首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
A preliminary study of b value of rocks with two kinds of structural models has been made on the base of a new acoustic emission recording system. It shows that b value of the sample decreases obviously when the sample with compressive en echelon faults changes into a tensile one after interchange occurs between stress axis σ 1 and σ 2. A similar experiment is observed when the sample with tensile en echelon faults changes into that with a bend fault after two segments of the en echelon fault linking up. These facts indicate that the variation of b value may contain the information of the regional dominant structural model. Therefore, b-value analyses could be a new method for studying regional dominant structural models.  相似文献   

2.
Introduction Analyses of the b value in the frequency-magnitude relation (Gutenberg & Richter curve, G-R curve), lgN=a?bM, is one of important methods for earthquake prediction. It is often used to study the state of tectonic deformation and regional stress field. Many studies on the b value have been made in aspects of seismicity, experimental modeling (acoustic emission) and theory (Mogi, 1962; Scholz, 1968; LI et al, 1978; MA, 1978; CHEN, 1977; GENG, 1986; DU and MA, 1986; CAI et…  相似文献   

3.
The spatial and temporal distributions of acoustic emission (AE) during the deformation of samples containing an inhomogeneous fault have been studied under biaxial compression. The results show that the fault strength and the duration from loading to failure increase and the failure mode changes from abrupt instability to gradual failure with increase of lateral stress σ2. The pre-setting fault and its heterogeneity play an important role in controlling AE spatial distribution during the deformation. The basic pattern of AE spatial distribution is controlled by the pre-setting fault, especially the parts with inhomogeneous strength and the strong segment, and the localization of fracturing starts from the positions with inhomogeneous strength, With increase of σ5, the dense AE distribution area spreads from the positions with inhomogeneous strength to the whole strong segment gradually. AE temporal sequence is significantly affected by σ2. The fault shows abrupt instability in final failure, which occurs on a background of "enhancement-quiescence" in microfracturing activity at lower σ2. At higher σ5, the fault shows gradual failure, and AE occurrence rate increases continuously and AER increase exponentially before and after the failure, The effect of σ2 on b-value is also remarkable, b-value shows precursory decrease in the weakening stage when fault behavior is abrupt instability, but it shows balanced change when fault behavior is gradual failure,  相似文献   

4.
The Anninghe fault is one of the significant earthquake-generating fault zones in the Southwest China. Local his-torical record shows that a M≥7 strong earthquake occurred in the year of 1536. On the basis of the detailed air-photographic interpretation and field investigation, we have acquired the following knowledge: 1 The average sinistral strike-slip rate since the Late Pleistocene is about 3~7 mm/a; 2 There is important reverse faulting along the fault zone besides the main left-lateral strike-slip motion, and the shortening rate across the Anninghe fault zone due to the reverse faulting is about 1.7~4.0 mm/a. If the Xianshuihe fault zone is simply partitioned into the Anninghe and Daliangshan faults, we can also get a slip rate of 3~7 mm/a along the Daliangshan fault zone, which is the same as that on the Anninghe fault zone. Moreover, on the basis of our field investigation and the latest knowledge concerning the active tectonics of Tibetan crust, we create a dynamic model for the Anninghe fault zone.  相似文献   

5.
It is deduced on the basis of field investigation that the total length of the stratigraphic fault associated with the great Haiyuan 8.5 magnitude earthquake of 1920 was 225 km. This fault was formed by 6 secondary faults with different geometric parameters, which align regularly inen echelon arrangement. Each secondary fault can be divided into three segments with different characteristics of deformation where the middle segment was mainly of the horizontal strike—slip fault while another two segments the vertical deformation as shown by the features of reverse or normal faults. It is also shown by the data of vertical and horizontal displacements that the horizontal displacement approached a maximum at the middle segment for each secondary fault and gradually decreased toward and finally disappeared at both ends of each segment while in contrast the vertical displacement was minimum at the middle and became large at both ends of the segment. The feature of the multiple peaks appeared in the deformation as shown by the earthquake displacements along the whole fault. This feature indicates that the 6 secondary faults associated with the great Haiyuan earthquake were the horizontal interrupted planes (i.e., dislocation surface) which were independent on each other, and hence each dislocation surface may represent an independent secondary fracture event of the earthquake. We thus think that the 6 relatively independent secondary events which occurred successfully might result in the great 8.5 magnitude Haiyuan earthquake. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 21–31, 1991. This project is sponsored by the Chinese Joint Seismological Science Foundation.  相似文献   

