首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
鞠东阳  庞润连  李瑞  杜蔚 《岩石学报》2022,38(4):1025-1042
月球岩浆洋结晶形成的初始月球内部结构是其后续演化过程的开端,其结晶过程受月球岩浆洋的初始深度和物质组成这两个参数的制约。由于缺少直接来自月球深部的岩石样品,目前关于月球岩浆洋演化过程的探讨主要依赖实验和计算模拟手段。岩浆洋模型中形成的月壳厚度是否与探测结果一致是月球岩浆洋演化模型合理性的重要约束。最新的GRAIL(Gravity Recovery and Interior Laboratory)探测数据推算月壳厚度为34~43km,低于阿波罗时期认为的约70km,这对已有的月球岩浆洋演化模型提出了挑战。本文采用并修正FXMOTR程序包,针对月球岩浆洋在不同的初始深度和物质组成情况下的结晶过程,进行了一系列热力学计算模拟。通过量化月球岩浆洋的初始深度和物质组成对月壳厚度的影响,结合关于月球内部微量元素分配的研究结果,对比了月球岩浆洋结晶后期的残余熔体与原始克里普组分(urKREEP)的成分。本文的模拟结果显示,一个全月幔熔融且初始成分为月球初始上月幔组成(LPUM)的岩浆洋将在其深部结晶2.5%石榴子石,形成的月壳厚度符合GRAIL的约束,并且结晶出了合适的urKREEP成分。在此模型的基础上获取了月球初始的内部成分和密度结构,并对后期月幔翻转(Overturn)的程度进行了探讨。  相似文献   

2.
赵娜  朱培民  张秉政  袁悦锋 《地球科学》2015,40(7):1276-1286
由于前人的月震定位结果主要是基于20世纪70、80年代的月球速度模型, 定位结果误差较大, 无法为月震层析成像等研究提供精确的月震参数.随着对月球内部结构研究的不断深入, 月球速度模型及分层结构的精细程度已经有了很大提高.通过对Apollo月震数据解码及分析, 重新拾取了月震初至数据, 在总结前人震源定位的基础上, 利用月球新近速度模型, 采用Geiger震源定位方法进行了月震震源定位, 给出了较为全面的月震参数目录, 并对月震和地震的分布及形成机制进行了对比, 可为以后月震及月球内部结构的深入研究提供更多的依据.   相似文献   

3.
青藏高原板内地震震源深度分布规律及其成因   总被引:6,自引:0,他引:6  
青藏高原板内地震以浅源地震为主, 下地壳基本上没有地震, 地震震源多集中在15~40 km的深度范围, 主要在中地壳内, 呈似层状弥散分布.其中30~33 km深度是一个优势层, 与壳内分层有关.总体上青藏高原南、北部的震源面略呈相向倾斜特征.70~100 km深度区间出现了比较集中的震级较小的地震, 可能与壳幔过渡带的拆离作用有关.高原内部的正断层系与板内地震密切相关, 是板内浅源地震的主控构造.总之, 青藏高原地震震源沿着活动的上地壳脆性层与软弱层之间的脆-韧性过渡带分布.这些板内地震活动属于大陆动力学过程, 与板块碰撞和板块俯冲无关.初步认为青藏高原浅层到深层多震层的成因分别是韧性基底与脆性盖层、韧性下地壳与脆性上地壳、韧性下地壳与脆性上地幔的韧-脆性转换、拆离和解耦的产物.   相似文献   

4.
王旭媛  梁青  陈超  杜劲松  张双喜 《地球科学》2015,40(9):1566-1575
为了探讨月球大型撞击盆地形成后的壳幔物质迁移, 采用新近的月球重力场数据研究壳幔界面的起伏情况, 这对撞击盆地的形成演化研究有重要意义.通过对虹湾-雨海盆地地区玄武岩引起的重力异常进行正演模拟, 发现该部分重力异常仅约占布格重力异常幅值的8%, 布格重力异常主要与壳幔界面起伏有关.对该地区不同解算高度的剩余布格重力异常进行场源边界提取, 发现虹湾-雨海西北部的壳幔界面随深度增加向雨海中心倾斜, 在此区域下方, 壳幔界面会有一个向虹湾方向的额外上隆, 可能为月幔物质曾向此方向涌动造成.分析表明这种月幔上涌情况可能在雨海撞击时形成, 或者可能是形成虹湾的撞击对雨海盆地壳幔结构产生了二次影响, 在虹湾地区的壳幔回弹过程中, 拖动雨海下方的物质向虹湾方向运移造成的.   相似文献   

