首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research explored the integrated use of Landsat Thematic Mapper (TM) and radar (i.e., ALOS PALSAR L-band and RADARSAT-2 C-band) data for mapping impervious surface distribution to examine the roles of radar data with different spatial resolutions and wavelengths. The wavelet-merging technique was used to merge TM and radar data to generate a new dataset. A constrained least-squares solution was used to unmix TM multispectral data and multisensor fusion images to four fraction images (high-albedo, low-albedo, vegetation, and soil). The impervious surface image was then extracted from the high-albedo and low-albedo fraction images. QuickBird imagery was used to develop an impervious surface image for use as reference data to evaluate the results from TM and fusion images. This research indicated that increasing spatial resolution by multisensor fusion improved spatial patterns of impervious surface distribution, but cannot significantly improve the statistical area accuracy. This research also indicated that the fusion image with 10-m spatial resolution was suitable for mapping impervious surface spatial distribution, but TM multispectral image with 30 m was too coarse in a complex urban–rural landscape. On the other hand, this research showed that no significant difference in improving impervious surface mapping performance by using either PALSAR L-band or RADARSAT C-band data with the same spatial resolution when they were used for multi-sensor fusion with the wavelet-based method.  相似文献   

2.
This research aimed to explore the fusion of multispectral optical SPOT data with microwave L-band ALOS PALSAR and C-band RADARSAT-1 data for a detailed land use/cover mapping to find out the individual contributions of different wavelengths. Many fusion approaches have been implemented and analyzed for various applications using different remote sensing images. However, the fusion methods have conflict in the context of land use/cover (LULC) mapping using optical and synthetic aperture radar (SAR) images together. In this research two SAR images ALOS PALSAR and RADARSAT-1 were fused with SPOT data. Although, both SAR data were gathered in same polarization, and had same ground resolution, they differ in wavelengths. As different data fusion methods, intensity hue saturation (IHS), principal component analysis, discrete wavelet transformation, high pass frequency (HPF), and Ehlers, were performed and compared. For the quality analyses, visual interpretation was applied as a qualitative analysis, and spectral quality metrics of the fused images, such as correlation coefficient (CC) and universal image quality index (UIQI) were applied as a quantitative analysis. Furthermore, multispectral SPOT image and SAR fused images were classified with Maximum Likelihood Classification (MLC) method for the evaluation of their efficiencies. Ehlers gave the best score in the quality analysis and for the accuracy of LULC on LULC mapping of PALSAR and RADARSAT images. The results showed that the HPF method is in the second place with an increased thematic mapping accuracy. IHS had the worse results in all analyses. Overall, it is indicated that Ehlers method is a powerful technique to improve the LULC classification.  相似文献   

3.
Many data fusion methods are available, but it is poorly understood which fusion method is suitable for integrating Landsat Thematic Mapper (TM) and radar data for land cover classification. This research explores the integration of Landsat TM and radar images (i.e., ALOS PALSAR L-band and RADARSAT-2 C-band) for land cover classification in a moist tropical region of the Brazilian Amazon. Different data fusion methods—principal component analysis (PCA), wavelet-merging technique (Wavelet), high-pass filter resolution-merging (HPF), and normalized multiplication (NMM)—were explored. Land cover classification was conducted with maximum likelihood classification based on different scenarios. This research indicates that individual radar data yield much poorer land cover classifications than TM data, and PALSAR L-band data perform relatively better than RADARSAT-2 C-band data. Compared to the TM data, the Wavelet multisensor fusion improved overall classification by 3.3%-5.7%, HPF performed similarly, but PCA and NMM reduced overall classification accuracy by 5.1%-6.1% and 7.6%-12.7%, respectively. Different polarization options, such as HH and HV, work similarly when used in data fusion. This research underscores the importance of selecting a suitable data fusion method that can preserve spectral fidelity while improving spatial resolution.  相似文献   

