首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Using high-resolution, low-scan-rate, all-sky CCD cameras and high-level CCD video cameras, the SPanish Meteor and fireball Network (SPMN) recorded the 2007 κ Cygnid fireball outburst from several observing stations. Here, accurate trajectory, radiant and orbital data obtained for the κ Cygnid meteor are presented. The typical astrometric uncertainty is 1–2 arcmin, while velocity determination errors are of the order of 0.3–0.6 km s−1, though this depends on the distance of each event to the station and its particular viewing geometry. The observed orbital differences among 1993 and 2007 outbursts support the hypothesis that the formation of this meteoroid stream is a consequence of the fragmentation of a comet nucleus. Such disruptive process proceed as a cascade, where the break up of the progenitor body leads to produce small remnants, some fully disintegrate into different clumps of particles and other remaining as dormant objects such as 2008ED69, 2001MG1 and 2004LA12 which are now observed as near-Earth asteroids. In addition to the orbital data, we present a unique spectrum of a bright  κ  Cygnid fireball revealing that the main rocky components have chondritic abundances, and estimations of the tensile strength of those fireballs that exhibited a catastrophic disruption behaviour. All this evidence of the structure and composition of the κ Cygnid meteoroids is consistent with being composed by fine-grained materials typically released from comets.  相似文献   

3.
We have developed an all-sky charge coupled devices (CCD) automatic system for detecting meteors and fireballs that will be operative in four stations in Spain during 2005. The cameras were developed following the BOOTES-1 prototype installed at the El Arenosillo Observatory in 2002, which is based on a CCD detector of 4096 × 4096 pixels with a fish-eye lens that provides an all-sky image with enough resolution to make accurate astrometric measurements. Since late 2004, a couple of cameras at two of the four stations operate for 30 s in alternate exposures, allowing 100% time coverage. The stellar limiting magnitude of the images is +10 in the zenith, and +8 below ~ 65° of zenithal angle. As a result, the images provide enough comparison stars to make astrometric measurements of faint meteors and fireballs with an accuracy of ~ 2°arcminutes. Using this prototype, four automatic all-sky CCD stations have been developed, two in Andalusia and two in the Valencian Community, to start full operation of the Spanish Fireball Network. In addition to all-sky coverage, we are developing a fireball spectroscopy program using medium field lenses with additional CCD cameras. Here we present the first images obtained from the El Arenosillo and La Mayora stations in Andalusia during their first months of activity. The detection of the Jan 27, 2003 superbolide of ± 17 ± 1 absolute magnitude that overflew Algeria and Morocco is an example of the detection capability of our prototype.  相似文献   

4.
Spectra of persistent meteor trains were observed at wavelength between 300 and 930 nm. Two obtained train spectra during the 1998 and 2001 Leonid meteor showers are reported here. During the 1998 Leonids, one train was detected by a photographic camera with a spectrograph covering 370–640 nm region. On the other hand, during the 2001 Leonids, video observations were carried out using image intensified cameras in ultraviolet (UV), visible and near infrared (near-IR) wavelengths. Temperatures in persistent trains have been measured by atmospheric O2 A(0,1) band at the wavelength near 864.5 nm. From a video spectrum obtained just 7 s after parent fireball’s flare, a rotational temperature of 250 K at altitude of 88.0±0.5 km was estimated. We can say that the cooling time scale of train strongly depends on the initial mass of its fireball at least for Leonids. Based on cooling constant calculated from our results, we estimated a temperature of ∼ ∼130 K as a final exothermic temperature at early stage of persistent trains.  相似文献   

5.
We have developed a set of methods to detect meteor light traces captured by all-sky CCD cameras. Operating at small automatic observatories (stations), these cameras create a network spread over a large territory. Image data coming from these stations are merged in one central node. Since a vast amount of data is collected by the stations in a single night, robotic storage and analysis are essential to processing. The proposed methodology is adapted to data from a network of automatic stations equipped with digital fish-eye cameras and includes data capturing, preparation, pre-processing, analysis, and finally recognition of objects in time sequences. In our experiments we utilized real observed data from two stations.  相似文献   