5.
月海玄武岩是月幔部分熔融喷出月表而形成的,其厚度可以反映月海玄武岩源区的深度。研究月海玄武岩厚度,对进一步认识月球区域岩浆作用或火山作用的演化历史具有不可替代的作用,也能够为整个月球的热演化和岩浆演化提供基本的约束条件。同时,玄武岩厚度可以用以推测月球内部产生玄武岩岩浆的体积,对月球火山作用的岩浆喷发总量以及月球内部的热状态具有指示作用。本文基于多源遥感数据,综合利用撞击坑的形貌特征与月坑挖掘深度法对南海地区撞击坑内(crater)和撞击坑间(intercrater)两类玄武岩地层的厚度进行了估算,并对玄武岩的面积、体积、年龄及岩浆活动做了简单分析。研究结果表明:南海地区撞击坑内的玄武岩厚度变化范围为0.11~4.75 km,平均值约为1.32 km,玄武岩的出露面积和出露体积分别为57.06~10 791.66 km2和10.25~51 260.38 km3;撞击坑间的玄武岩厚度变化范围为0.01~2.18 km,平均值约为0.34 km,玄武岩的出露面积和出露体积分别为6 487.89~33 170.55 km2和2 711.97~11 609.69 km3。因此,南海地区玄武岩厚度的变化范围分布在0.01~4.75 km,平均厚度约为600 m,出露的玄武岩总面积约为2.12×105 km2,总体积约为2.71×105 km3。通过分析南海地区的玄武岩年龄及分布特征,发现南海地区内的岩浆喷发活动主要集中发生在雨海纪至爱拉托逊纪时期,且其局部区域存在多次岩浆喷发及充填过程,但由于晚期玄武岩岩浆的喷发总量不足以覆盖早期已形成的玄武岩,导致晚期玄武岩与早期玄武岩同时存在于同一个玄武岩单元内。南海地区独特的玄武岩分布特征也与地形有关。  相似文献   

6.
印藏碰撞导致了青藏高原内部及周边地区形成巨量储量的成矿带。虽然这一地区的成矿研究非常深入,但仍然需要 完善对“源-运-储”的综合研究,需要从地壳上地幔结构角度对成矿源的起源进行探索。位于哀牢山剪切带南段的大坪- 长安金矿具有幔源成因迹象,该文研究了该矿区及邻区的岩石圈结构,从深部研究成矿来源。通过接收函数方法获得的研 究区剖面,揭示壳幔边界(Moho) 深度在30~40 km,但在金矿矿区下表现为Moho转换震相强烈横向不连续,表现为东西 两侧约3~5 km的下沉。岩石圈软流圈边界(LAB) 的转换震相揭示,研究区的岩石圈厚度为60~80 km,有效约束了研究区 强烈岩石圈减薄后剩余岩石圈的厚度。金矿区西侧思茅块体的岩石圈厚度最薄,位于前人层析成像工作揭示上地幔顶部一 低速体的上方。金矿区下方的岩石圈厚度为~80 km且LAB的转换震相表现为强烈的横向不连续。金矿下Moho和LAB的横 向不连续暗示了金矿区下方存在岩石圈尺度的岩浆通道,即软流圈的地幔物质可以较快速地到达浅表。笔者认为,研究区 的岩石圈结构支持由俯冲驱动的幔源成矿模型,但大坪-长安金矿矿区下的岩石圈尺度的岩浆通道的形成与哀牢山剪切带 的剪切变形直接相关。由Burma俯冲导致的地幔物质上涌对该通道的形成贡献有限。  相似文献   

7.
徐亚  郝天珧 《地球化学》2010,39(1):25-31
月球重力场研究及相关应用是月球科学探测中的重要内容之一。本文回顾了月球重力测量及月球重力场模型、月球地形模型等主要研究进展,总结了月球重力场(包括地形)在月球内部结构研究,特别是在月壳结构以及月球质量瘤等方面取得的研究成果。此外,月球重力场还应用于月幔/月核研究、月球均衡状态、月球物质成分及月球演化历史的研究中。随着我国嫦娥探月计划的实施,利用其探测数据建立自主重力场模型及地形模型成为我国探月研究的基础工作之一。在此基础上可开展月壳结构、月球均衡状态、月球质量瘤及月壳成分等研究,同时借鉴地球科学中相关学术思想和方法技术,从而促进对月球及类地行星等结构的研究。  相似文献   

