newly discovered tectonic depression, the Qumran Basin. It is speculated that both structural zones originate from strike-slip along right-bending faults that splay-off from the Jordan Fault, the strike-slip master fault that delimits the active Dead Sea rhomb-graben on the west. Fault interaction between the strike-slip master fault and the normal faults bounding the transform valley seems the most plausible explanation for the origin of the right-bending splays. We suggest that the observed southward widening of the Dead Sea Basin possibly results from the successive formation of secondary right-bending splays to the north, as the active depocenter of the Dead Sea Basin migrates northward with time.  相似文献   

6.
Many bends or step-overs along strike–slip faults may evolve by propagation of the strike–slip fault on one side of the structure and progressive shut-off of the strike–slip fault on the other side. In such a process, new transverse structures form, and the bend or step-over region migrates with respect to materials that were once affected by it. This process is the progressive asymmetric development of a strike–slip duplex. Consequences of this type of step-over evolution include: (1) the amount of structural relief in the restraining step-over or bend region is less than expected; (2) pull-apart basin deposits are left outside of the active basin; and (3) local tectonic inversion occurs that is not linked to regional plate boundary kinematic changes. This type of evolution of step-overs and bends may be common along the dextral San Andreas fault system of California; we present evidence at different scales for the evolution of bends and step-overs along this fault system. Examples of pull-apart basin deposits related to migrating releasing (right) bends or step-overs are the Plio-Pleistocene Merced Formation (tens of km along strike), the Pleistocene Olema Creek Formation (several km along strike) along the San Andreas fault in the San Francisco Bay area, and an inverted colluvial graben exposed in a paleoseismic trench across the Miller Creek fault (meters to tens of meters along strike) in the eastern San Francisco Bay area. Examples of migrating restraining bends or step-overs include the transfer of slip from the Calaveras to Hayward fault, and the Greenville to the Concord fault (ten km or more along strike), the offshore San Gregorio fold and thrust belt (40 km along strike), and the progressive transfer of slip from the eastern faults of the San Andreas system to the migrating Mendocino triple junction (over 150 km along strike). Similar 4D evolution may characterize the evolution of other regions in the world, including the Dead Sea pull-apart, the Gulf of Paria pull-apart basin of northern Venezuela, and the Hanmer and Dagg basins of New Zealand.  相似文献   

7.
The “Nares Strait problem” represents a debate about the existence and magnitude of left-lateral movements along the proposed Wegener Fault within this seaway. Study of Palaeogene Eurekan tectonics at its shorelines could shed light on the kinematics of this fault. Palaeogene (Late Paleocene to Early Eocene) sediments are exposed at the northeastern coast of Ellesmere Island in the Judge Daly Promontory. They are preserved as elongate SW–NE striking fault-bounded basins cutting folded Early Paleozoic strata. The structures of the Palaeogene exposures are characterized by broad open synclines cut and displaced by steeply dipping strike-slip faults. Their fold axes strike NE–SW at an acute angle to the border faults indicating left-lateral transpression. Weak deformation in the interior of the outliers contrasts with intense shearing and fracturing adjacent to border faults. The degree of deformation of the Palaeogene strata varies markedly between the northwestern and southeastern border faults with the first being more intense. Structural geometry, orientation of subordinate folds and faults, the kinematics of faults, and fault-slip data suggest a multiple stage structural evolution during the Palaeogene Eurekan deformation: (1) The fault pattern on Judge Daly Promontory is result of left-lateral strike-slip faulting starting in Mid to Late Paleocene times. The Palaeogene Judge Daly basin formed in transtensional segments by pull-apart mechanism. Transpression during progressive strike-slip shearing gave rise to open folding of the Palaeogene deposits. (2) The faults were reactivated during SE-directed thrust tectonics in Mid Eocene times (chron 21). A strike-slip component during thrusting on the reactivated faults depends on the steepness of the fault segments and on their obliquity to the regional stress axes.Strike-slip displacement was partitioned to a number of sub-parallel faults on-shore and off-shore. Hence, large-scale lateral movements in the sum of 80–100 km or more could have been accommodated by a set of faults, each with displacements in the order of 10–30 km. The Wegener Fault as discrete plate boundary in Nares Strait is replaced by a bundle of faults located mainly onshore on the Judge Daly Promontory.  相似文献   

