首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bottom of the Lower Cambrian series is an important bed typical of boundary event. The bed had been enriched with many useful elements such as Ni, Mo, Cu, Pb, Zn, Au, Ag, Ru, Rh, Pd, Os, Ir and Pt, many rare and dispersed elements such as Cd, Se, Tl, …  相似文献   

2.
Organic matter of the Sinian and early Cambrian black shales on the Yangtze Platform belongs to the light carhon group of isotopes with the δ13C values from - 27% to - 35 %, which are lower than those of the contempomneously deposited carbonates and phosphorites. A carbon isotope-stratified paleooceanographic model caused by upwelling is proposed, which can be used not only to interpret the characteristies of organic carbon isotopic compositions of the black shales, but also to interpret the paleogeographic difference in the organic carbon isotope compositions of various types of sedimentary rocks. Project supported by the National Natural Science Foundation of China (Grant No. 49472114) and the Open Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences.  相似文献   

3.
Osmium, strontium, neodymium, and lead isotopic data have been obtained for 30 hand picked samples of basaltic glass from the Pacific, Atlantic and Indian mid-oceanic ridges. Large variations in Os isotopic ratios exist in the glasses, from abyssal peridotite-like values to radiogenic compositions similar to oceanic island basalts (187Os/186Os and 187Os/188Os ratios range from 1.06 to 1.36 and from 0.128 to 0.163, respectively). Os isotopic and elemental data suggest the existence of mixing correlations. This relationship might be ascribed to secondary contamination processes; however, such a hypothesis cannot account for the negative correlation observed between Os and Nd isotopes and the existence of complementary covariations between Os and SrPb isotopes. In this case, OsSrNdPb isotopic variations are unrelated to late post-eruption or shallow level contamination. These relationships provide strong evidence that the Os isotopic composition of the samples are derived from the mantle and thus implies a global chemical heterogeneity of the oceanic upper mantle. The results are consistent with the presence of recycled oceanic crust in the mantle sources of mid-ocean ridge basalts, and indicate that the unique composition of the upper mantle below the Indian ocean results from its contamination by a mantle component characterized by radiogenic Os and particularly unradiogenic Nd and Pb isotopic compositions.  相似文献   

4.
The Os isotopic compositions of twelve ultramafic and six mafic layer samples from the Ronda Ultramafic Complex of southern Spain have been determined. Among the ultramafic rocks, 187Os/186Os varies from 0.98 to 1.12. A weak correlation is observed between 187Os/186Os and Re/Os. A much stronger correlation exists between Os isotopic ratio and Mg#, suggesting that the Re/Os ratios have been perturbed to some extent. Two alternatives are proposed to explain the relationship between Os composition and Mg#: (1) Continuous processes in the convecting mantle; (2) Radiogenic ingrowth since an ancient melt depletion event. No relationship is observed between 187Os/186Os and 143Nd/144Nd. This is probably because the Nd systematics were strongly affected by a recent metasomatic event, which apparently had little effect on the Os isotopic compositions.The Os isotopic ratios of the mafic layers range from 1.7 to 47.9. Within a single thick layer, the ratios vary from 16.5 to 47.9. These high ratios demonstrate that the layers are ancient features. Among the mafic samples, Os isotopic ratio is found to decrease strongly with increasing Os concentration, which ranges from 0.009 ppb to 1.16 ppb. One layer, which had a SmNd model age of less than 200 Ma, yielded a ReOs model age of about 2 Ga. This implies that neither system can be trusted to give accurate information about the time of mafic layer formation.  相似文献   

5.
The basalt-borne peridotite xenoliths from Jiangsu-Anhui provinces were analyzed for whole rock Os isotopic compositions in two laboratories of USTC, China and CRPG, France, respectively. The 187Os/188Os ratio of the sample set ranges from 0.119 to 0.129 (25 samples, USTC)and from 0.117 to 0.131 (17 samples, CRPG). The Os isotopic compositions of most samples are less than 0.129 and depleted relatively to the primitive mantle, showing a good correlation with the major element compositions. With the 187Os/188Os-Al2O3 alumichron, the samples yield a model age of 2.5 ± 0.1 Ga (data of USTC) and 1.9 ± 0.1 Ga (data of CRPG), late Archean to early Proterozoic, The two samples with the lowest 187Os/188Os ratio (0.119 and 0.117) have the TRD (Re depleted age) of 1.1 Ga (USTC) and 1.4 Ga (CRPG), mid-Proterozoic. The Os isotope model age shows that the peridotite xenoliths from Cenozoic alkali basalt in Jiangsu-Anhui provinces have an old formation age (early- to mid- Proterozoic). They are not newly produced mantle after the Phanerozoic replacement of the lithosphere mantle, but residual fractions of Proterozoic mantle.  相似文献   