6.
We have investigated the conditions for simultaneous meteor observations with the EISCAT UHF radar system and telescopic optical devices. The observed characteristics of 410 meteors detected by all three UHF receivers are compared with model simulations and their luminosity is calculated as a part of a meteoroid ablation model using a fifth order Runge–Kutta numerical integration technique. The estimated absolute visual magnitudes are in the range of +9 to +5. The meteors should therefore be observable using intensified CCD or EMCCD (Electron Multiplying CCD) cameras with telephoto lenses. A possible setup of a coordinated radar and optical campaign is suggested.  相似文献   

7.
Abstract— Among the three large camera networks carrying out fireball observations through the seventies and eighties, the “European Fireball Network” is the last one still in operation. The network today consists of more than 34 all-sky and fish-eye cameras deployed with ~100 km spacing and covering an area of ~106 km2, in the Czech and Slovak Republics, Germany, as well as parts of Belgium, Switzerland, and Austria. Network operation results in ~10 000 image exposures per year, which represent on average 1200 h of clear sky observations—as imaging periods are restricted due to daylight, moonlight, and clouds. The cameras detect currently large meteors at a rate of ~50 per year; this is in good agreement with the encounter rates determined in previous fireball studies. From sightings of “meteorite candidates” (fireballs that may have deposited meteorites) and meteorite recoveries in the network area, we estimate that 15% of the influx of meteoritic matter is currently observed by the cameras, whereas <1% is recovered on the ground. Issues to be addressed by future fireball observations include the study of very large meteoroids (>1000 kg) for which statistics are currently very poor and an examination of their relationship to NEOs (near-Earth objects) identified by current NEO search programs.  相似文献   

8.
流星监测网是小尺寸近地小天体撞击监测、判断陨石落点的主要工具. 提出了一种基于多站布局的全天视频相机组网监测系统, 并在江苏及周边构建了一个区域级原型系统, 实现了火流星监测组网控制、视频数据采集、数据处理及流星体定轨的完整流程. 通过1yr的实测运行表明, 该系统可观测流星极限视星等为-1.0等, 可以实现绝对星等-2.5等流星的完备检测; 根据监测数据得到火流星通量为2.68×10-7km-2 ·h-1;群流星和偶发流星占比分别为46%和54%,偶发流星中类小行星轨道和类彗星轨道比例分别为27.1%和72.9,统计结果与国际主要流星监测网相接近,验证了监测网系统在实际组网使用中的监测能力.  相似文献   

9.
We present a method for calculations of equatorial coordinates of any point in the single frame of the wide-field TV systems. This method can be applying for the different television systems [wide-field cameras, all-sky cameras, the cameras with the hybrid TV-system (the system with coupled of the Image Intensifier) et al.]. In that system the calculations of distortions are difficult. Therefore, we devised this method which helps decrease errors (due to distortion and the electro-optical system).The method can be used for measuring of equatorial coordinates of meteor tracks under difficult conditions during the observations such as partial cloudiness, small number of stars and large distortions of the coordinate grid in the frame. These restrictions cannot be overcome by other methods. In the case of the small number of stars the present method using of the reference stars received on a series of frames during the observation period. The accuracy of the method has been estimated to be 4′–8′ (for cameras with fov 50°?×?40° at the CCD 720?×?576 pixels) for maximum number of reference points in the frame. The method used 3 reference points for calculation of the equatorial coordinates of the object. One can use this method if the camera was re-oriented as well. We use this method for our wide field of view cameras.  相似文献   