4.
遥感影像融合作为影像处理领域中最具有挑战的工作,一直是学术界研究的热点。合成孔径雷达SAR(Synthetic Aperture Radar)具备全天时、全天候、穿透云雾等多种特点,却因存在相干斑噪声等问题,使得影像难以解译。相比之下,光学影像可以反映地物的光谱和空间信息,易于解译,但容易受到云雾干扰,造成信息丢失,将光学与SAR影像数据融合可以实现不同类型传感器成像之间的信息互补,能够更好地为后续的影像分析与解译提供方便。本文首先对光学和SAR影像融合进行了系统性回顾,包括传统融合方法和基于深度学习方法在影像融合方面的最新工作,重点阐述了卷积神经网络CNN(Convolutional Neural Network)、生成式对抗网络GAN(Generative Adversarial Networks)等框架在光学和SAR影像融合中的进展;然后总结了光学和SAR影像融合在深度学习领域开发的数据集,并做了简单介绍和说明;最后,从数据集、时间序列影像融合、融合评价体系和算法轻量化等4个方面对光学和SAR影像融合的未来发展趋势进行了展望。  相似文献   

5.
Remote sensing data utilize valuable information via various satellite sensors that have different specifications. Image fusion allows the user to combine different spatial and spectral resolutions to improve the information for purposes such as forest monitoring and land cover mapping. In this study, I assessed the contribution of dual-polarized Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar data to multispectral Landsat imagery. The research investigated the separability of forested areas using different image fusion techniques. Quality analysis of the fused images was conducted using qualitative and quantitative analyses. I applied the support vector machine image classification method for land cover mapping. Among all methods examined, the à trous wavelet transform method best differentiated the forested area with an overall accuracy (OA) of 94.316%, while Landsat had an OA of 92.626%. The findings of this study indicated that optical-SAR-fused images improve land cover classification, which results in higher quality forest inventory data and mapping.  相似文献   

6.
一种基于小波系数特征的遥感图像融合算法   总被引:20,自引:2,他引:18  
多光谱图像和全色图像是目前卫星遥感领域最常见的传感器图像.为了更充分地发挥这两类遥感图像数据的价值,人们利用两类数据的互补性,将多传感器融合技术引进了遥感图像处理领域.在IHS彩色空间变换和小波多分辨率分析的基础上,利用图像高频小波系数的多个特征来定义特征量积,并利用特征量积作为依据提出了一种图像融合新算法.通过一组多光谱图像和全色图像数据进行融合仿真试验,并将该算法与IHS,HPF等算法和归一化矩算法作了比较.证明该方法能在保留多光谱图像光谱信息的基础上,有效地提高多光谱图像的空间分辨率.  相似文献   

7.
Synthetic Aperture Radar (SAR) data are of high interest for different applications in remote sensing specially land cover classification. SAR imaging is independent of solar illumination and weather conditions. It can even penetrate some of the Earth’s surface materials to return information about subsurface features. However, the response of radar is more a function of geometry and structure than a surface reflection occurs in optical images. In addition, the backscatter of objects in the microwave range depends on the frequency of the band used, and the grey values in SAR images are different from the usual assumption of the spectral reflectance of the Earth’s surface. Consequently, SAR imaging is often used as a complementary technique to traditional optical remote sensing. This study presents different ensemble systems for multisensor fusion of SAR, multispectral and LiDAR data. First, in decision ensemble system, after extraction and selection of proper features from each data, crisp SVM (Support Vector Machine) and Fuzzy KNN (K Nearest Neighbor) are utilized on each feature space. Finally Bayesian Theory is applied to fuse SVMs when Decision Template (DT) and Dempster Shafer (DS) are applied as fuzzy decision fusion methods on KNNs. Second, in feature ensemble system, features from all data are applied on a cube. Then classifications were performed by SVM and FKNN as crisp and fuzzy decision making system respectively. A co-registered TerrraSAR-X, WorldView-2 and LiDAR data set form San Francisco of USA was available to examine the effectiveness of the proposed method. The results show that combinations of SAR data with different sensor improves classification results for most of the classes.  相似文献   