8.
We present a series of high-resolution seismic reflection lines across the Yizre'el valley, which is the largest active depression in Israel, off the main trend of the Dead Sea rift. The new seismic reflection data is of excellent quality and shows that the valley is dissected into numerous small blocks, separated by active faults. The Yizre'el valley is found to consist of a series of half grabens, rather than a single half graben, or a symmetrical graben. The faults are generally vertical and appear to have a dominant strike-slip component, but some dip-slip is also evident. A marked zone of compression near Megido is associated with the intersection of the two largest faults in the valley, the Carmel fault and the Gideon fault. Variable trend of the faults reflects the complexity of the local geology along the boundary between the wide NW–SE trending Farah–Carmel fault zone and the E–W trending basins and ranges in the Lower Galilee. This tectonic complexity is likely to result from a highly variable stress pattern, modified by the structures inside it. Normal faulting in the valley occurred at an early stage of its development as a tectonic depression. However, strike-slip motion on the Carmel fault, and possibly also on some of the other faults, appears to have started together with the onset of normal faulting. Earthquake hazard in the area appears to be uniform as faults are distributed throughout the Yizre'el valley.  相似文献   

9.
Shmuel Marco   《Tectonophysics》2007,445(3-4):186-199
The location of the active fault strands along the Dead Sea Transform fault zone (DST) changed through time. In the western margins of Dead Sea basin, the early activity began a few kilometers west of the preset shores and moved toward the center of the basin in four stages. Similar centerward migration of faulting is apparent in the Hula Valley north of the Sea of Galilee as well as in the Negev and the Sinai Peninsula. In the Arava Valley, seismic surveys reveal a series of buried inactive basins whereas the current active strand is on their eastern margins. In the central Arava the centerward migration of activity was followed by outward migration with Pleistocene faulting along NNE-trending faults nearly 50 km west of the center. Largely the faulting along the DST, which began in the early–middle Miocene over a wide zone of up to 50 km, became localized by the end of the Miocene. The subsidence of fault-controlled basins, which were active in the early stage, stopped at the end of the Miocene. Later during the Plio-Pleistocene new faults were formed in the Negev west of the main transform. They indicate that another cycle has begun with the widening of the fault zone. It is suggested that the localization of faulting goes on as long as there is no change in the stress field. The stresses change because the geometry of the plates must change as they move, and consequently the localization stage ends. The fault zone is rearranged, becomes wide, and a new localization stage begins as slip accumulates. It is hypothesized that alternating periods of widening and narrowing correlate to changes of the plate boundaries, manifest in different Euler poles.  相似文献   

10.
The geometry and dynamics of the Mesozoic basins of the Weald–Boulonnais area have been controlled by the distribution of preexisting Variscan structures. The emergent Variscan frontal thrust faults are predominantly E–W oriented in southern England while in northern France they have a largely NW–SE orientation.Extension related to Tethyan and Atlantic opening has reactivated these faults and generated new faults that, together, have conditioned the resultant Mesozoic basin geometries. Jurassic to Cretaceous N–S extension gave the Weald–Boulonnais basin an asymmetric geometry with the greatest subsidence located along its NW margin. Late Cretaceous–Palaeogene N–S oriented Alpine (s.l.) compression inverted the basin and produced an E–W symmetrical anticline associated with many subsidiary anticlines or monoclines and reverse faults. In the Boulonnais extensional and contractional faults that controlled sedimentation and inversion of the Mesozoic basin are examined in the light of new field and reprocessed gravity data to establish possible controls exerted by preexisting Variscan structures.  相似文献   