8.
日本列岛下太平洋俯冲板块的精细结构   总被引:1,自引:0,他引:1  
尽管许多学者对日本列岛下的太平洋俯冲板块做了大量的研究,但板块内部的结构(比如板块厚度,板块内地震波速度随深度的变化以及洋壳的俯冲情况等)仍然不太清楚。利用日本地区密集台网收集到的中深和深发地震到时数据来探讨上述问题。采用三维射线追踪正演模拟法,首先利用333个远震计算得到了日本地区太平洋板块的厚度为85km;然后利用3283个地震(震源深度大于40km)的130227条P波到时进一步研究板块内部的精细结构。结果显示,沿深度方向6个地层段(间隔100km)内的速度扰动值分别为5.5%,4.0%,3.5%,2.5%,2.0%和6.0%,在40~500km范围内速度扰动随深度的增加而减小,这与温度随深度的变化情况相一致。当深度大于500km时,速度扰动突然增大到6.0%,分析认为该异常可能由发生在东亚大陆边缘下方的深发地震无法精确定位导致的。最后利用40~500km深度范围内的近震测试得到日本东北和北海道地区下方洋壳俯冲的深度均为110km,平均厚度分别为7.5km和5km,相对于一维模型的速度扰动分别为1%和-3%。这说明洋壳在俯冲到110km以深时,由于受温度和压力的影响,逐渐脱水、变质,直至与板块融合。通过分析震源与洋壳的位置关系,本研究认为北海道地区比东北地区下方的俯冲洋壳可能含有更多的流体(比如水),导致两地区洋壳内的速度相差如此之大。此外,因为日本南部与洋壳对应的区域多为海洋,观测台站较少,所以本研究无法测试得到该区域内的洋壳俯冲情况。  相似文献   

9.
月震学     
还是在50年代末,美国制定了阿波罗(Apollo)月球登陆探测计划,从此对月球研究进入了一个新纪元。开始时,在探测器中安置了测震仪,测量它在月球表面着陆时的冲击效应,随后在发射阿波罗11、12、14、15及17时,分别在月球表面上安置了测震仪,对月球震动进行直接测量,测量的内容也随之扩大,不单测量后续的探测器着落时的冲击效应,而且还测量月球中发生的其它的震动现象。短短的几年时间里,积累了不少月球上的震动记录,逐渐形成了一门独特的研究领域——月震学。  相似文献   

10.
撞击坑统计定年法及对月球虹湾地区的定年结果   总被引:2,自引:0,他引:2       下载免费PDF全文
赵健楠  黄俊  肖龙  乔乐  王江  胡斯宇 《地球科学》2013,38(2):351-361
撞击作用是行星形成和表面重塑的重要地质过程,记录和揭示了行星的演化历史.撞击作用形成的撞击坑可用于研究天体表面地质单元形成的时间.依据内太阳系天体表面的撞击历史,总结了通过对撞击坑的直径和频率分布进行统计,计算天体表面模式年龄的原理和方法.在此基础上,利用美国“月球勘测轨道器(LRO)”广角相机获得的图像,对月球虹湾地区的撞击坑进行了直径-频率分布统计研究,获得其3个主要地质单元的绝对模式年龄分别为3.33 Ga、3.21 Ga和2.60 Ga,有效限定了本区主要地质事件发生的时间.   相似文献   

11.
This study addresses the issue of what fraction of the impact glass in the regolith of a lunar landing site derives from local impacts (those within a few kilometers of the site) as opposed to distant impacts (10 or more kilometers away). Among 10,323 fragments from the 64-210-μm grain-size fraction of three Apollo 16 regolith samples, 14% are impact glasses, that is, fragments consisting wholly or largely of glass produced in a crater-forming impact. Another 16% are agglutinates formed by impacts of micrometeorites into regolith. We analyzed the glass in 1559 fragments for major- and minor-element concentrations by electron probe microanalysis and a subset of 112 of the fragments that are homogeneous impact glasses for trace elements by secondary ion mass spectrometry. Of the impact glasses, 75% are substantially different in composition from either the Apollo 16 regolith or any mixture of rocks of which the regolith is mainly composed. About 40% of the impact glasses are richer in Fe, Mg, and Ti, as well as K, P, and Sm, than are common rocks of the feldspathic highlands. These glasses must originate from craters in maria or the Procellarum KREEP Terrane. Of the feldspathic impact glasses, some are substantially more magnesian (greater MgO/FeO) or have substantially lower concentrations of incompatible elements than the regolith of the Apollo 16 site. Many of these, however, are in the range of feldspathic lunar meteorites, most of which derive from points in the feldspathic highlands distant from the Procellarum KREEP Terrane. These observations indicate that a significant proportion of the impact glass in the Apollo 16 regolith is from craters occurring 100 km or more from the landing site. In contrast, the composition of glass in agglutinates, on average, is similar to the composition of the Apollo 16 regolith, consistent with local origin.  相似文献   

