首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Conventional processes of extracting magnetotelluric signals from noisy records are reviewed: instrument noises and noises that are generated close to the detectors can be eliminated by the usual auto- and crosscorrelation processes. Identification of coherent noises, such as pulses due to field sources that are not uniform over at least 100 km in oil exploration or 1000 km in crustal studies, is much more tedious. The 5 components Hx, Hy, Hz, Ex, Ey, of the magnetotelluric field have been recorded in many areas in France at different periods of the year, (a) in non-uniform field sources in the vicinity of electric railways and of 50 cycle power lines, and (b) in areas of strong inhomogeneity at depth on the flanks of steep structures and near the sea shore. Means for detecting non-uniformity are reviewed. Measuring the vertical component of magnetic pulses is a good way of estimating field uniformity: if H vertical/H horizontal <10%, the uniform field assumption is valid, and the classical restitution formulas can be used; if H vertical/H horizontal > 10%, uniformity can not be assumed and there is some difficulty in deciding whether non-uniformity is due to the field source or to anisotropy or inhomogeneities at depth. Several ways to solve this difficulty are described. The reliability of calculation of actual resistivity at various depths is examined as a function of the precision of apparent resistivity measurements.  相似文献   

2.
Summary The finite element method, with triangular elements, is used to study the effect of a two-dimensional sloping contact on the surface electromagnetic fields. It is found in the case ofH-polarization and small slopes that the electric field and the apparent resistivity near the contact, on the conductive side, are higher than their asymptotic values. In the case ofE-polarization the apparent resistivity and phase values on the conductive side fall off less rapidly to their asymptotic values with decreasing slope resulting in higher apparent resistivity and phase values on the conductive side, than those expected for a vertical contact. The peak in the amplitude and phase of the normalized vertical magnetic field shifts from the resistive side for a vertical contact to the conductive side for a sloping contact. Far from the sloping contact, on the conductive side, higher values are observed for the normalized vertical magnetic field than in the case of a vertical contact.  相似文献   

3.
Night-time F-region vertical electrodynamic drifts at the magnetic equatorial station, Trivandrum are obtained for a period of 2 years, 1989 and 1990 (corresponding to solar cycle maximum epoch), using ionosonde hF data. The seasonal variation of the vertical drift is found to be associated with the longitudinal gradients of the thermospheric zonal wind. Further, the seasonal variation of the prereversal enhancement of the vertical drift is associated with the time difference between the sunset times of the conjugate E-regions (magnetic field line linked to F-region) which is indicative of the longitudinal gradients of the conductivity (of the E-region). The vertical drifts and the causative zonal electric fields at Trivandrum are compared with those at Jicamarca and F-region zonal electric field models. It is seen that the night-time downward drift (as also the causative westward electric field) at Jicamarca is greater than that at Trivandrum. The prereversal enhancement of the drift is greater at Jicamarca than at Trivandrum during the summer and the equinoxes, whereas during the winter the opposite is the case.  相似文献   

4.
The effects of morning magnetospheric substorms in the variations in near-Earth atmospheric electricity according to the observations of the electric field vertical component (E z ), at Hornsund polar observatory (Spitsbergen). The E z, data, obtained under the conditions of fair weather (i.e., in the absence of a strong wind, precipitation, and fog), are analyzed. An analysis of the observations indicated that the development of a magnetospheric substorm in the Earth’s morning sector is as a rule accompanied by positive deviations in E z, independently of the Hornsund location: in the polar cap or at its boundary. In all considered events, Hornsund was located near the center of the morning convection vortex. In the evening sector, when Hornsund fell in the region of evening convection vortex, the development of a geomagnetic substorm was accompanied by negative deviations in E z., It has been concluded that the variations in the atmospheric electric field E z), at polar latitudes, observed during the development of magnetospheric substorms, result from the penetration of electric fields of polar ionospheric convection (which are intensified during a substorm) to the Earth’s surface.  相似文献   

