首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Previous experiments in the 400–500 nm region (Coquart et al., 1995) have been extended to the 200–400 nm region to determine the absorption cross-sections of NO2 at 220 K. The NO2 and N2O4 cross-sections are obtained simultaneously from a calculation applied to the data resulting from measurements at low pressures. A comparison between the NO2 cross-sections at 220 K and at ambient temperature shows that the low temperature cross-sections are generally lower, except in the region of the absorption peaks. Comparisons are also made with previous data at temperature close to 220 K.  相似文献   

2.
New laboratory measurements of NO2 absorption cross-section were performed using a Fourier transform spectrometer at 2 and 16 cm-1 (0.03 and 0.26 nm at 400 nm) in the visible range (380–830 nm) and at room temperature. The use of a Fourier transform spectrometer leads to a very accurate wavenumber scale (0.005 cm-1, 8×10-5 nm at 400 nm). The uncertainty on the new measurements is better than 4%. Absolute and differential cross-sections are compared with published data, giving an agreement ranging from 2 to 5% for the absolute values. The discrepancies in the differential cross-sections can however reach 18%. The influence of the cross-sections on the ground-based measurement of the stratospheric NO2 total amount is also investigated.  相似文献   

3.
The photodissociation coefficient of NO2, J NO 2, has been measured from a balloon platform in the stratosphere. Results from two balloon flights are reported. High Sun values of J NO 2 measured were 10.5±0.3 and 10.3±0.3×10-3 s-1 at 24 and 32 km respectively. The decrease in J NO 2 at sunset was monitored in both flights. The measurements are found to be in good agreement with calculations of J NO 2 using a simplified isotropic multiple scattering computer routine.  相似文献   

4.
During the 1982 and 1983 Balloon Intercomparison Campaigns, the vertical profile of stratospheric NO2 was measured remotely by nine instruments and that of NO by two. Total overhead columns were measured by two more instruments. Between 30 and 35km, where measurements overlapped, agreement between NO profiles was within ±30%, which is better than the accuracies claimed by the experimenters. Between 35 and 40km there was similarly good agreement between NO2 profiles, but below 30km, differences of greater than a factor three were found. In the second Campaign, NO2 values from most instruments agreed within their quoted errors, except that the Oxford radiometer gave much lower values; but the first Campaign and the column measurements show a more uniform spread of results.These differences below 30km could not be resolved, but new laboratory measurements are planned which should do so.  相似文献   

5.
The photodissociation coefficient, J NO2 of NO2 in the atmosphere was calculated at 235 and 298 K using the measured temperature dependences of the absorption cross-sections and quantum yields. These calculations gave a ratio J NO2(298 K)/J NO2(235 K)=1.155±0.010 which is only weakly dependent on altitude, surface albedo and solar zenith angle.  相似文献   

6.
With improved experimental conditions already used for measurements at ambient temperature (Mérienneet al., 1994), new values have been found for the absorption cross-sections of NO2 at 240 and 220 K in the 400–500 nm spectral region. Using a better resolution than in previous studies we show that the temperature effect is not negligible and should be taken into account for the optical measurements of atmospheric NO2 amounts by differential absorption methods.Unité de Recherche Associée au CNRS.  相似文献   

7.
We present here experimental determinations of mass accommodation coefficients using a low pressure tube reactor in which monodispersed droplets, generated by a vibrating orifice, are brought into contact with known amounts of trace gases. The uptake of the gases and the accommodation coefficient are determined by chemical analysis of the aqueous phase.We report in this article measurements of exp=(6.0±0.8)×10–2 at 298 K and with a total pressure of 38 Torr for SO2, (5.0±1.0)×10–2 at 297 K and total pressure of 52 Torr for HNO3, (1.5±0.6)×10–3 at 298 K and total pressure of 50 Torr for NO2, (2.4±1.0)×10–2 at 290 K and total pressure of 70 Torr for NH3.These values are corrected for mass transport limitations in the gas phase leading to =(1.3±0.1)×10–1 (298 K) for SO2, (1.1±0.1)×10–1 (298 K) for HNO3, (9.7±0.9)×10–2 (290 K) for NH3, (1.5±0.8)×10–3 (298 K) for NO2 but this last value should not be considered as the true value of for NO2 because of possible chemical interferences.Results are discussed in terms of experimental conditions which determine the presence of limitations on the mass transport rates of gaseous species into an aqueous phase, which permits the correction of the experimental values.  相似文献   