8.
遥感数据融合研究进展与文献定量分析(1992—2018)   总被引:1,自引:0,他引:1  
近年来,遥感应用的快速发展推动了遥感载荷指标性能的不断提升。但由于遥感传感器的硬件技术瓶颈,遥感数据无法同时具有高空间分辨率、高光谱分辨率、高时间分辨率的指标特性。遥感数据融合是解决该问题的有效方法。为了深入了解目前遥感数据融合技术的研究进展情况,本文对国内外1992年—2018年间在该领域有一定影响力的相关成果进行了调研、分析与归纳总结。首先对遥感数据融合相关论文的年发文量、发文国家与机构、发表刊物以及关键词等进行了统计,梳理其发展历史及趋势;系统性的总结了各类数据融合算法,将其分为面向空间维提升的融合算法、面向光谱维提升的融合算法以及面向时间维提升的融合算法3类,并对各类算法的优势与适用性进行了分析;归纳总结了遥感数据融合的质量评价指标,包括有参考影像的融合评价指标以及无参考影像的融合评价指标;最后对遥感数据融合进展进行了总结与展望。  相似文献   

9.
多源遥感图像融合发展现状与未来展望   总被引:2,自引:0,他引:2  
近年来,随着遥感技术的发展,高光谱、红外、雷达等多源遥感成像手段在精准农业、资源调查、环境监测、军事国防等重要领域发挥着越来越重要的作用.同一场景多源遥感图像观测的地物对象相同,但观测的维度不同,图像的空间、光谱与时间分辨率存在差异,提供的信息既具有冗余性,又具有互补性和合作性.多源遥感图像融合能够综合利用不同来源获取...  相似文献   

10.
吴孟哲  陈锟山 《遥感学报》2006,10(4):578-585
本论文尝试讨论两个主题:主题一为利用主成分分析PCA方法应用于像元阶层资料融合技术的研究。主题二为应用Dempster-Shafer evidence theory方法于特征阶层数据融合技术的研究。在第一个主题中,由于合成孔径雷达的数据具有全偏极特性,在此选取了对植被较为敏感的HV极化合成孔径雷达数据,与具有光谱特性的光学SPOT数据做数据融合处理以利接下来的地物分类。首先,本研究利用小波转换技术来滤除合成孔径雷达斑驳噪声,在接下来融合步骤中,主成分分析出来的第一部分(PCI)是用做完滤除噪声后的合成孔径雷达取代,在数据融合后,进行地物分类是采用最大似然法来分类融合影像。在第二个主题中,利用全偏极雷达数据的极化特性结合SPOT数据的光谱特性,其主要目的是为了增加分类的精确度。首先使用李式滤波器滤除全偏极雷达数据噪声,接下来同样是使用采用最大似然法来分类融合影像,(不同的在于全偏极雷达影像使用Wishart几率分布,在光学影像采用multivariate Gaussian几率分布)将每个类别中每个像元属于某个类别的几率值计算出来,再利用Dempster-Shafer evidence theory来结合这些类别的机率值。最后产生出一张新的分类影像。实验的结果显示分类的精确度比较于未融合的资料都有明显提升的效果,也证明了此两个数据融合方法对于不同数据特性的融合都是很成功的。  相似文献   

11.
Image fusion techniques integrate complimentary information from multiple image sensor data such that the new images are more suitable for the purpose of human visual perception and computer based processing tasks for extraction of detail information. As an important part of image fusion algorithms, pixel-level image fusion can combine spectral information of coarse resolution imagery with finer spatial resolution imagery. Ideally, the method used to merge data sets with high-spatial and highspectral resolution should not distort the spectral characteristics of the high-spectral resolution data. This paper describes the Discrete Wavelet Transform (DWT) algorithm for the fusion of two images using different spectral transform methods and nearest neighbor resampling techniques. This research paper investigates the performance of fused image with high spatial resolution Cartosat-1(PAN) with LISS IV and Cartosat-1(PAN) sensor images with the LISS III sensor image of Indian Remote Sensing satellites. The visual and statistical analysis of fused images has shown that the DWT method outperforms in terms of Geometric, Radiometric, and Spectral fidelity.  相似文献   