5.
Laboratory analogue model magnetic measurements are carried out for a model of the region including Tasmania, Bass Strait with its highly conductive deep sedimentary basins, and the south coast of mainland Australia. The model source frequencies used simulate naturally occurring geomagnetic variations of periods 5–120 min. In-phase and quadrature magnetic Hx, Hy and Hz field measurements for the modelled region are presented for an approximately uniform overhead horizontal source field for E-polarization (electric field of the source in the N-S direction) and for H-polarization (electric field of the source in the E-W direction). Large anomalous in-phase and quadrature model magnetic fields are observed over Bass Strait and the coastal regions at short periods for both E- and H-polarization, but with increasing period, the field anomalies decrease more rapidly for E-polarization, than for H-polarization. The difference in response with polarization for the Bass Strait region is attributed to current induced in the deep ocean, for all periods, being channelled through Bass Strait for H-polarization but not for E-polarization. The persistent large coastal field anomalies elsewhere, for H-polarization, can be accounted for by the coastal current concentrations due to currents induced in the deep ocean for all periods deflected to the south and to the north by the shelving sea-floor and channelled through Bass Strait and around the southern coast of Tasmania. The phenomena of current deflection and channelling for H-polarization for the geometry of the southern Australia coastline and associated ocean bathymetry is particularly effective in producing field anomalies for a large period range.The coastal horizontal Hx and Hy field anomalies, present for E-polarization at short periods and for H-polarization at all periods, do not extend far inland, and thus, for inland station sites somewhat removed from the coast, should not present serious problems for magnetic soundings in field work. The sharp vertical field (Hz) gradient over Tasmania at short periods, which is predominantly in the E-W direction for E-polarization and the N-S direction for H-polarization, is strongly frequency dependent, becoming almost undetectable at 60 min. The behaviour of the Hz field gradients, however, are very similar from traverse to traverse over inland Tasmania, and thus, the effects of the ocean should not present too serious a problem in the interpretation of field station studies. The discrepancies between model and field station results should be useful in mapping geological boundaries in the region.  相似文献   

6.
In the theory of E-region plasma instabilities, the ambient electric field and electron density gradient are both included in the same dispersion relation as the key parameters that provide the energy for the generation and growth of electrostatic plasma waves. While there exist numerous measurements of ionospheric electric fields, there are very few measurements and limited knowledge about the ambient electron density gradients, Ne, in the E-region plasma. In this work, we took advantage of the EISCAT CP1 data base and studied statistically the vertical electron density gradient length, Lz = Ne/(dNe/dz), at auroral E-region heights during both eastward and westward electrojet conditions and different ambient electric field levels. Overall, the prevailing electron density gradients, with Lz ranging from 4 to 7 km, are found to be located below 100 km, but to move steadily up in altitude as the electric field level increases. The steepest density gradients, with Lz possibly less than 3 km, occur near 110 km mostly in the eastward electrojet during times of strong electric fields. The results and their implications are examined and discussed in the frame of the linear gradient drift instability theory. Finally, it would be interesting to test the implications of the present results with a vertical radar interferometer.  相似文献   

7.
The generalised three layer boundary value problem with a transition layer sand-witched between an isotropic overburden and dipping anisotropic substratum is discussed assuming that plane electro-magnetic waves are incident normally over the air-earth inter-face. The tangential electric (Ey) and magnetic (Hx) fields and the expression for surface-impedance (Ey/Hx) have been evaluated at the earth's surface. Through numerical analysis it is shown that changes in the values of the parameters m (coefficient of anisotropy), h (thickness of the transition layer), α (angle of inclination of the dipping beds), and b (conductivity ratio between substratum and upper layer) modify the amplitude and phase-variation curves (with skindepth) significantly.  相似文献   