8.
Vertical profiles of stratospheric HO2 and NO2 concentrations were determined using matrix isolation and ESR. Up to 10 different samples per flight were collected in situ by a balloon borne cryosampler. Free radicals and trace constituents which are condensable at 68 K are trapped in a polycristalline H2O or D2O matrix. After collection, the samples are stored at a temperature below 83 K until they are analysed in the laboratory by X-band ESR spectroscopy at 4 K. The HO2 and NO2 were identified and calibrated by comparison with standard samples collected in the laboratory under typical stratospheric sampling conditions. From several flights over Southern France (44°N) we obtained two profiles of the stratospheric NO2 mixing ratio. One, from 21 October 1982, agrees well with previous measurements. The other, from 8 October 1981, is lower by one order of magnitude. The few HO2 data obtained around 35 km altitude agree with previous measurements. An isolated measurement at 17 km altitude is one order of magnitude higher than the model predicted HO2 concentration.  相似文献   

9.
A cryogenic system for the airborne and ground based sampling of ambient radicals by matrix isolation is described. The trapped radicals, e.g., NO2 and RO2, are analyzed by ESR. The technique has been improved, mainly by addition of water vapor to the sampled air, to yield a collection efficiency of (90±10)% and a lower detection limit of about 20 ppt, but it still does not distinguish between the different RO2. Careful calibration reduced the measurement error (1 ) to ±10% for NO2 and ±15% for HO2. Two diurnal variations of RO2 and NO2 at ground level and vertical profiles in the lower troposphere are presented.  相似文献   

10.
The simultaneous measurements of NO, NO2 and HNOA mixing‐ratio profiles carried out on the Stratoprobe balloon flight of 22 July 1974 have been simulated with a time‐dependent model using the measured temperature and ozone profiles. The calculated ratios of NO/NO2, HNO3/NO2 using currently accepted photochemistry are consistent with the measured ratios within the experimental errors of the measurements. The measured NO2/NO ratio is almost a factor of two smaller than predicted, although the discrepancy is still within the experimental errors. A remarkable proportionality in the NO2 and O3 profiles has been noted and is unexplained. A time‐dependent simulation has been employed to convert the measurements into diurnally‐averaged profiles suitable for intercomparison with two‐dimensional stratospheric models and a comparison with constituent profiles from Prinn et al. (1975) is carried out as an example. The NOV mixing ratio, formed from the sum of the NO, NO2 and HNO2 measurements is similar to the NOV mixing ratio from several one‐ and two‐dimensional models used to predict the effects of SST's on the ozone layer. The odd nitrogen mixing ratio is roughly constant from 20 to 35 km at 11 ppbv.  相似文献   

11.
A programme of ground-based stratospheric and total NO2 column measurements was instituted at the Laboratory of Atmospheric Physics (40.5° N, 22.9° E) in August 1985. We present here the results of the first two years of measurements with a modified Canterbury filter photometer, details of which are given in the text. The stratospheric NO2 column, obtained at twilight during low local NO2 levels, shows the seasonal variation with monthly mean values of about 6×10-15 molec. cm-2 in the summertime to about 2.2×10-15 molec. cm-2 in the wintertime. These measurements compare well with measurements obtained with different instruments by other groups at similar latitudes (about 40° N) but in different places. Also, the asymmetry of the evening-to-morning stratospheric NO2 over Thessaloniki was found to be on the average equal to 1.58. Total NO2 column over Thessaloniki has a pronounced seasonal variation with amplitude of 0.68 matm. cm which can be explained partly from measured local NO2 sources which discharge in the mixing layer and partly from photolysis of the NO2 reservoir species.  相似文献   