11.
The age of spreading of the Liguro–Provençal Basin is still poorly constrained due to the lack of boreholes penetrating the whole sedimentary sequence above the oceanic crust and the lack of a clear magnetic anomaly pattern. In the past, a consensus developed over a fast (20.5–19 Ma) spreading event, relying on old paleomagnetic data from Oligo–Miocene Sardinian volcanics showing a drift-related 30° counterclockwise (CCW) rotation. Here we report new paleomagnetic data from a 10-m-thick lower–middle Miocene marine sedimentary sequence from southwestern Sardinia. Ar/Ar dating of two volcanoclastic levels in the lower part of the sequence yields ages of 18.94±0.13 and 19.20±0.12 Ma (lower–mid Burdigalian). Sedimentary strata below the upper volcanic level document a 23.3±4.6° CCW rotation with respect to Europe, while younger strata rapidly evolve to null rotation values. A recent magnetic overprint can be excluded by several lines of evidence, particularly by the significant difference between the in situ paleomagnetic and geocentric axial dipole (GAD) field directions. In both the rotated and unrotated part of the section, only normal polarity directions were obtained. As the global magnetic polarity time scale (MPTS) documents several geomagnetic reversals in the Burdigalian, a continuous sedimentary record would imply that (unrealistically) the whole documented rotation occurred in few thousands years only. We conclude that the section contains one (or more) hiatus(es), and that the minimum age of the unrotated sediments above the volcanic levels is unconstrained. Typical back-arc basin spreading rates translate to a duration ≥3 Ma for the opening of the Liguro–Provençal Basin. Thus, spreading and rotation of Corsica–Sardinia ended no earlier than 16 Ma (early Langhian). A 16–19 Ma, spreading is corroborated by other evidences, such as the age of the breakup unconformity in Sardinia, the age of igneous rocks dredged west of Corsica, the heat flow in the Liguro–Provençal Basin, and recent paleomagnetic data from Sardinian sediments and volcanics. Since Corsica was still rotating/drifting eastward at 16 Ma, it presumably induced significant shortening to the east, in the Apennine belt. Therefore, the lower Miocene extensional basins in the northern Tyrrhenian Sea and margins can be interpreted as synorogenic “intra-wedge” basins due to the thickening and collapse of the northern Apennine wedge.  相似文献   

12.
We have developed a significant body of new field-based evidence relating to the history of crustal extension in western Turkey. We establish that two of the NE–SW-trending basins in this region, the Gördes and Selendi Basins, whose sedimentary successions begin in the early Miocene, are unlikely to relate to late-stage Alpine compressional orogeny or to E–W extension of Tibetan-type grabens as previously suggested. We argue instead that these basins are the result of earlier (?) late Oligocene, low-angle normal faulting that created approximately N–S “scoop-shaped” depressions in which clastic to lacustine and later tuffaceous sediments accumulated during early–mid-Miocene time, separated by elongate structural highs. These basins were later cut by E–W-trending (?) Plio–Quaternary normal faults that post-date accumulation of the Neogene deposits. In addition, we interpret the Alaşehir (Gediz) Graben in terms of two phases of extension, an early phase lasting from the early Miocene to the (?) late Miocene and a young Plio–Quaternary phase that is still active. Taking into account our inferred earlier phase of regional extension, we thus propose a new three-phase “pulsed extension” model for western Turkey. We relate the first two phases to “roll-back” of the south Aegean subduction zone and the third phase to the westward “tectonic escape” of Anatolia.  相似文献   

13.
The Patras, Corinth, and northern Saronic gulfs occupy a 200-km-long, N120° trending Pleistocene rift zone, where Peloponnese drifts away from mainland Greece. The axes of Patras and Corinth basins are 25 km apart and linked by two transfer-fault zones trending N040°. The older one defines the western slope of Panachaïkon mountain, and the younger one limits the narrow Rion–Patras littoral plain. Between these two faults, the ca. 4-km-thick Rion–Patras series dips 20–30° SSW. It is part of the Patras gulf synrift deposits, which pile in an asymmetric basin governed by a fault dipping ca. 25–35° NNE, located in the southern Gulf of Patras. Mapping of this fault to the east in northern Peloponnese shows that it is an inactive north-dipping low-angle normal fault (0° to 30°N), called the northern Peloponnese major fault (NPMF). The structural evolution of the NPMF was different in the gulfs of Patras and Corinth. In the Gulf of Patras, it is still active. In northern Peloponnese, footwall uplift and coeval southward tilting flattened the fault and locked its southern part. Steeper normal faults formed north of the locked area, connecting the still active northern part of the NPMF to the surface. After several locks, the presently active normal faults (Psathopyrgos, Aigion, Helike) trend along the southern shore of the Gulf of Corinth. This migration of faults caused the relative 25 km northward shift of the Corinth basin, and the formation of NE–SW trending transfer-faults between the Corinth and Patras gulfs.  相似文献   