6.
The results of seismic deep reflection,high resolution refraction and shallow artificial seismic exploration indicate that the fault on the northern bank of the Weihe river is composed of two faults,one is the Yaodian-Zhangjiawan fault and the other is the Chuanzhang-Zuitou fault.The 22 km long Yaodian-Zhangjiawan fault of EW-striking starts from Chenjiagou via Yaodian town,Qianpai village,Bili village,Wujia town and Zhangjiawan to Jiajiatan.The 15 km long Chuanzhang-Zuitou fault striking near EW starts from Chuanzhang via Mabei to Zuitou.The Weihe fault offset the basement and upper crust,the reflecting layers of TQ,TN,TE and Tg are ruptured at depth of about 15 km.In the deep part,the Weihe fault and the secondary fault form a Y-shaped structure or a synthetic low angle intersection.The Weihe fault is a listric normal fault.The fault has obvious structural characteristics of a reversed-drag normal fault and a normal drag normal fault with the depth of 1 000 m,and also has the characteris-tics of syngenetic sediment.The Weihe fault is one of the faults which control the basin sediment,and it is the boundary fault of Xi’an depression and Xianyang salient.The depth of the fault decreases from the west to east gradually,the deep part intersects with the Lintong-Chang’an fault at the intersection part of Weihe River,Jinghe River and Bahe River and the shallow part connects with the Weinan-Jingyang fault.The seismic exploration re-sults indicate that no fault exists on southern bank of the Weihe River.  相似文献   

7.
Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism solutions of the earthquake and field investigation, the characteristic of coseismic deformation of M S=8.1 western Kunlunshan Pass earthquake in 2001 was researched. The study shows that its epicenter lies in the northeast side of Hoh Sai Hu; and the seismogenic fault in the macroscopic epicentral region can be divided into two central deformation fields: the west and east segments with the lengths of 42 km and 48 km, respectively. The whole fault extends about 90 km. From the distribution of interferometry fringes, the characteristic of sinistral strike slip of seismogenic fault can be identified clearly. The deformations on both sides of the fault are different with an obviously higher value on the south side. In the vicinity of macroscopic epicenter, the maximum displacement in look direction is about 288.4 cm and the minimum is 224.0 cm; the maximum sinistral horizontal dislocation of seismogenic fault near the macroscopic epicenter is 738.1 cm and the minimum is 551.8 cm. Foundation item: National Natural Science Foundation of China (40374013) and “Researching on the Disaster Earthquake” (2003) of Public Welfare Research Item, Ministry of Science and Technology of China.  相似文献   

8.
In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrence interval and earthquake rupture patterns along the Haiyuan fault. Based on this paleoseismological information, the recurrence probability and magnitude distribution for M≥6.7 earthquakes in future 100 years along the Haiyuan fault can be obtained through weighted computation by using Poisson and Brownian passage time models and considering different rupture patterns. The result shows that the recurrence probability of M S≥6.7 earthquakes is about 0.035 in future 100 years along the Haiyuan fault. Foundation item: Joint Seismological Science Foundation of China (103034) and Major Research “Research on Assessment of Seismic Safety” from China Earthquake Administration during the tenth Five-year Plan.  相似文献   

9.
Based on the results from seismogeological study,aeromagnetic inversion and deepseismic sounding(DSS),it is found that the M≥8.0 earthquakes in North China have three common deep structural characteristics,i.e,they all took place above the ultra-crustal deep faults or on the edges of the tectonic blocks with higher intensity,and there are low-velocity,low-density and high-conductive layers deep in the epicentral regions.The origins of the earth-quakes are also discussed and the two possibilities of seismogenesis are proposed,i.e,tectonic movement and intracrustal explosion.  相似文献   

10.
We have selected 171 near-field records from 391 aftershock records of the Lulong, Hebei Province, earthquake in October 1982 and relocated the hypocenter of 45 aftershocks using the program Hypoinverse. The distribution of aftershocks reveals a set of earthquake faults: a WNW stretching fault truncates two NNE stretching faults. The two branches of faults show the conjugate structure which is often seen in brittle fracture. The NNE stretching faults are connected together. The Luanhe river valley near Lulong developed to a rudiment rift basin surrounded by a series of faults. The fault of Lulong earthquake is a strike-slip fault with tension component. This fault type matches with the activity of Zhangjiakou-Bohai seismic belt (Zhang-Bo belt) and also shows the action of Zhang-Bo belt as a boundary of two secondary active blocks that truncates the NNE fault. Foundation item: National Natural Science Foundation of China (40234038). Contribution No. 05FE3016, Institute of Geophysics, China Earthquake Administration.  相似文献   