12.
Field measurements of NO and NO2 emissions from soils have been performed in Finthen near Mainz (F.R.G.) and in Utrera near Seville (Spain). The applied method employed a flow box coupled with a chemiluminescent NO x detector allowing the determination of minimum flux rates of 2 g N m-2 h-1 for NO and 3 g m-2 h-1 for NO2.The NO and NO2 flux rates were found to be strongly dependent on soil surface temperatures and showed strong daily variations with maximum values during the early afternoon and minimum values during the early morning. Between the daily variation patterns of NO and NO2, there was a time lag of about 2 h which seem to be due to the different physico-chemical properties of NO and NO2. The apparent activation energy of NO emission calculated from the Arrhenius equation ranged between 44 and 103 kJ per mole. The NO and NO2 emission rates were positively correlated with soil moisture in the upper soil layer.The measurements carried out in August in Finthen clearly indicate the establishment of NO and NO2 equilibrium mixing ratios which appeared to be on the order of 20 ppbv for NO and 10 ppbv for NO2. The soil acted as a net sink for ambient air NO and NO2 mixing ratios higher than the equilibrium values and a net source for NO and NO2 mixing ratios lower than the equilibrium values. This behaviour as well as the observation of equilibrium mixing ratios clearly indicate that NO and NO2 are formed and destroyed concurrently in the soil.Average flux rates measured on bare unfertilized soils were about 10 g N m-2 h-1 for NO2 and 8 g N m-2 h-1 for NO. The NO and NO2 flux rates were significantly reduced on plant covered soil plots. In some cases, the flux rates of both gases became negative indicating that the vegetation may act as a sink for atmospheric NO and NO2.Application of mineral fertilizers increased the NO and NO2 emission rates. Highest emission rates were observed for urea followed by NH4Cl, NH4NO3 and NaNO3. The fertilizer loss rates ranged from 0.1% for NaNO3 to 5.4% for urea. Vegetation cover substantially reduced the fertilizer loss rate.The total NO x emission from soil is estimated to be 11 Tg N yr-1. This figure is an upper limit and includes the emission of 7 Tg N yr-1 from natural unfertilized soils, 2 Tg N yr-1 from fertilized soils as well as 2 Tg N yr-1 from animal excreta. Despite its speculative character, this estimation indicates that NO x emission by soil is important for tropospheric chemistry especially in remote areas where the NO x production by other sources is comparatively small.  相似文献   

13.
Products and mechanisms for the gas-phase reactions of NO3 radicals with CH2=CHCl, CH2=CCl2, CHCl=CCl2,cis-CHCl=CHCl andtrans-CHCl=CHCl in air have been studied. The experiments were carried out at 295±2 K and 740±5 Torr in a 480-L Teflon-coated reaction chamber and at 295±2 K and 760±5 Torr in a 250-L stainless steel reactor. NO3 was generated by the thermal dissociation of N2O5. Experiments with15NO3 and CD2CDCl have also been performed. The initially formed nitrate peroxynitrates decay into carbonyl compounds, nitrates, HCl and ClNO2. In adidtion, there are indications of nitrooxy acid chlorides being produced. The reactions with CH2=CCl2 and CHCl=CCl2 are more complex due to release of chlorine atoms which eventually lead to formation of chloroacid chlorides.A general reaction mechanism is proposed and the observed concentration-time profiles of reactants and products are simulated for each compound. The rate constants for the initial step of NO3 addition to the chloroethenes are determined as: (2.6±0.5, 9.4±0.9, 2.0±0.4 and 1.4±0.4) × 10–16 cm3 molecule–1 s–1 for CH2=CHCl, CH2=CCl2, CHCl=CCl2 andcis-CHCl=CHCl, respectively.  相似文献   

14.
The kinetics and mechanism of the reactionNO3+CH2=C(CH3)–CH=CH2productswere studied in two laboratories at 298 K in the pressure range 0.7–3 torr using the discharge-flow mass-spectrometric method. The rate constant obtained under pseudo-first-order conditions with excess of either NO3 or isoprene was: k 1=(7.8±0.6)×10–13 cm3 molecule–1 s–1. The product analysis indicated that the primary addition of NO3 occurred on both -bonds of the isprene molecule.  相似文献   

15.
The exchange of NO3 radicals with the aqueous-phase was investigated at room temperature (293 K) in a series of wetted denuders. From these experiments, the uptake coefficient of NO3 was determined on 0.1 M NaCl solutions and was found to be (NO3) 2 × 10-3 in good agreement with recent studies. The Henry coefficient of NO3 was estimated to be KH(NO3) = 1.8 M · atm-1, with a (2) uncertainty of ±3 M · atm-1. From the upper limit for the Henry coefficient (KH = 5 M · atm-1) and available thermodynamic data, the redox potential of dissolved NO3/NO 3 is estimated to be in the range of 2.3 to 2.5 V. This range is at the lower boundary of earlier estimates. The results are discussed in the light of a recent publication. Based on our data and a model of the transport and chemistry in the liquid film, an upper limit is derived for the product of the Henry coefficient KH and the rate coefficient k 10 of the potential reaction NO3 + H2O HNO3 + OH. For KH = 0.6 M · atm-1, we find k 10 < 0.05 s-1 · atm-1, i.e., about 100 times smaller than what was suggested by Rudich and co-workers. Because of its small solubility, heterogeneous removal of NO3 is only important under conditions where the dissolved NO3 is removed quickly from equilibrium, for example by reactions with Cl or HSO 3 ions in the liquid-phase. Otherwise, heterogenous removal should mainly proceed via N2O5.  相似文献   

