首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
C.Z. Wang  G.X. Wu  K.R. Drake 《Ocean Engineering》2007,34(8-9):1182-1196
Interactions between water waves and non-wall-sided cylinders are analyzed based on velocity potential theory with fully nonlinear boundary conditions on the free surface and the body surface. The finite element method (FEM) is adopted together with a 3D mesh generated through an extension of a 2D Delaunay grid on a horizontal plane along the depth. The linear matrix equation for the velocity potential is constructed by imposing the governing equation and boundary conditions through the Galerkin method and is solved through an iterative method. By imposing the gradient of the potential equal to the velocity, the Galerkin method is used again to obtain the velocity field in the fluid domain. Simulations are made for bottom mounted and truncated cylinders with flare in a numerical tank. Periodic waves and wave groups are generated by a piston type wave maker mounted on one end of the tank. Results are obtained for forces, wave profiles and wave runups. Further simulations are made for a cylinder with flare subjected to forced motion in otherwise still open water. Results are provided for surge and heave motion in different amplitudes, and for a body moving in a circular path in the horizontal plane. Comparisons are made in several cases with the results obtained from the second order solution in the time domain.  相似文献   

2.
This paper addresses a numerical investigation of nonlinear waves interactions with an array of two surface-piercing vertical cylinders and the corresponding nonlinear hydrodynamic loads on each individual cylinder. The primary interest of this study is concentrated on the problem of three-dimensional scattering of solitary waves by cylinder arrays and the nonlinear interactions between scattered waves. The theoretical model adopted for simulation is the generalized Boussinesq two-equation model. The boundary-fitted coordinate transformation and multiple-grid technique are utilized here to simplify the computation domain and to facilitate the applications of the boundary conditions on the cylinder surfaces. The velocity potential, free-surface elevation and subsequent evolution of the scattered wave field are numerically evaluated. The hydrodynamic forces on each cylinder during wave impact are also determined. A study of the sheltering effect by the neighboring structures on wave loads is conducted. It is found that the presence of the neighboring cylinder has shown significant influence on the wave loads and the scattering of the primary incident waves. For two transversely arranged cylinders, the transverse force coefficient increases as the separation distance decreases.  相似文献   

3.
The finite element method(FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions.The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions.The finite element linear system is solved by the conjugate gradient(CG) method with a symmetric successive overelaxlation(SSOR) preconditioner.The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation.Numerical examples are given by an array of floating wedgeshaped cylinders and rectangular cylinders.Results are provided for heave motions including wave elevations,profiles and hydrodynamic forces.Comparisons are made in several cases with the results obtained from the second order solution in the time domain.It is found that the wave amplitude in the middle region of the array is larger than those in other places,and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

4.
The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions. The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions. The finite element linear system is solved by the conjugate gradient (CG) method with a symmetric successive overelaxlation (SSOR) preconditioner. The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation. Numerical examples are given by an array of floating wedge- shaped cylinders and rectangular cylinders. Results are provided for heave motions including wave elevations, profiles and hydrodynamic forces. Comparisons are made in several cases with the results obtained from the second order solution in the time domain. It is found that the wave amplitude in the middle region of the array is larger than those in other places, and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

5.
本文用有限元法配合时步处理来求解三维非线性水波的绕射问题,自由表面条件和物面条件都满足到二阶,采用人工阻尼区来吸收反射波,流场内的速度势通过求解有限元方程得到。对垂直圆柱体的绕射问题进行了计算,得到了自由表面波高时间历程和圆柱所受到的波浪力,计算结果和有关文献的理论计算结果进行了比较。  相似文献   

6.
Generation and Properties of Freak Waves in A Numerical Wave Tank   总被引:3,自引:3,他引:3  
Freak waves are generated based on the mechanism of wave focusing in a 2D numerical wave tank. To set up the nonlinear numerical wave tank, the Boundary Element Method is used to solve potential flow equations incorporated with fully nonlinear free surface boundary conditions. The nonlinear properties of freak waves, such as high frequency components and wave profile asymmetry, are discussed. The kinematic data, which can be useful for the evaluation of the wave forces exerted on structures to avoid underestimation of linear predictions, are obtained, and discussed, from the simulated results of freak waves.  相似文献   

7.
The three-dimensional scattering of cnoidal waves by cylinder arrays are studied numerically by using the generalized Boussinesq equations. The boundary-fitted coordinate transformation and a dual-grid technique are used to simplify the finite-difference computation. Also, a set of open boundary conditions and an incident cnoidal wave are incorporated for time-domain simulation. The free-surface elevation and hydrodynamic forces on each cylinder are calculated to illustrate the evolution of nonlinear waves and their interactions with large cylinder arrays. Comparisons are made between the present nonlinear wave loads and those obtained from linear diffraction theory. The sheltering role played by the neighboring cylinders and the feature of wave interference are discussed.  相似文献   