14.
The Dead Sea, the Holocene terminal lake of the Jordan River catchment, has fluctuated during its history in response to climatic change. Biblical records, calibrated by radiocarbon-dated geological and archaeological evidence, reinforce and add detail to the chronology of the lake-level fluctuations. There are three historically documented phases of the Dead Sea in the Biblical record: low lake levels ca. 2000–1500 B.C.E. (before common era); high lake levels ca. 1500–1200 B.C.E.; and low lake levels between ca. 1000 and 700 B.C.E. The Biblical evidence indicates that during the dry periods the southern basin of the Dead Sea was completely dry, a fact that was not clear from the geological and archaeological data alone.  相似文献   

15.
A number of en échelon-arranged, southwest-facing arc fragments of Palaeozoic to Jurassic ages, sandwiched between two fairly straight east-northeast trending boundaries, constitute the basement of the Scythian and the Turan platforms located between the Laurasian and Tethyside units. They have until now largely escaped detection owing to extensive Jurassic and younger cover and the inaccessibility of the subsurface data to the international geological community. These units are separated from one another by linear/gently-curved faults of great length and steep dip. Those that are exposed show evidence of strike-slip motion. The arc units originally constituted parts of a single “Silk Road Arc” located somewhere south of the present-day central Asia for much of the Palaeozoic, although by the late Carboniferous they had been united into a continental margin arc south of the Tarim basin and equivalent units to the west and east. They were stacked into their present places in northern Afghanistan, Turkmenistan, Caucasus and the northern Black Sea by large-scale, right-lateral strike-slip coastwise transport along arc-slicing and arc-shaving strike-slip faults in the Triassic and medial Jurassic simultaneously with the subductive elimination of Palaeo-Tethys. This gigantic dextral zone (“the Silk Road transpression”) was a trans-Eurasian structure and was active simultaneously with another, similar system, the Gornostaev keirogen and greatly distorted Eurasia. The late Palaeozoic to Jurassic internal deformation of the Dniepr–Donets aulacogen was also a part of the dextral strain in southern Europe. When the emplacement of the Scythian and Turan units was completed, the elimination of Palaeo-Tethys had also ended and Neo-Tethyan arcs were constructed atop their ruins, mostly across their southern parts. The western end of the great dextral zone that emplaced the Turan and Scythian units horsetails just east of north Dobrudja and a small component goes along the Tornquist–Teisseyre lineament.  相似文献   

16.
Active faulting in the dead sea rift   总被引:8,自引:0,他引:8  
Manifestations of Late Quaternary and Holocene faulting were studied in a 500 km long segment of the Dead Sea transform (rift). Most prominent are left-slip faults, whose characteristic physiographic features are recognizable along most of the studied segment. Where these faults bend or are stepped to the left, rhomb-shaped grabens (or pull aparts) are produced, forming depressions. In the reverse situation compressional features such as pressure ridges, domes and folds form positive topographic features. Such structures are combined on a variety of scales ranging from a few hundred meters long to tens of kilometers. Normal faults, sub-parallel to the left slip faults, produce a trough-like valley along much of the Dead Sea transform, but are most prominent along the margins of the large rhomb-grabens, e.g., the Dead Sea trough. They apparently record a small component of transverse extension. Generally, their motion is slow: young slip did not occur along some segments during the last few 104 y. Elsewhere throws of 10–20 m at least occurred in this period. The Dead Sea transform is seismically active. The instrumental and historic records indicate a seismic slip rate of 0.15–0.35 cm/y during the last 1000–1500 y, while estimates of the average Pliocene—Pleistocene rate are 0.7–1.0 cm/y. Either much creep takes place, or the slip rate varies over periods of a few 103 y.  相似文献   

17.
This paper presents the first paleostress results from fault-slip data on Cretaceous limestone at the eastern rim of the Dead Sea transform (DST) in Jordan. Stress inversion of fault-slip data is performed using an improved right dieder method, followed by rotational optimization (Delvaux, TENSOR Program). The orientation of the principal stress axes (σ1, σ2 and σ3) and the ratio of the principal stress differences ( ) show two main paleostress fields marking two main stress regimes, strike-slip and extensional. The first is characterized by NNW–SSE compression and ENE–WSW extension and related to Middle Miocene-Recent sinistral movement along the Dead Sea transform and the opening of the Red Sea. The second paleostress field is a WNW–ESE compression and NNE–SSW extension restricted to the northern part of the investigated area. This stress field could be associated with the development of the Syrian Arc fold belt which started during the Turonian, or it may be due to an anticlockwise rotation of the first stress field.  相似文献   