6.
There are different sulfur forms in the black shales from the Early Cambrian of the Yangtze platform. With its emphasis on pyrite and organosulfur, this paper discusses their distribution and formation. The research shows that sulfur phases take regular variations laterally as well as vertically in the research areas. In western researched profile with high terrigenous supply at the time it formed, there exists a larger amount of pyrite and less organosulfur, and pyrite amount declines while organosulfur content increases upwards along the profile. This black shale profile is characterized by relatively light sulfur isotope composition with evolution trend of becoming heavier both for pyrite and organosulfur from bottom to top along the profile. Opposite situation occurs in eastern profiles which were located farther away from terrigenous land. Here pyrite amount obviously decreases and organic matter has combined more sulfur, although these two kinds of sulfur species take similar trend in content variation along profiles to that for western profile. At the same time more34S is accumulated in sulfur species of black shale samples from eastern profile, and sulfur isotope composition gradually turns lighter from bottom to top. In combination with other information of iron, organic carbon contents and petrographic features, it can be established that sea-level change, supply of terrigenous matters, tectonic background and natures of paleoceanic chemistry have exerted great influence on the distribution of sulfur species in these black shales.  相似文献   

7.
The basalt-borne peridotite xenoliths from Jiangsu-Anhui provinces were analyzed for whole rock Os isotopic compositions in two laboratories of USTC, China and CRPG, France, respectively. The187Os/188Os ratio of the sample set ranges from 0.119 to 0.129 (25 samples, USTC) and from 0.117 to 0.131 (17 samples, CRPG). The Os isotopic compositions of most samples are less than 0.129 and depleted relatively to the primitive mantle, showing a good correlation with the major element compositions. With the187Os/188Os-Al2O3 alumichron, the samples yield a model age of 2.5 ± 0.1 Ga (data of USTC) and 1.9 ± 0.1 Ga (data of CRPG), late Archean to early Pro-terozoic. The two samples with the lowest187Os/188Os ratio (0.119 and 0.117) have the TRD (Re depleted age) of 1.1 Ga (USTC) and 1.4 Ga (CRPG), mid-Proterozoic. The Os isotope model age shows that the peridotite xenoliths from Cenozoic alkali basalt in Jiangsu-Anhui provinces have an old formation age (early- to mid- Proterozoic). They are not newly produced mantle after the Phanerozoic replacement of the lithosphere mantle, but residual fractions of Proterozoic mantle.  相似文献   

8.
The Jinchuan Ni-Cu-PGE deposit is the largest nickel sulfide deposit in China and the third largest in the world[1]. It is also the largest platinum deposit in China and contains about 60% platinum reserve of China[2]. The Jinchuan intrusion covers only an area of 1.34 km2, but 47.8% of its volume is the orebody. That makes Jinchuan a typical “large ore deposit in a small intrusion”. A number of research works has been car-ried out towards the Jinchuan deposit. Different ore-forming mo…  相似文献   

9.
The Cenozoic marine osmium isotope record is largely driven by changes in the continental input. We aid its interpretation by supplying direct measurements of present day riverine Os in known geological and environmental settings. We analyzed Os concentrations and isotopic ratios in the dissolved, suspended, and bed materials of the Mackenzie River in Canada and smaller rivers draining the Western Cordillera into the Pacific Ocean. Rhenium content was measured for suspended and bed materials to provide further constraint. Dissolved 187Os/188Os ratios range from 0.74 to 4.5 and are controlled to first order by age and lithology of the bedrock. The rivers draining Jurassic volcanic rocks are unradiogenic, as low as 0.74, and those draining the Precambrian Canadian Shield are radiogenic, as high as 3.5. The headwaters of the Mackenzie left bank tributaries draining metamorphic carbonates in the Eastern Cordillera and Paleozoic black and gray shales in the Transition zone and the Interior Platform are especially radiogenic (3.0-4.5) with relatively high concentrations of Os. These latter rivers are responsible for the Mackenzie being above world average in Os concentration and yield (mol Os/km2/year) as well as in 187Os/188Os. The dissolved load is more radiogenic than the suspended or bed loads and constitutes a significant fraction of total fluvial Os.  相似文献   