8.
9.
Diffraction of linear waves around a group of dual porous cylinders consisting of a thin and porous outer cylinder with an impermeable inner cylinder is investigated analytically based on the eigenfunction expansion method proposed by Spring and Monkmeyer [Spring BH, Monkmeyer PL. Interaction of plane waves with vertical cylinders. In: Proceedings 14th international coastal engineering conference. 1974. p. 1828–47] and further modified by Linton and Evans [Linton CM, Evans DV. The interaction of waves with arrays of vertical circular cylinders. Journal of Fluid Mechanics 1990;215:549–69]. The present formulation is an extension of the work of Wang and Ren [Wang KH, Ren X. Wave interaction with a concentric porous cylinder system. Ocean Engineering 1994;21(4):343–60], wherein; the interaction of linear waves with a single concentric porous cylinder system was studied. This paper aims at investigating the influence of multiple interactions between the cylinders in the group on the hydrodynamic wave forces, wave run-up and free-surface elevation in their vicinity. Further, the study focuses on the variation of the forces and run-up on the individual cylinders within the group compared to that on isolated cylinders.  相似文献   

10.
A theoretical assessment is made of mean wave drift forces on groups of vertical circular cylinders, such as the columns of a floating offshore platform. A complete analytical solution is obtained for two cylinders extending from seabed to free surface, and a long wave approximation is found to provide reliable predictions of the drift force in line with the waves at low frequencies. For moderate separation between the two cylinders, this force is found to tend at low frequencies to a value four times the force on an isolated cylinder.A numerical method is employed to study two surface piercing cylinders truncated below the free surface, and an arrangement of four vertical cylinders characteristic of a floating offshore platform. The mean vertical drift force is found to be reasonably well approximated, over the frequency range of practical interest, by the force on an individual cylinder considered in isolation multiplied by the number of cylinders in the group. Interaction effects, however, have a profound influence on the total horizontal drift force. At low frequencies this force is found to tend to the force on an isolated cylinder multiplied by the squate of the number of cylinders in the group.  相似文献   

11.
V. Armenio 《Ocean Engineering》1998,25(10):881-905
In this paper, an improved version of the MAC method (SIMAC), recently developed at the University of Trieste, is employed for the study of the wave generation and propagation into a numerical wave tank and for the evaluation of dynamic loads over submerged fixed bodies.In the first part of the work, a numerical wave tank was developed. A pneumatic wave-maker at the left-hand side of the tank was implemented by the use of a pressure perturbation at the free surface. The pressure varies in time with a sinusoidal law. Grid sensitivity tests, checks on mass conservation and the Fourier analysis of the waves which propagate in the tank showed the effectiveness of SIMAC in treating such problems. The wave-maker was then calibrated.In the second part of the work, the dynamic loads over submerged square and rectangular cylinders were evaluated. The time records of the horizontal and vertical forces which act over the body were then treated using the Morison equation in order to derive the inertial and damping coefficients. The analysis was carried out for KC numbers ranging between 0.447 and 3.58. Numerical results satisfactorily tallied with experimental data. The analysis of the velocity field near the body evidenced the influence of vortex generation and vortex shedding on the coefficients of inertial forces.  相似文献   

12.
The wave diffraction around an array of fixed vertical circular cylinders is simulated in a numerical wave tank by using a fully nonlinear model in the time domain. The emphasis of the paper lies in the insightful investigation of the nonlinear properties of the near-trapping phenomenon associated with the multiple cylinders. The numerical model is validated by analytical solutions as well as experimental data for waves propagating past two and four vertical cylinders in certain arrangements. An array of four identical circular cylinders at the corners of a square with an incident wave along the diagonal of the square is the main focus here for investigating the near-trapping phenomenon. When near-trapping occurs, the present study shows that an extremely high wave elevation near the cylinders can be observed. At the same time, the hydrodynamic forces on different cylinders are found to be either in phase or out of phase, leading to some characteristic force patterns acting on the whole structure. Due to the nature of the numerical model adopted, nonlinearity at different orders can be captured using a harmonic analysis. In addition to first- and second-order near-trapping, the third-order (triple-frequency) nonlinear component is presented for the first time. For the configuration selected, it is found that at one specific incident wave frequency and direction one trapped mode is excited by second-order effects, while a different trapped mode (having similar symmetries) is excited by the third harmonic of the incident wave frequency.  相似文献   

13.
An approximate method is presented for calculating drift forces on arrays of vertically axisymmetric bodies in a wave tank. It is assumed that the wave scattering properties of an isolated element and of the array in the open sea are known. The procedure described allows the open-sea results to be post-processed to give good estimates of drift forces when a structural array is placed in a wave tank. For the particular case of an array of vertical circular cylinders extending throughout the depth, the method is compared with accurate results from the full linear problem for scattering by the array both when the array is in the tank and when it is in the open sea. The results show how the mean forces on the array when in the tank may differ considerably from those experienced in the open sea.  相似文献   