18.
A unique feature of the Circum Pacific orogenic belts is the occurrence of ophiolitic bodies of various sizes, most of which display petrological and geochemical characteristics typical of supra-subduction zone oceanic crust. In SE Asia, a majority of the ophiolites appear to have originated at convergent margins, and specifically in backarc or island arc settings, which evolved either along the edge of the Sunda (Eurasia) and Australian cratons, or within the Philippine Sea Plate. These ophiolites were later accreted to continental margins during the Tertiary. Because of fast relative plate velocities, tectonic regimes at the active margins of these three plates also changed rapidly. Strain partitioning associated with oblique convergence caused arc-trench systems to move further away from the locus of their accretion. We distinguish “relatively autochthonous ophiolites” resulting from the shortening of marginal basins such as the present-day South China Sea or the Coral Sea, and “highly displaced ophiolites” developed in oblique convergent margins, where they were dismantled, transported and locally severely sheared during final docking. In peri-cratonic mobile belts (i.e. the Philippine Mobile Belt) we find a series of oceanic basins which have been slightly deformed and uplifted. Varying lithologies and geochemical compositions of tectonic units in these basins, as well as their age discrepancies, suggest important displacements along major wrench faults.We have used plate tectonic reconstructions to restore the former backarc basins and island arcs characterized by known petro-geochemical data to their original location and their former tectonic settings. Some of the ophiolites occurring in front of the Sunda plate represent supra-subduction zone basins formed along the Australian Craton margin during the Mesozoic. The Philippine Sea Basin, the Huatung basin south of Taiwan, and composite ophiolitic basements of the Philippines and Halmahera may represent remnants of such marginal basins. The portion of the Philippine Sea Plate carrying the Taiwan–Philippine arc and its composite ophiolitic/continental crustal basement might have actually originated in a different setting, closer to that of the Papua New Guinea Ophiolite, and then have been displaced rapidly as a result of shearing associated with fast oblique convergence.  相似文献   

19.
Arieh Gilat 《地学学报》1991,3(6):638-647
Strike-slip fault systems on the western margin of the Dead Sea active pull-apart basin (central part of the Dead Sea Transform) have been mapped in detail in the vicinity of the Ya'elim Valley, in the southeastern Judean Desert. Compressional, tensional and strike-slip shearing features are described and the geomorphology of the valley (which changes over a 6 km long segment from a mature meandering valley to a deep and narrow canyon, and then to an oversized, very deep and very wide U-shaped canyon), is elucidated using profiles and superimposed cross-sections. A kinematic model for the Formation of the Ya'elim Valley is proposed, reflecting dextral shearing on the margins of counterclockwise rotating blocks. In the same area Subrecent-Recent spreading of tensional fractures has occurred, separating sections of blocks which protrude eastward into the deepest on-land depression. The large-width of shear zones sub-perpendicular to the Transform may relate to repeated reversals in the sense of rotation of second-order (rigid block) domains, caused by rotations of neighbouring first order domains due to earthquake ruptures on individual parallel faults of the Transform.  相似文献   

20.
In France, the Devonian–Carboniferous Variscan orogeny developed at the expense of continental crust belonging to the northern margin of Gondwana. A Visean–Serpukhovian crustal melting has been recently documented in several massifs. However, in the Montagne Noire of the Variscan French Massif Central, which is the largest area involved in this partial melting episode, the age of migmatization was not clearly settled. Eleven U–Th–Pbtot. ages on monazite and three U–Pb ages on associated zircon are reported from migmatites (La Salvetat, Ourtigas), anatectic granitoids (Laouzas, Montalet) and post-migmatitic granites (Anglès, Vialais, Soulié) from the Montagne Noire Axial Zone are presented here for the first time. Migmatization and emplacement of anatectic granitoids took place around 333–326 Ma (Visean) and late granitoids emplaced around 325–318 Ma (Serpukhovian). Inherited zircons and monazite date the orthogneiss source rock of the Late Visean melts between 560 Ma and 480 Ma. In migmatites and anatectic granites, inherited crystals dominate the zircon populations. The migmatitization is the middle crust expression of a pervasive Visean crustal melting event also represented by the “Tufs anthracifères” volcanism in the northern Massif Central. This crustal melting is widespread in the French Variscan belt, though it is restricted to the upper plate of the collision belt. A mantle input appears as a likely mechanism to release the heat necessary to trigger the melting of the Variscan middle crust at a continental scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号