10.
We report exceptional fireball activity of the Orionid meteor shower in 2006. During four nights in October 2006 the autonomous fireball observatories of the Czech part of the European Fireball Network (EN) recorded 48 fireballs belonging to the Orionids. This is significantly more than the total number of Orionids recorded during about five decades long continuous operation of the EN. Based on precise multi-station photographic and radiometric data we present accurate atmospheric trajectories, heliocentric orbits, light curves and basic physical properties of 10 Orionid fireballs with atmospheric trajectories that were long enough and, with one exception, were observed from at least three stations. Seven were recorded in within a 2-h interval in the night of 20/21 October. Their basic parameters such as radiant positions and heliocentric orbits are very similar. This high fireball activity originated from a very compact geocentric radiant defined by α = 95.10° ± 0.10° and δ = 15.50° ± 0.06°. These fireballs most likely belonged to a distinct filament of larger meteoroids trapped in 1:5 resonance with Jupiter. From detailed light curves and basic fireball classification we found that these meteoroids appertain to the weakest component of interplanetary matter.  相似文献   

11.
A recently observed broad 3.4 μm spectral ‘fingerprint’ in a persistent Leonid meteor train at a height of 83km is likely to be due to emission of surrounding mesospheric bacteria heated by the passage of an incandescent fireball. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Every year the Earth crosses or passes near one of the dust trails left by Comet 55P/Tempel-Tuttle in its pass through the Solar System every 33.2 years. This produces a meteor shower Commonly called the Leonid. The 2001 Leonid meteor shower is one of the strongest in recent years. We present observations made by the 50 MHz all-sky meteor radar located at the Platteville Atmospheric Observatory in Colorado (40° N, 105° W). The spatial and temporal distributions of the meteor activity detected by the radar during the 2001 Leonid shower differs from the observed sporadic activity detected by VHF radars. Estimation of the radiant flux of the meteor shower of the shower by a well-known methodology is presented, and the intensity of the phenomena is discussed.  相似文献   

13.
We present detailed data on 8 bright meteors recorded simultaneously by different observational techniques. All meteors were recorded by all-sky cameras at the Czech stations of the European Fireball Network and by image intensified TV cameras placed at Ondrejov and Kunzak observatories. As well as direct photographic and LLLTV recordings, most of meteors were recorded also by the spectral TV camera and some also by photographic spectral cameras. For 6 cases, lightcurves from radiometers with very high time resolution (1200 s−1) are also available. From all these detections we found a significant difference between TV and photographic beginning heights. TV beginnings are in average about 40 km higher than the photographic ones. We found that meteor brightness is up to 2 magnitudes higher in the photographic system than in the TV system. This difference for high velocity meteors is mainly caused by the presence of strong Ca+ lines in the blue part of the spectrum, where the image intensifier is only marginally sensitive. At heights above 110 km, the Na line is usually brighter than the Mg line, while at lower heights both lines have comparable brightness. In one of two captured spectra of short duration luminous trains, a small initial brightening of the Mg and Na lines caused by recombination processes was observed.  相似文献   

14.
The Rapid Oscillations in the Solar Atmosphere (ROSA) instrument is a synchronized, six-camera high-cadence solar imaging instrument developed by Queen’s University Belfast. The system is available on the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA, as a common-user instrument. Consisting of six 1k × 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02 – 15 e s−1 pixel−1), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, or 200 Hz when the CCD is windowed. Combining multiple cameras and fast readout rates, ROSA will accumulate approximately 12 TB of data per 8 hours observing. Following successful commissioning during August 2008, ROSA will allow for multi-wavelength studies of the solar atmosphere at a high temporal resolution.  相似文献   

15.
Armagh Observatory installed a sky monitoring system consisting of two wide angle (90° × 52°) and one medium angle (52° × 35°) cameras in July 2005. The medium angle camera is part of a double station setup with a similar camera in Bangor, ∼73 km ENE of Armagh. All cameras use UFOCapture to record meteors automatically; software for off-line photometry, astrometry and double station calculations is currently being developed. The specifications of the cameras and cluster configuration are described in detail. 2425 single station meteors (1167, 861 and 806 by the medium-angle and the wide-angle cameras respectively) and 547 double station meteors were recorded during the months July 2005 to Dec 2006. About 212 double station meteors were recorded by more than one camera in the cluster. The effects of weather conditions on camera productivity are discussed. The distribution of single and double station meteor counts observed for the years 2005 and 2006 and calibrated for weather conditions are presented.  相似文献   