14.
An exact analytical method is described to solve the diffraction problem of a group of truncated vertical cylinders. In order to account for the interaction between the cylinders, Kagemoto and Yue's exact algebraic method is utilised (Kagemoto, H., Yue, D.K.P., 1986. Interactions among multiple three-dimensional bodies in water waves: an exact algebraic method. J Fluid Mech, 46, 129–139). The isolated cylinder diffraction potential is obtained using Garret's solution and evanescent mode solutions are derived in a similar manner (Garret, C.J.R., 1971. Wave forces on a circular dock. J Fluid Mech, 46, 129–139).Free surface elevations are calculated for an array of four cylinders and compared with experiments. Comparisons show good agreement.  相似文献   

15.
Freak waves are extreme and unexpected surface waves with huge wave heights that may lead to severe damage to ships and offshore structures. However, few researches have been conducted to investigate the impact underneath fixed horizontal decks caused by freak waves. To study these phenomena, a 2-D numerical wave tank is built in which nonlinear freak waves based on the Peregrine breather solution are generated. As a validation, a regular-wave-induced underneath impact is simulated and compared to the existing experimental measurements. Then the nonlinear freak-wave-induced impact is investigate with different values of deck clearance above the mean free surface. In addition, a comparative simulation of a “large” regular wave based on the 2nd-order Stokes wave theory with the same crest height and wave length of the nonlinear freak wave is carried out to reveal the unique features of the nonlinear freak-wave-induced impact. By applying a fluid–structure interaction (FSI) algorithm in which the bottom deck and front side wall are simplified as Euler beams in 2-D and discretized by the finite element method (FEM), the hydroelastic effects are considered during the impact event. The vertical force acting underneath the bottom deck, the transversal force acting on the front side wall, the structural displacements of the elastic deck and wall are analyzed and discussed respectively, from which meaningful conclusions are drawn.  相似文献   

16.
The interaction of regular waves with arrays of bottom-mounted circular cylinders is considered. This subject has been thoroughly investigated in the recent past, but most of the time under the assumption of regular and spatially periodic arrangements. Unlike these authors, we consider here arrays of unevenly spaced cylinders, displaced randomly from a regular array according to a disorder parameter. Focus is put on two effects of this spacing irregularity: reduction of peak forces associated to trapped mode phenomena, and regularization of the transmission coefficient for waves propagating through the arrays.  相似文献   

17.
马汝建  赵锡平 《海洋科学》2002,26(11):38-43
应用非线性谱分析理论,对三阶Stokes型随机波浪载荷谱进行了分析,将波面方程及海水质点的水平速度用一阶波面的非线性组表示,导出了随机波浪谱的表达式。为了便于求解随机波浪的载荷谱,将阻力项展开为幂级数式,并应用非线性谱分析理论,确定了幂级数的系数,进而将波浪载荷表示为一阶波面及其导数的非线性组合,最后得出波浪载荷谱密度的表达式,并应用数值分析方法,得出单位桩柱波浪力及总波浪力谱密度。  相似文献   

18.
An exact analytical method is described to solve the diffraction problem of a group of truncated vertical cylinders. In order to account for the interaction between the cylinders, Kagemoto and Yue's exact algebraic method is utilised. The isolated cylinder diffraction potential due to incident waves is obtained using Garret's solution and evanescent mode solutions are derived in a similar manner.Numerical results are presented for arrays of two and four cylinders. Comparisons between the results obtained from the method presented here and those obtained from numerical methods show excellent agreement.  相似文献   

19.
The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation of the characteristic drag forces. Numerical computation is also performed for the investigation of the effects of nonlinearity of the drag forces.The results indicate that the wave drag forces calculated by linear wave theory are larger than those calculated by the third order Stokes wave theory for given waves. The difference between them increases with wave height. The wave drag forces calculated by use of hnear approximation are about 5% smaller than their actual values when measured in the peak values of spectral densities. This will result in a safety problem for the design of offshore structures. Therefore, the nonlinear effect of wave drag forces should be taken into comidemtion in design and application of important offshore structures.  相似文献   

20.
The interaction of a solitary wave with an array of surface-piercing vertical circular cylinders is investigated numerically. The wave motion is modeled by a set of generalized Boussinesq equations. The governing equations are discretized using a finite element method. The numerical model is validated against the experimental data of solitary wave reflection from a vertical wall and solitary wave scattering by a vertical circular cylinder respectively. The predicted wave surface elevation and the wave forces on the cylinder agree well with the experimental data. The numerical model is then employed to study solitary wave scattering by arrays of two circular cylinders and four circular cylinders respectively. The effect of wave direction on the wave forces and the wave runup on the cylinders is quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号