12.
RADARSAT-2全极化SAR数据地表覆盖分类   总被引:1,自引:0,他引:1  
全极化合成孔径雷达(SAR)能够测量每一观测目标的全散射矩阵,但地物分布的复杂性往往造成不同地物具有相似的后向散射信号特征,因而增加了地物信息提取的难度。文中基于北京地区的RADARSAT-2全极化雷达数据,在图像处理的特征分解的基础上,利用PolSARPro软件提取包含地物散射机理信息的各种极化参数,按H-α、A-α、H-A对全极化SAR影像进行基于散射机理的分类,继而将分类结果作为Wishart H/A/α、Wishart H/α的初始类别划分。最后,采用决策树分类算法对基于Wishart分布的监督分类及以上两种分类算法进行融合处理,从而实现地物的分类,并将分类结果与经典的分类算法进行对比分析,验证了文中方法的有效性。  相似文献   

13.
Hot spot detection with satellite images, especially with synthetic aperture radar (SAR) images is still a challenging task. Several researchers have used TM/optical data for identification of hot spot but the use of SAR data is very limited for this type of application. The fusion of SAR data with TM/optical data may add additional information which in turn will lead for enhancement of detection capability of the hot spot. Therefore, this study explores the possibility of fusion of Moderate Resolution Imaging Spectroradiometer (MODIS) and Phased Array L-band Synthetic Aperture Radar (PALSAR) satellite images for the hot spot detection. Image fusion is emerging as a powerful tool where information of various sensors can be used for obtaining better results. For this purpose, vegetation greenness and roughness information which is obtained from MODIS and PALSAR satellite images, respectively, are used for fusion, and then, a contextual-based thresholding algorithm is applied to the fused image for hot spot detection. The proposed approach comprises of two steps: (1) application of genetic algorithm-based scheme for image fusion of MODIS and PALSAR satellite images, and (2) classification of the fused image as either hot spot or non-hot spot pixels by employing a contextual thresholding technique. The algorithm is tested over the Jharia Coal Field region of India, where hot spot is one of the major problems and it is observed that the proposed thresholding technique classifies the each pixel of the fused image into two categories: hot spot and non-hot spot and the proposed approach detects the hot spot with better accuracy and less false alarm.  相似文献   

14.
Detailed and enhanced land use land cover (LULC) feature extraction is possible by merging the information extracted from two different sensors of different capability. In this study different pixel level image fusion algorithms (PCA, Brovey, Multiplicative, Wavelet and combination of PCA & IHS) are used for integrating the derived information like texture, roughness, polarization from microwave data and high spectral information from hyperspectral data. Span image which is total intensity image generated from Advanced Land observing Satellite-Phase array L-band SAR (ALOS-PALSAR) quad polarization data and EO-1 Hyperion data (242 spectral bands) were used for fusion. Overall PCA fused images had shown better result than other fusion techniques used in this study. However, Brovey fusion method was found good for differentiating urban features. Classification using support vector machines was conducted for classifying Hyperion, ALOS PALSAR and fused images. It was observed that overall classification accuracy and kappa coefficient with PCA fused images was relatively better than other fusion techniques as it was able to discriminate various LULC features more clearly.  相似文献   

15.
光学传感器在夜晚和云雨天气难以成像,合成孔径雷达(synthetic aperture radar,SAR)虽然能够全天时、全天候工作,但其成像难以理解,对此提出利用SAR影像翻译为光学影像的新思路来弥补二者的缺陷。给出了遥感影像翻译定义,提出一套包含图像理解、目标转换等环节的影像翻译技术流程。通过支持向量机分类、种子填充和基于样本的纹理合成算法等手段实现SAR影像典型目标向光学影像的转换与表达。最后,利用该方法实现了ENVISAT-ASAR转换为Landsat TM,ALOS PALSAR转换为GeoEye的两类影像翻译,并利用SAR影像翻译结果修补光学影像空缺。影像翻译和补缺实验证明了SAR影像翻译为光学影像的可行性和有效性。  相似文献   

16.
多源遥感影像融合   总被引:88,自引:6,他引:82  
刘继琳 《遥感学报》1998,2(1):47-50,T002
遥感影像融合能富集同一地区不同数据源的信息大跨度波谱特性影像数据的融合,提供了有关各单个传感器的互补信息,使分类更精确;大跨度空间分辨力影 融合,有利于改善2多光谱影像的度,增强特征提取和目视判读能力,能有效地用于变化监测。  相似文献   