12.
Mafic impact-melt breccias (IMB) from the Apollo landing sites—particularly Apollo 14, Apollo 15, Apollo 16, and Apollo 17—are abundant and form compositionally distinct groups. These groups exhibit a range of major-element compositions and incompatible-element enrichments. Although concentrations of incompatible elements span a significant range, inter-element ratios vary little and have been used in the past to infer a common KREEP component (KREEP = rich in potassium, rare-earth elements, phosphorus, and other alkali and high-field-strength elements). On the basis of an extensive, high-precision data set for melt-breccia groups from different Apollo landing sites, variations in trace-element signatures of the mafic impact-melt breccias reflect significant differences in KREEP components of source regions. These differences are consistent with variable enrichment or depletion of source regions in those trace elements that fractionated during the latest stages of residual-melt evolution and are more or less related to “lunar granite.” Compared to other sites, the source region of Apollo 14 impact melts had an excess of the elements that are concentrated in lunar granite, suggesting either than this source region was enriched in such a component (K-frac) or that it lost a corresponding mafic component (REEP-frac). Because these are impact-melt breccias formed in large (probably basin) impacts, the indicated geochemical separations must have occurred on a broad scale.

Variations in the incompatible-element concentrations of the IMB groups reported in this paper are used to calculate a revised KREEP incompatible-element composition. On the basis of several extremely enriched lunar samples that retain the incompatible elements in KREEP-like ratios, the KREEP composition is extended to a level of 300 ppm La, or about three times the concentration of high-potassium KREEP as estimated by Warren (1989).  相似文献   

13.
The total number of Earth-crossing Apollo objects larger than 500 m in radius is estimated to be 600, based on failure of chance rediscovery, lunar crater frequency and completeness-of-search results of Shoemaker, Helin and Gillett. The number of Amor objects (perihelion between 1.0 and 1.3 A.U.) is estimated to be about 500. These estimates are about an order of magnitude higher than those given by previous workers, and these objects appear sufficiently numerous to dominate post-mare lunar and terrestrial cratering (d ≥ 10 km).The terrestrial meteorite and meteorite yield of 100-106 g bodies derived from fragmentation of Apollo objects is re-evaluated using this estimate, together with more recent data on asteroid albedos and on hypervelocity impact. Terrestrial rate of impacts of these fragments at sufficiently low velocities to penetrate the atmosphere is estimated to be ~2 × 108g/yr. This is in the middle of the range of the actual extraterrestrial impact rate based on photographic fireball surveys (Prairie Network), lunar seismometry, and recovery of meteorites. It is likely that most ordinary chondrites are fragments of Apollo objects, provided that these fragments are sufficiently strong to survive atmospheric entry.Possible asteroidal and cometary sources of Apollo objects are reviewed. Several mechanisms for the removal of asteroids into Earth-crossing orbit are qualitatively acceptable, but appear inadequate by at least an order of magnitude to supply the required number. Most Apollo objects are probably the cores of comets which have lost their volatile material by repeated solar evaporation, as proposed by Öpik.The distribution of the component of the Apollo objects' angular momentum perpendicular to the plane of the solar system is tabulated. It is found that considerable non-random clustering of these values exists, for which no adequate explanation is known.  相似文献   