10.
Based on its microstructure, Co-rich crust A1-1 from seamount Allison, central Pacific, was scraped at averaged interval of 1.3 mm to measure osmium isotopic composition, and subsequently to establish the 187Os/188Os profile of scraping section of the crust. By observing the variation of 187Os/188Os under 10Be chronology and matching it to the well-known seawater Os isotope evolution of the past 40 Ma, two growth hiatuses (H1 and H2) occurring in the periods respectively between 13.6 and 29.6 Ma and between 8 and 9.8 Ma in the crust were recognized. According to the two hiatuses, the dating scheme for each scraped layer of the crust was suggested. For the upper layers younger than 6.8Ma, their growth ages were calibrated under 10Be chronology; for the lower layers older than 6.8Ma, their growth ages were obtained from 187Os/188Os evaluation curve by linear interpolation. Hereby, the age for the most inner layer of the crust was determined to be 39.5 Ma. H1 and H2 exactly correspond to the boundary between phosphatization and non-phosphatization and volcanic ash layer in the crust, respectively.  相似文献   

11.
The Chinkuashih district at northern Taiwan hosts one of the largest Au deposits in the western Pacific gold province. Gold were precipitated from hydrothermal solutions as native gold or incorporated into sulfides at a temperature range of 200-350 °C. The sulfides in ore mines have 187Os/188Os ratios varying from 0.139 to 0.249. The positive 187Os/188Os-1/Os correlation is consistent with derivation from the hybrid fluids containing various proportions of mantle and crustal components. The crustal component was the meteoric water that had acquired its Sr and Os isotopic signatures from the local sedimentary formations and dacitic intrusions. The mantle component was the magmatic fluid segregated from the dacitic magma by fractional crystallization. Based on the 187Os/188Os-1/Os correlation, the hybrid fluids forming the Chinkuashih sulfides contained less than 30% magmatic fluid, except for one sulfide sample from Hsumei, which required >40% magmatic fluid. Compared to meteoric water, the magmatic fluid contained a higher Os content (130 times higher) and was enriched in Os relative to Sr with an Os/Sr ratio two orders higher than that of the crustal fluid. Consequently, the Os budget in the hybrid fluids was controlled by the magmatic fluid, although the meteoric water was volumetrically dominated. If gold and Os behave similarly in chemistry, the Chinkuashih gold deposits are of mantle origin and the area where sulfides with the greatest mantle Os signature may host undiscovered gold deposits. Finally, the 187Os/188Os ratios of sulfides show no relationship with the mineral assemblages of sulfides, implying that the sulfide mineral assemblages reflect local surfacial redox conditions rather than the chemical characteristics of parental fluids.  相似文献   

12.
Nd and Sr isotopic study of volcanic rocks from Japan   总被引:1,自引:0,他引:1  
Two older granitic rocks and some selected Quaternary volcanic rocks from the Japanese Islands were analyzed in a reconnaissance study for the purpose of examining the relationships between Nd and Sr isotopic abundances and the megatectonic structure around the Japanese Islands. Model ages of ~0.9 AE were determined by the Nd and Sr methods on a Paleozoic gneiss which confirms that a relatively ancient acidic basement exists in the Japanese Islands. The Nd and Sr isotopic data show that the Cretaceous granodiorite is the result of partial melting of older crust.The Nd of tholeiitic rocks from the Izu arc gives εNd ranging from 8.3 to 9.3 and with the corresponding εSr from ?14.5 to ?18.5. These results are identical to those found for the Mariana arc. These values are distinctly lower than typical MORB by around 1~2 εu. This difference in εNd between arcs and MORB is attributed to the contribution of oceanic sediments to the partial melts produced during subduction of oceanic crust. The Hakone volcano is clearly confirmed as belonging to an oceanic source by Nd isotopic results.εSrNd values of the volcanics from a section along the Fossa Magna show a clear indication that they are a blend of oceanic mantle material and continental crustal material. The crustal component clearly increases in going from south to north. Volcanics across the Northeast Japan arc also show a distinct correlation of εSrNd related to the position relative to the active subduction zone but with the opposite trend. These relationships of the present isotopic pattern and the zonal arrangement relative to the subduction zone suggest the former existence of a local spreading center in the Japan Sea.In general there appear to be regular isotopic relationships between the Izu-Mariana oceanic island arc and the continental island arc of Japan which indicates that partially melted or assimilated older continental basement is admixed with young rising oceanic arc magmas.  相似文献   