16.
Since 2006, systematic double-station photographic observations of fireballs using all-sky cameras equipped with Zeiss Distagon “fisheye” objectives (f/3.5, f = 30 mm) with a 180° field of view have been carried out at two observatories, Gissar (GisAO) and Sanglokh (IAOS), of the Institute of Astrophysics of the Tajik Academy of Sciences. In the method of astrometric reduction of fireball photographs, the empirical formulae for converting the measured coordinates to horizontal celestial coordinates are used. These formulae contain 12 unknown constants to be determined by the least-squares method and the iteration method. Such an approach enables the determination of the coordinates of an object at any point of the celestial hemisphere with a precision close to the theoretical limit whose value is quite comparable with the measurement errors. In the photometric reduction, the dependence of the measured width of the diurnal star trails on their magnitudes was used. As a result of astrometric and photometric reduction of the double-station photographs of five fireballs, the data on atmospheric trajectories, the coordinates of radiants, orbits in interplanetary space, light curves, and photometric masses of meteoroids which produced fireballs were obtained, and the belonging of fireballs to the known meteor showers was determined as well.  相似文献   

17.
Šimek  M.  Pecina  P. 《Earth, Moon, and Planets》2000,88(2):115-122
The correlation of sporadic meteor rates from radar observations in January, August, and December non-show-er periods in 1958–2000, and relevant solar activity represented by the solar relative number, R, is investigated. Similar analysis of the December sporadic period was already presented by Simek 1999, and Pecina. Complete analysis indicates high correlation of both phenomena with sporadic meteor counts curve following that of solar activity after 1.5–2 years in the mean eleven year solar cycle with the correlation index exceeding 70%. This result supports the large volume of observing material of the Ondřejov meteor radar in the above mentioned span covering almost four solar cycles. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Recent observations using the newly installed Elginfield infrasound array in coordination with the Southern Ontario all-sky meteor camera network and Canadian Meteor Orbit Radar (CMOR) has shown that the number of meteors producing infrasound at the Earth’s surface is more frequent than previously thought. These data show the flux of meteoroids capable of producing infrasound at the ground is at least 1/month and is limited to meteors with peak visual brightness above −2. Comparisons to current meteor infrasound theory show excellent agreement with amplitude and period predictions for weakly non-linear shock waves using a realistic vertically inhomogeneous atmosphere. Similar predictions show isothermal assumptions underestimate the amplitude by orders of magnitude.  相似文献   

19.
We have developed an automated network of all-sky CCD video systems to detect medium–large meteoroids ablating over Southern Ontario, Canada. The system currently consists of five stations with the largest baseline being 180 km. Each site runs a video rate recorder with sufficient resolution to determine meteoroid trajectories with a typical precision of about 300 m but no worse than 1 km. The sensitivity of the camera is close to a stellar visual magnitude of +1 which allows for astrometric calibrations using field stars. Photometric procedures have also been developed and tested. The system has a limiting magnitude for meteors of about −2 with the current detection algorithm.  相似文献   

20.
Observations carried out during Leonid meteor shower 2003, by using Indian MST radar (13.46^N, 79.18^E; dip 12.5^N) are used to determine the number density of meteoroids through the cross section of the meteor streams. Cross sections are calculated for a number of classes of echo duration (particle size). They are also used to determine the relative flux of the shower in particle size ranges producing radar meteor echoes having durations <0.4 s, 0.4–1 s and >1 s. Mean activity profiles along the Earth's passage through the stream show a systematic change of the peak activity and the width of the stream depending on the distribution of echo durations across the stream. The patterns of mass distribution index s are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号