14.
We present compositional data for 358 lithic fragments (2-4-mm size range) and 15 soils (<1-mm fines) from regolith samples collected at the Apollo 12 site. The regolith is dominated by mare basalt, KREEP impact-melt breccias (crystalline and glassy), and regolith breccias. Minor components include alkali anorthosite, alkali norite, granite, quartz monzogabbro, and anorthositic rocks from the feldspathic highlands. The typical KREEP impact-melt breccia of Apollo 12 (mean Th: 16 μg/g) is similar to that of the Apollo 14 site (16 μg/g), 180 km away. Both contain a minor component (0.3% at Apollo 12, 0.6% at Apollo 14) of FeNi metal that is dissimilar to metal in ordinary chondrites but is similar to metal found in Apollo 16 impact-melt breccias. The Apollo 12 regolith contains another variety of KREEP impact-melt breccia that differs from any type of breccia described from the Apollo sites in being substantially richer in Th (30 μg/g) but with only moderate concentrations of K. It is, however, similar in composition to the melt breccia lithology in lunar meteorite Sayh al Uhaymir 169. The average composition of typical mature soil corresponds to a mixture of 65% mare basalt, 20% typical KREEP impact-melt breccia, 7% high-Th impact-melt breccia, 6% feldspathic material, 2.6% alkali noritic anorthosite, and 0.9% CM chondrite. Thus, although the site was resurfaced by basaltic volcanism 3.1-3.3 Ga ago, a third of the material in the present regolith is of nonmare origin, mainly in the form of KREEP impact-melt breccias and glass. These materials occur in the Apollo 12 regolith mainly as a result of moderate-sized impacts into surrounding Fra Mauro and Alpes Formations that formed craters Copernicus (93 km diameter, 406 km distance), Reinhold (48 km diameter, 196 km distance), and possibly Lansberg (39 km diameter, 108 km distance), aided by excavation of basalt interlayers and mixing of regolith by small, local impacts. Anomalous immature soil samples 12024, 12032, and 12033 contain a lesser proportion of mare basalt and a correspondingly greater proportion of KREEP lithologies. These samples consist mainly of fossil or paleoregolith, likely ejecta from Copernicus, that was buried beneath the mixing zone of micrometeorite gardening, and then brought to the near surface by local craters such as Head, Bench, and Sharp Craters.  相似文献   

15.
Glass droplets of possible pyroclastic origin are present in the lunar regolith at the Apollo 11, 15, and 17 sites. The droplets may be derived from deposits, interbedded with mare lava flows, which have been partly mixed into the regolith by impact processes. Orange glass droplets from the Apollo 17 site (spheres, ovoids, broken droplets) are both chemically and texturally homogeneous and have rare olivine phenocrysts. None of the droplets contain shock damaged crystals which are common in glass produced during meteorite impacts. The droplets are similar to those formed in terrestrial lava fountains and are here interpreted as tephra.The homogeneous glass droplets sampled at the Apollo 11, 15 and 17 sites are located on or close to mare basin rims. Vents for the youngest mare lava flows, located near basin rims, have been identified photogeologically. Dark mantle deposits, interpreted as pyroclastic blankets in some locations, and numerous rules are also present on the mare surface, near basin rims. The glass droplets, having ages nearly contemporaneous with the associated mare lavas, may be concentrated locally near such vent areas. This association is in accordance with the limited extent of ash deposits from terrestrial lava fountains (? km from the vent).  相似文献   

16.
Lunar geochemistry as told by lunar meteorites   总被引:7,自引:0,他引:7  
About 36 lunar meteorites have been found in cold and hot deserts since the first one was found in 1979 in Antarctica. All are random samples ejected from unknown locations on the Moon by meteoroid impacts. Lithologically and compositionally there are three extreme types: (1) brecciated anorthosites with high Al2O3 (26–31%), low FeO (3–6%), and low incompatible elements (e.g., <1 μg/g Th), (2) basalts and brecciated basalts with high FeO (18–22%), moderately low Al2O3 (8–10%) and incompatible elements (0.4–2.1 μg/g Th), and (3) an impact-melt breccia of noritic composition (16% Al2O3, 11% FeO) with very high concentrations of incompatible elements (33 μg/g Th), a lithology that is identified as KREEP on the basis of its similarity to Apollo samples of that designation. Several meteorites are polymict breccias of intermediate composition because they contain both anorthosite and basalt. Despite the large range in compositions, a variety of compositional parameters together distinguish lunar meteorites from terrestrial materials. Compositional and petrographic data for lunar meteorites, when combined with mineralogical and compositional data obtained from orbiting spacecraft in the 1990s, suggest that Apollo samples identified with the magnesian (Mg-rich) suite of nonmare rocks (norite, troctolite, dunite, alkali anorthosite, and KREEP) are all products of a small, geochemically anomalous (noritic, high Th) region of crust known as the Procellarum KREEP Terrane and are not, as generally assumed, indigenous to the vast expanse of typical feldspathic crust known as the Feldspathic Highlands Terrane. Magnesian-suite rocks such as those of the Apollo collection do not occur as clasts in the feldspathic lunar meteorites. The misconception is a consequence of four historical factors: (1) the Moon has long been viewed as simply bimodal in geology, mare or highlands, (2) one of the last, large basin-forming bolides impacted in the Procellarum KREEP Terrane, dispersing Th-rich material, (3) although it was not known at the time, the Apollo missions all landed in or near the anomalous Procellarum KREEP Terrane and collected many Th-rich samples formed therein, and (4) the Apollo samples were interpreted and models for lunar crust formation developed without recognition of the anomaly because global data provided by orbiting missions and lunar meteorites were obtained only years later.  相似文献   