16.
Accurate values for the rate and temperature dependence of the reaction NO + O3 NO2 + O2 are important in the chemical modelling of photochemical processes in the atmosphere. Previous measurements have been made at low total pressures and/or with very large mixing ratios relative to those observed in the atmosphere. In this study the reaction rate has been measured using a novel approach under tropospheric conditions of temperature and pressure, and at tens of ppb (mixing ratios of 1 in 108) between 263 and 328 K. The resultant Arrhenius expression (k=Ae-Ea/RT) gives a larger activation energy (Ea/R=1670 ± 100) than the recommended literature value (Ea/R=1400 ± 200), and a larger pre-exponential factor (A=5.1 ± 1.6 × 10-12 cf. recommended A=2.0 × 10-12), but the second-order rate constant at 298 K (1.90 × 10-14 molecules cm-3 s-1 ± 10%) is similar to the recommended value. The results confirm a lack of pressure dependence of the reaction, but were made over too small a range in temperature to address the issue of curvature of the simple Arrhenius expression.  相似文献   

17.
When all balloon-borne measurements of NO2 in the stratosphere are reviewed, the profiles show a wide spread. Measurements of the total amount in a vertical column suggest that variability should be low when only profiles measured at mid-latitudes close to equinox are selected. With this selection, the standard deviation of the profiles measured by each technique is often less than ±20%, but the mean profiles measured by each technique differ by up to a factor 2. Despite the profiles not being measured simultaneously, these differences are identical to those revealed by the simultaneous measurements of the Balloon Intercomparison Campaigns of 1982 and 1983-a comparison can be made from the historic data alone. This suggests that measurements of other gases should be similarly reviewed and appropriate selection criteria be found that reduces the standard deviations of the measurements by any one technique. The techniques can then be intercompared without new simultaneous flights.  相似文献   

18.
Rate constants for the gas-phase reactions of OH radicals, NO3 radicals and O3 with the C7-carbonyl compounds 4-methylenehex-5-enal [CH2=CHC(=CH2)CH2CH2CHO], (3Z)- and (3E)-4-methylhexa-3,5-dienal [CH2=CHC(CH3)=CHCH2CHO] and 4-methylcyclohex-3-en-1-one, which are products of the atmospheric degradations of myrcene, Z- and E-ocimene and terpinolene, respectively, have been measured at 296 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained (in cm3 molecule–1 s–1 units) were: for 4-methylenehex-5-enal, (1.55 ± 0.15) × 10–10, (4.75 ± 0.35) × 10–13 and (1.46 ± 0.12) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; for (3Z)-4-methylhexa-3,5-dienal: (1.61 ± 0.35) × 10–10, (2.17 ± 0.30) × 10–12, and (4.13 ± 0.81) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; for (3E)-4-methylhexa-3,5-dienal: (2.52 ± 0.65) × 10–10, (1.75 ± 0.27) × 10–12, and (5.36 ± 0.28) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; and for 4-methylcyclohex-3-en-1-one: (1.10 ± 0.19) × 10–10, (1.81 ± 0.35) × 10–12, and (6.98 ± 0.40) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively. These carbonyl compounds are all reactive in the troposphere, with daytime reaction with the OH radical and nighttime reaction with the NO3 radical being predicted to dominate as loss processes and with estimated lifetimes of about an hour or less.  相似文献   

19.
Ground-based visible differential absorption spectrometry during twilight has been used for NO2 total column observations at the Antarctica Peninsula, Marambio Base (64S, 56W), during the austral spring of 1989 (9 September to 25 November).Results show moderate NO2 vertical column levels of 1.5 to 2.5×1015 molec cm-2 in the morning and 2 to 3×1015 molec cm-2 in the evening until middle October, highly modulated by planetary wave activity. From that date until the end of the period, a steady increase occurs which is associated with the rising of lower stratosphere temperature as the vortex weakens, reaching values of 5×1015 molec cm-2 in late November, with small a.m.-p.m. differences. NO2 is found to be positively correlated to both total ozone and 50 hPa temperature during the entire spring. However, when analyzing the departures from linear trends, a highly negative correlation has been observed from day 301 onwards.  相似文献   

20.
New laboratory measurements of NO2 absorption cross-sections have been performed between 300 and 500 nm at ambient temperature with improved experimental conditions: low gas pressures, long absorption paths, suitable absorbance values, narrow spectral bandwidths. The data, stored at 0.01 nm intervals, have been compared to those of the more recent studies and some reasons of disagreement are discussed.In the photolysis region below 400 nm, our absorption cross-sections are larger than those previously published, suggesting that the photodissociation coefficient calculated from the current data sets is underestimated. In the structured region of the spectrum above 400 nm, improvement of the resolution gives more precise values useful for optical measurements in atmosphere.Unité de Recherche Associée au CNRS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号