13.
Re–Os isotope compositions of syngenetic sulphide inclusions in both eclogite suite (E-type) and peridotite suite (P-type) parageneses in diamonds from the Koffiefontein mine, South Africa have been analysed using a technique capable of analysing single inclusion grains, or, in some cases multiple inclusions from the same diamonds. Sulphide inclusion Ni contents broadly correlate with Os abundances in that low-Ni (6.8–8.7% Ni), E-type sulphides have 4.7 to 189 ppb Os whereas the two high-Ni (25%), P-type sulphides have 5986 and 6097 ppb Os. Two P-type sulphides from the same diamond define the first mineral isochron obtained for a single diamond which has an age of 69±30 Ma with chondritic initial 187Os/188Os. This indicates that the sulphides, and hence the host diamond, crystallised close to the time of kimberlite emplacement (90 Ma), in the Mesozoic. This is supported by Pb isotopic measurements of a fragment from one of the sulphides, together with the absence of significant Type IaB nitrogen aggregation in the host diamond lattice. E-type sulphide inclusions have radiogenic Os isotopic compositions, 187Os/188Os 0.346 to 2.28, and Re–Os model ages from 1.1 to 2.9 Ga. They define an array on a Re–Os isochron diagram that may be interpreted as defining a single period of E-type sulphide growth at 1.05±0.12 Ga, with an elevated initial 187Os/188Os. Alternatively, two episodes of sulphide crystallisation, from a chondritic reservoir, may be invoked in the Archaean and in the Proterozoic. The results for both P- and E-type diamonds point to a spectrum of diamond crystallisation ages. High contents of both Re and Os, and the similarity of Re/Os ratios of sulphide inclusions in diamonds to whole rock eclogite and peridotite xenoliths indicate that small amounts of sulphides can dominate the mantle budget of both these elements during melting. Recent addition to the lithospheric mantle of high-Os material similar to that from which the P-type sulphides crystallised may explain the variable, sometimes young Os model ages seen in whole rock xenolith Re–Os data.  相似文献   

14.
This study demonstrates that petroleum and source rocks are enriched in Pt and Pd to the ppb level, and that the 187Os/188Os composition coupled with the Pt/Pd value permits the fingerprinting of petroleum to its source. Oils from the United Kingdom Atlantic Margin (sourced from the Upper Jurassic Kimmeridge Clay Fm.) as well as source rock samples have been analysed for Pt and Pd. When the Pt/Pd value is compared with 187Os/188Os (calculated at the time of oil generation; Osg) the values from both the known source and the oils are similar, demonstrating that they can be used as an oil to source fingerprinting tool. This inorganic petroleum fingerprinting tool is particularly important in heavily biodegraded petroleum systems where traditional fingerprinting techniques (e.g. biomarkers) are severely hampered, e.g. the world's largest oil sand deposit, the West Canadian Oil Sands (WCOS). This has caused the source of the WCOS to be hotly debated, with no present day consensus between inputs from potential source units e.g. Exshaw and Gordondale Fms. 187Os/188Os and Pt/Pd fingerprinting of the oil sands shows that the majority of the petroleum have similar 187Os/188Os and Pt/Pd values, supporting the hypothesis of one principal source. Analysis of the potential source rocks establishes that the principal source of the oil sands to be from the Jurassic Gordondale Fm., with a minor Exshaw Fm. input. Thus, the combination of previously pioneered Re–Os petroleum geochronology with 187Os/188Os and Pt/Pd values of petroleum permits both a temporal and spatial understanding of petroleum systems.  相似文献   