17.
The results of the processing and analysis of the global earthquake distribution (more than 250000 events based on the ISC catalog) and the study of moonquakes distribution (about 900 events based on the published materials) are presented. It was found that the number of events and the energy for both cases show a bimodal distribution with maximums in the middle latitudes, zero values at the polarcaps, and a local minimum in the vicinity of the equator. The probable influence of tectonic processes on the revealed character of the seismic event distribution is analyzed, and the role of Earth tides in the activation of the seismicity in the symmetric zones on both sides of the equator is shown.  相似文献   

18.
The regolith of the Apollo 16 lunar landing site is composed mainly of feldspathic lithologies but mafic lithologies are also present. A large proportion of the mafic material occurs as glass. We determined the major element composition of 280 mafic glasses (>10 wt% FeO) from six different Apollo 16 soil samples. A small proportion (5%) of the glasses are of volcanic origin with picritic compositions. Most, however, are of impact origin. Approximately half of the mafic impact glasses are of basaltic composition and half are of noritic composition with high concentrations of incompatible elements. A small fraction have compositions consistent with impact mixtures of mare material and material of the feldspathic highlands. On the basis of major-element chemistry, we identified six mafic glass groups: VLT picritic glass, low-Ti basaltic glass, high-Ti basaltic glass, high-Al basaltic glass, KREEPy glass, and basaltic-andesite glass. These glass groups encompass 60% of the total mafic glasses studied. Trace-element analyses by secondary ion mass spectroscopy for representative examples of each glass group (31 total analyses) support the major-element classifications and groupings. The lack of basaltic glass in Apollo 16 ancient regolith breccias, which provide snapshots of the Apollo 16 soil just after the infall of Imbrium ejecta, leads us to infer that most (if not all) of the basaltic glass was emplaced as ejecta from small- or moderate-sized impacts into the maria surrounding the Apollo 16 site after the Imbrium impact. The high-Ti basaltic glasses likely represent a new type of basalt from Mare Tranquillitatis, whereas the low-Ti and high-Al basaltic glasses possibly represent the composition of the basalts in Mare Nectaris. Both the low-Ti and high-Al basaltic glasses are enriched in light-REEs, which hints at the presence of a KREEP-bearing source region beneath Mare Nectaris. The basaltic andesite glasses have compositions that are siliceous, ferroan, alkali-rich, and moderately titaniferous; they are unlike any previously recognized lunar lithology or glass group. Their likely provenance is within the Procellarum KREEP Terrane, but they are not found within the Apollo 16 ancient regolith breccias and therefore were likely deposited at the Apollo 16 site post-Imbrium. The basaltic-andesite glasses are the most ferroan variety of KREEP yet discovered.  相似文献   

19.
利用NASA行星数据系统提供Apollo计划登月点采样线路影像数据,通过与嫦娥二号CCD数据、印度M~3数据空间校正获得采样路线坐标。开展嫦娥二号CCD数据与印度M~3数据MAP(后验概率)融合并选择Apollo 15、Apollo 16-62231的LSCC测得的标准岩石双向反射率光谱与M~3、嫦娥二号进行交叉定标。本文采用月球岩石光谱谱型全特征分析方法,选取涵盖Apollo计划登月获取的36个基站主要岩性87种、285件岩石样品,利用校正后的M~3数据分析月球典型岩石各阶吸收反射特征,建立月球典型岩石标准遥感影像光谱库,此后应用Apollo 623个岩石样品进行对比得到很好结果,同时完成Apollo 16登月点周围领域岩性分布图,并讨论了研究区的岩石成因,Apollo 16区域形成于高地大撞击,在早期的研究中已经被用于划分月球年代,本文方法对于月球岩石类别研究与理解月球的岩浆演化具有重要的研究价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号