17.
Spectral and Spatial Quality Analysis in Pan Sharpening Process   总被引:1,自引:0,他引:1  
Image fusion is a process to obtain new images containing more information by combining images obtained same or different sensors. With most of the earth observation satellites, high spatial resolution panchromatic images and low spatial resolution multispectral images are obtained. As an example of image fusion ??pan sharpening?? is a process of combining of high spatial resolution panchromatic images and low spatial resolution multispectral images. At the end of the fusion process both high spatial and spectral resolution new images are obtained. In this study, panchromatic and multispectral images gathered from Ikonos were used. Panchromatic and multispectral images belonging to the same sensor were combined by using different image fusion methods. As pan sharpening methods Brovey transform, Modified IHS, Principal Component Analysis (PCA), Wavelet PC transform and Wavelet A Trous transformation methods were used. Quality of fused products was evaluated from the point of view of both visual and statistical criteria. While wavelet based methods are succesfull in terms of protection of spectral quality of original multispectral images, the colorbased and statistical methods are giving better results within the improvement of spatial content.  相似文献   

18.
快速离散Curvelet变换和IHS变换集成的遥感影像融合方法   总被引:1,自引:0,他引:1  
刘军  邵振峰 《测绘科学》2012,(1):121-124
本文提出一种快速离散Curvelet变换(FDCT)和IHS变换集成的遥感影像融合方法,可获得较传统方法更高质量的融合影像。在融合过程中,通过FDCT获取I分量的多尺度多方向系数集合,采用标准差加权的融合策略,自适应地调整空间细节与光谱信息的权重,从而达到最佳融合空间细节与光谱信息的效果。作者选择QuickBird和WorldView-2全色和多光谱影像进行融合实验,并与基于传统IHS、FDCT的方法进行了比较,采用两种评价模型,选择偏差指数、UIQI等质量指标进行客观量化评价,验证了本文方法的优越性。  相似文献   

19.
Nowadays, different image pansharpening methods are available, which combine the strengths of different satellite images that have different spectral and spatial resolutions. These different image fusion methods, however, add spectral and spatial distortions to the resultant images depending on the required context. Therefore, a careful selection of the fusion method is required. Simultaneously, it is also essential that the fusion technique should be efficient to cope with the large data. In this paper, we investigated how different pansharpening algorithms perform, when applied to very high-resolution WorldView-3 and QuickBird satellite images effectively and efficiently. We compared these 27 pansharpening techniques in terms of quantitative analysis, visual inspection and computational complexity, which has not previously been formally tested. In addition, 12 different image quality metrics available in literature are used for quantitative analysis purpose.  相似文献   

20.
Time-series remote sensing data are important in monitoring land surface dynamics. Due to technical limitations, satellite sensors have a trade-off between temporal, spatial and spectral resolutions when acquiring remote sensing images. In order to obtain remote sensing images with high spatial resolution and high temporal frequency, spatiotemporal fusion methods have been developed. In this paper, we propose a Linear Spectral Unmixing-based Spatiotemporal Data Fusion Model (LSUSDFM) for spatial and temporal data fusion. In this model, the endmember abundance of the low-resolution image pixel is calculated based on that of the high-resolution image by the spectral mixture analysis. The endmember spectrum signals of low-resolution images are then calculated continuously within an optimized moving window. Subsequently, the fused image is reconstructed according to the endmember spectrum and its corresponding abundance map. A simulated dataset and real satellite images are used to test the fusion model, and the fusion results are compared with a current spectral unmixing based downscaling fusion model (SUDFM). Our experimental work shows that, compared to the SUDFM, the proposed LSUSDFM can achieve better quality and accuracy of fused images, especially in effectively eliminating the “plaque” phenomenon in the results by the SUDFM. The LSUSDFM has great potential in generating images with both high spatial resolution and high temporal frequency, as well as increasing the number of spectral bands of the high spatial resolution data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号