15.
Since the discovery of the Tahe oilfield, it has been controversial on whether the main source rock is in the Cambrian or Middle-Upper Ordovician strata. In this paper, it is assumed that the crude oil from the Wells YM 2 and TD 2 was derived from the Middle-Upper Ordovician and Cambrian source rocks, respectively. We analyzed the biomarkers of the crude oil, asphalt-adsorbed hydrocarbon and saturated hydrocarbon in bitumen inclusions from the Lunnan and Hade areas in the North Uplift of the Tarim Basin. Results show that the ratios of tricyclic terpane C21/C23 in the crude oil, asphalt-adsorbed hydrocarbon and saturated hydrocarbon in bitumen inclusions are less than 1.0, indicating that they might be from Upper Ordovician source rocks; the ratios of C28/(C27+C28+C29) steranes in the saturated hydrocarbon from reservoir bitumen and bitumen inclusions are higher than 25, suggesting that they might come from the Cambrian source rocks, however, the ratios of C28/(C27+C28+C29) steranes in oil from the North Uplift are less than 25, suggesting that they might be sourced from the Upper Ordovician source rocks. These findings demonstrate that the sources of crude oil in the Tarim Basin are complicated. The chemical composition and carbon isotopes of Ordovician reservoired oil in the Tarim Basin indicated that the crude oil in the North Uplift (including the Tahe oilfield) and Tazhong Depression was within mixture areas of crude oil from the Wells YM 2 and TD 2 as the end members of the Cambrian and Middle-Upper Ordovician sourced oils, respectively. This observation suggests that the crude oil in the Ordovician strata is a mixture of oils from the Cambrian and Ordovician source rocks, with increasing contribution from the Cambrian source rocks from the southern slope of the North Uplift to northern slope of the Central Uplift of the Tarim Basin. Considering the lithology and sedimentary facies data, the spatial distribution of the Cambrian, Middle-Lower Ordovician and Upper Ordovician source rocks was reconstructed on the basis of seismic reflection characteristics, and high-quality source rocks were revealed to be mainly located in the slope belt of the basin and were longitudinally developed over the maximum flooding surface during the progressive-regressive cycle. Affected by the transformation of the tectonic framework in the basin, the overlays of source rocks in different regions are different and the distribution of oil and gas was determined by the initial basin sedimentary structure and later reformation process. The northern slope of the Central Uplift-Shuntuo-Gucheng areas would be a recent important target for oil and gas exploration, since they have been near the slope area for a long time.  相似文献   

16.
Os–Hf–Sr–Nd isotopes and PGE were determined in peridotite xenoliths carried to the surface by Quaternary alkali basaltic magmas in the Tokinsky Stanovik Range on the Aldan shield. These data constrain the timing and nature of partial melting and metasomatism in the lithospheric mantle beneath SE Siberian craton. The xenoliths range from the rare fertile spinel lherzolites to the more abundant, strongly metasomatised olivine-rich (70–84%) rocks. Hf–Sr–Nd isotope compositions of the xenoliths are mainly within the fields of oceanic basalts. Most metasomatised xenoliths have lower 143Nd / 144Nd and 176Hf / 177Hf and higher 87Sr / 86Sr than the host basalts indicating that the metasomatism is older and has distinct sources. A few xenoliths have elevated 176Hf / 177Hf (up to 0.2838) and plot above the Hf–Nd mantle array defined by oceanic basalts.187Os / 188Os in the poorly metasomatised, fertile to moderately refractory (Al2O3  1.6%) Tok peridotites range from 0.1156 to 0.1282, with oldest rhenium depletion ages being about 2 Ga. The 187Os / 188Os in these rocks show good correlations with partial melting indices (e.g. Al2O3, modal cpx); the intercept of the Al–187Os / 188Os correlation with lowest Al2O3 estimates for melting residues (∼0.3–0.5%) has a 187Os / 188Os of ∼0.109 suggesting that these peridotites may have experienced melt extraction as early as 2.8 Gy ago. 187Os / 188Os in the strongly metasomatised, olivine-rich xenoliths (0.6–1.3% Al2O3) ranges from 0.1164 to 0.1275 and shows no apparent links to modal or chemical compositions. Convex-upward REE patterns and high abundances of heavy to middle REE in these refractory rocks indicate equilibration with evolved silicate melts at high melt / rock ratios, which may have also variably elevated their 187Os / 188Os. This inference is supported by enrichments in Pd and Pt on chondrite-normalised PGE abundance patterns in some of the rocks. The melt extraction ages for the Tok suite of 2.0 to 2.8 Ga are younger than oldest Os ages reported for central Siberian craton, but they must be considered minimum estimates because of the extensive metasomatism of the most refractory Tok peridotites. This metasomatism could have occurred in the late Mesozoic to early Cenozoic when the Tok region was close to the subduction-related Pacific margin of Siberia and experienced large-scale tectonic and magmatic activity. This study indicates that metasomatic effects on the Re–Os system in the shallow lithospheric mantle can be dramatic.  相似文献   