11.
Sliding-window cross-correlation method is firstly adopted to identify sPn phase, and to constrain focal depth from regional seismograms, by measuring the time separation between sPn and Pn phases. We present the focal depths of the 17 moderate-sized aftershocks (M S⩾5.0) of the Wenchuan M S8.0 earthquake, using the data recorded by the regional seismic broadband networks of Shaanxi, Qinghai, Gansu, Yunnan and Sichuan. Our results show focal depths of aftershocks range from 8 to 20 km, and tend to cluster at two average depths, separate at 32.5°N, i.e., 11 km to the south and 17 km to the north, indicating that these aftershocks are origin of upper-to-middle crust. Combined with other results, we suggest that the Longmenshan fault is not a through-going crustal fault and the Pingwu-Qingchuan fault may be not the northward extension of the Longmenshan thrust fault. Supported by the National Natural Science Foundation of China (Grant Nos. 40604009 and 40574040) and Special Project for the Fundamental R & D of Institute of Geophysics, China Earthquake Administration (Grant No.DQJB08B20)  相似文献   

12.
The paper deals with the mechanical origin and rules ofen echelon folds and their secondary fractures by means of elastic stability theory and nonlinear fracture criterion. Obtains the quantitative relations amongen echelon angles ofen echelon folds, ratios of boundary stresses anden echelon pitches of shear zone under an action of general boundary forces (tension shear, pure shear or compression shear). As an applied example, the paper researches the displacement field, stress field, distortion energy distribution, state of secondary fractures and energy released by fracturing ofen echelon fold structure developed at the east foot of Taihang Mountain. The results of research show that maximum principal (compressive) stresses, maximum shear stresses, high value area of distortion energy are in the nuclear parts ofen echelon folds. In these parts compressive fractures were easily developed in approximately parallel with fold axis. So it is verified that the secondary fracture ofen echelon folds is a mechanism controlling a strong earthquake.  相似文献   

13.
Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990‘s up to the present, the characteristics of distribution and displacement of surface rupture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M ≈ 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable.  相似文献   

14.
The time-space distribution characteristics of fault deformation anomaly in the near-source region and its outlying zone in the seismogenic process of the Jingtai M s=5.9 earthquake occurred on June 6, 2000 in Gansu Province is studied preliminarily. The distribution scope of fault deformation anomaly before the earthquake is wide, the anomaly shape is complicated and the pattern anomalous zone of fault deformation (strain) information index is obvious. The shape and amplitude of fault deformation anomaly in different regions differ significantly, which is closely related with the tectonic location of anomaly. The fault deformation anomaly of α, β, and γ phases along the western segment of Haiyuan fault zone shows the process from the quasi-linearity to non-linearity of fault movement in the near-source region, matches the high-value anomalous area of fault deformation (strain) information index, and reflects the high strain accumulation in the seismogenic region. However, the anomaly of abrupt jump and cusp with a large amplitude occurred in the areas far from the earthquake, such as Liupanshan fault zone which is the tectonic convergent section does not reflect the strain accumulation of its location, maybe it is a sign that the regional tectonic stress field is strengthened in the seismogenic process. Based on the above-mentioned facts and combined with the preliminary summary of experiences and lessons in the intermediate and short-term prediction of the Jingtai M s=5.9 earthquake, we study and explore the application of fault deformation anomaly to earthquake judgment. Foundation item: National Key Basic Research Development Program (G1998040703 and G1998040705), and State Scientific and Technological Project of the “Ninth Five-Year Plan” (96-913-09-01-02-03 and 96-913-09-02-02-03), China.  相似文献   

15.
张家口-渤海断裂带西段及中西段b值时空扫描   总被引:2,自引:2,他引:0  
张家口-渤海断裂带作为华北平原地区重要的活动断裂带,地震活动频繁,是我国地震监测预测重点区域之一。本文选取该断裂带西段及中西段1970-2016年的地震目录,采用最大似然法进行时间扫描,分析显示研究区b值为0.28-1.52,其随时间变化的特点是在大地震发生前降至最低,震后逐渐恢复;研究区空间扫描结果显示,该区b值的平均值为0.93,其中怀安-万全盆地北缘断裂和蓟运河断裂平均b值较低,反映该区域应力水平较高。综合以上结果,本次研究揭示出研究区地震危险性的时间和空间差异,为对研究区地震危险性评价提供基础数据。  相似文献   