17.
Based on study of Nd isotopic composition for 101 rocks of various types from Tianshan Orogen, the age and character of basement and continental crustal evolution of the Tianshan Orogen were proposed. It is deduced that the continental crustal basement of the Tianshan Orogen was formed 1. 8 Ga ago. The protolith of its metamorphic rocks was derived from long-term depleted mantle source in the ancient are tectonic setting probably. The Tianshan Orogen is obviously different from the North Tarim Block in age of basement and post-evolution history. It was also shown that Paleozoic continental crustal growth happened extensively in the Tianshan Orogen, which is distinguished from Yangtse Block and Cathaysia Block in eastern China. Project supported by the National Natural Science Foundation of China (Grant No. 49633250). It belongs to the National “305” Project in Xinjiang, which is one of the National Key Projects in the Ninth Five-Year Plan (96-915-07-05A).  相似文献   

18.
Re-Os dating on copper-nickel sulfide ores from the Baotan area, Guangxi, yielded an ore-forming age of 982 ± 21 Ma (2σ), which demonstrates that copper-nickel sulfide deposits and their related mafic-ultramafic rocks occurred in the same period of time with the ophiolites in northeastern Jiangxi. Both of them are the products of collision-convergence between the Cathaysian plate and Yangtze plate and the subsequent extensional environment. Calculation of the γOs of the 982 Ma copper-nickel sulfide ores and its correlation with Re/Os indicate that injection-type massive ores display lower γOs values (-15.6 to -8.2) and lower Re/Os ratios (0.32 to 0.43), while basal liquation-type ores have γOs-27.9 to -7.3 and Re/Os=5.36 to 11.24. This suggests that these copper-nickel sulfide ores and their related mafic-ultramafic rocks were derived from a Re-depleted mantle source and that contamination with some crustal material occurred during their intrusion.  相似文献   

19.
The Os isotopic compositions of mantle rocks generally are considered to be established during melt-depletion events and to be robust to subsequent disturbances (e.g. metasomatism). Consequently, Os isotopes are used to date the main melting event that a mantle section has undergone, i.e. transformation of fertile asthenospheric material into a depleted, buoyant lithosphere. However, Os resides almost entirely in Fe-Ni-Cu sulphides, which can be very mobile under mantle conditions. In situ laser ablation multi-collector ICP-MS measurement of Re/Os isotopic ratios in sulphides from spinel peridotite xenoliths demonstrates that whole-rock Os-isotope signatures record the mixing of multiple sulphide populations. Sulphides residual after melting events have unradiogenic Os isotopic compositions reflecting ancient melt depletion; those introduced by later metasomatism events contain more radiogenic Os. Therefore, the whole-rock Os isotopic signature can be strongly altered by metasomatic processes, and studies of mantle-derived xenoliths show that such disturbance is quite common in the lithospheric mantle. Because melt-depletion ages estimated from individual sulphide inclusions are systematically older than those obtained from whole-rock analysis, caution is essential in the interpretation of the Os model ages derived from whole-rock analysis, and their use and abuse in geodynamic models. This work suggests that sulphide could become a key phase in unravelling the formation and evolution of the lithosphere.  相似文献   

20.
The Cambrian and Ordovician on the northern Tarim Platform are mainly composed of carbonates. On the basis of detailed outcrop analysis, the sequence stratigraphic system of the Cambrian-Ordovician in the northern Tarim Platform is outlined in this paper. Altogether 35 third-order sequences, 12 supersequences, 4 supersequence sets and 2 megasequences are recognized. The characteristics of the major sequence boundaries have been documented with an integrated examination of outcrop, seismic and borehole data, and the ages of these sequence boundaries have been calibrated through the combination of sequence stratigraphy with biostratigraphy. It is discovered that there is good correlation of the sequence stratigraphy of the Cambrian-Ordovician among Tarim, Yangtze and North China platforms. This may illustrate that the development of the Cambrian-Ordovician carbonate sequences in these three platforms is mainly controlled by regional or global sea level changes. This forms the theoretical basis for the construction of high-resolution chronostratigraphic system of the Cambrian-Ordovician in the three platforms in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号