16.
Vertical coseismic deformation on non-causative fault caused by remote strong earthquakes(epicentral distance≥1500 km,MS≥7.0)are observed by fault-monitoring instruments of new type during recent two years.The monitor-ing result shows,delay time,maximum amplitude and duration of vertical deformation on the non-causative faulthave remarkable close relationship with earthquakes magnitude and epicentral distance.The delay time of verticalcoseismic deformation have positive linear relationship with epicentral distance.The velocity of coseismic defor-mation is 5.5 km/s,close to the velocity of surface wave in granite.The logarithms of maximum amplitude of co-seismic deformation and epicentral distance have remarkable linear relationship with magnitude.The greater themagnitude and the closer the epicentral distance are,the bigger the maximum amplitude of coseismic deformationon non-causative fault will be.Relative to the epicentral distance,the magnitude is the most important factor to theduration of coseismic vertical deformation on the non-causative fault.Stronger earthquake causes longer vibrationduration of coseismic deformation.The experiential equation of co-seismic deformation faults obtained by thiswork is significant on the coseismic deformation research.  相似文献   

17.
Seismo-tectonic areas of historical strong earthquakes with M S≥7 along Xianshuihe-Xiaojiang fault zone are divided, and their individual fault-pattern and tectonic geomorphology are analyzed. Those strong-earthquake areas are located in some special parts of the fault zone, where the major branch-faults of the fault zone form left stepping, parallel, and fork-like patterns. In the strong-earthquake areas structurally complicated basins are developed, such as pull-apart basins in fork-like area, in double stepping area, and in stepping and fork-like areas. Foundation item: Chinese Joint Seismological Science Foundation (9507424). Contribution No. 2001A003, Institute of Crustal Dynamics, China Seismological Bureau.  相似文献   

18.
In this study, we collected 1 156 broadband vertical components records at 22 digital seismic stations in Xinjiang region, ürümqi station, and 7 stations in the adjacent regions during the period of 1999–2003. The records were firstly processed by the stacked spectral ratio method to obtain Q 0 (Q at 1 Hz) and the frequency correlation factor η corresponding to each path. Based on the results, the distribution images of Q 0 and η in 1°×1° grids for Xinjiang region were gained by the back-projection technique. The results indicate that Q 0 is high (300–450) in the Tarim platform and marginal Siberian platform, while Q 0 is low (150–250) in the southern regions as west Kunlun fold system and Songpan-Ganzi fold system. In the northern regions as Junggar fold system and Tianshan fold system, Q 0 is also low (250–300) and η varies between 0.5 and 0.9. Foundation item: National Natural Science Foundation of China (49974012) and Joint Seismological Science Foundation of China (604004).  相似文献   

19.
During a 4-month period starting from 21 January, 1997, an earthquake swarm of seven major events (Ms≥6.0) struck the Jiashi region at the northwestern corner of the Tarim Basin in Xinjiang,, China. Previous relocation studies suggested that these strong earthquakes had occurred along at least two parallel rupture zones. According to the relocated hypocenters and focal mechanisms of the events, we have constructed fault models for these seven earthquakes to calculate the Coulomb stress changes produced by each of these events. Furthermore, we extended our model calculations to include an ad- jacent 1996 Ms=6.9 Artushi earthquake, which occurred one year before the Jiashi earthquake swarm. Our calculations show that the Coulomb stress change caused by the preceding events was around 0.05 MPa at the hypocenter of the 4th event, and higher than 0.08 MPa at the hypocenters of the 2nd, 3rd, 5th and 6th events. Our results reveal a Coulomb stress interactive cycle of earthquake triggering between two adjacent normal and strike-slip faults.  相似文献   

20.
Coseismic stress-triggering is becoming a new hot spot of research. Coseismic strain steps recorded by borehole strainmeters are particularly valuable in studying coseismic stress-triggered fault slips. Based on the theory of dis location, one can invert the triggered fault slips with such data if he/she has a well understanding about the local faults. Genetic algorithm can be applied to significantly raise the efficiency of searching a best solution among all possibilities in this kind of inversion. A testifying check of the program and analyses of each parameter's influence may further enhance the reliability of inversion results. Taking complexity of geological structure into account, the inversion results should be regarded as the predominant property or a comprehensive effect of triggered local faults' activities. As an attempt, we inverted the assumingly active faults' slips triggered by the Ms=8.1 Kunlun Mountain earthquake over Beijing area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号