8.
Electromagnetic geophysical methods often rely on measurements of naturally occurring or artificially impressed electric fields. It is technically impossible, however, to measure the electric field directly. Instead, the electric field is approximated by recording the voltage difference between two electrodes and dividing the obtained voltage by the distance between the electrodes. Typically, modelling and inversion algorithms assume that the electric fields are obtained over infinitely short point-dipoles and thus measured fields are assigned to a single point between the electrodes. Such procedures imply several assumptions: (1) The electric field between the two electrodes is regarded as constant or being a potential field and (2) the receiver dimensions are negligible compared to the dimensions of the underlying modelling grid. While these conditions are often fulfilled for horizontal electric fields, borehole sensors for recordings of the vertical electric field have dimensions in the order of ≈100 m and span several modelling grid cells. Observations from such elongated borehole sensors can therefore only be interpreted properly if true receiver dimensions and variations of electrical conductivity along the receiver are considered. Here, we introduce a numerical solution to include the true receiver geometry into electromagnetic modelling schemes, which does not rely on such simplifying assumptions. The algorithm is flexible, independent of the chosen numerical method to solve Maxwell's equations and can easily be implemented in other electromagnetic modelling and inversion codes. We present conceptual modelling results for land-based controlled source electromagnetic scenarios and discuss consideration of true receiver geometries for a series of examples of horizontal and vertical electric field measurements. Comparison with Ez data measured in an observation borehole in a producing oil field shows the importance of both considering the true length of the receiver and also its orientation. We show that misalignment from the vertical axis as small as 0.1° may seriously distort the measured signal, as horizontal electric field components are mapped into the desired vertical component. Adequate inclusion of elongated receivers in modelling and inversion can also help reducing effects of static shift when interpreting (natural source) magnetotelluric data.  相似文献   

9.
Among the components of normal dipole fields useful in high-frequency electric prospecting, the electric components E and E y of the normal field of the horizontal electric dipole are considerably complicated in structure. By checking these values by means of computer mathematics in combination with the development of the classical (dynamical) theory of interference soundings, the above expressions alluded to in geophysical literature were shown to contain considerable errors. The present paper is devoted to this question.  相似文献   

10.
Seismic data processing typically deals with seismic wave reflections and neglects wave diffraction that affect the resolution. As a general rule, wave diffractions are treated as noise in seismic data processing. However, wave diffractions generally originate from geological structures, such as fractures, karst caves, and faults. The wave diffraction energy is much weaker than that of the reflections. Therefore, even if wave diffractions can be traced back to their origin, their energy is masked by that of the reflections. Separating and imaging diffractions and reflections can improve the imaging accuracy of diffractive targets. Based on the geometrical differences between reflections and diffractions on the plane-wave record; that is, reflections are quasi-linear and diffractions are quasi-hyperbolic, we use plane-wave prediction filtering to separate the wave diffractions. First, we estimate the local slope of the seismic event using planewave destruction filtering and, then, we predict and extract the wave reflections based on the local slope. Thus, we obtain the diffracted wavefield by directly subtracting the reflected wavefield from the entire wavefield. Finally, we image the diffracted wavefield and obtain high-resolution diffractive target results. 2D SEG salt model data suggest that the plane-wave prediction filtering eliminates the phase reversal in the plane-wave destruction filtering and maintains the original wavefield phase, improving the accuracy of imaging heterogeneous objects.  相似文献   

11.
An oscillating vertical line current source was used in the laboratory to simulate the naturally occurring 8 Hz Schumann Resonance field due to lightning strokes. Vertical to horizontal magnetic field ratios (coast effect), and magnetotelluric ratios, for traverses over a laboratory model of the Assistance Bay region of Cornwallis Island (N.W.T. Canada) for the vertical line current source field are compared with those for an overhead uniform source field. The E- and H-polarizations of the source fields used are defined as the cases of the horizontal magnetic field of the source roughly perpendicular and parallel to the general coastline, respectively.The magnetic field ratios are essentially identical for the two field sources for E-polarization, but differ by a factor of approximately two for H-polarization, with the ratios greater for the overhead source than for the vertical line current source. The magnetotelluric ratios are found to be identical for the two field sources of each of the E- and H-polarizations.  相似文献   

12.
Using the hourly mean data of the horizontal (H) and vertical (Z) components of the geomagnetic field at the set of nine observatories in India, it has been found that the Disturbance Daily Variation (SD) of H shows a prominent midday depression over the magnetic equator of the H field and a midday increase of Z field at stations near the northern fringe of the equatorial electrojet belt. The magnetic disturbance introduces a westward electric field over the equatorial region, causing a band of westward ionospheric current over the magnetic equator during the day time hours. The latitudinal extent of the disturbance time counter electrojet current seems to be larger than that of quiet time normal electrojet current. This suggests a systematic westward electric field superposed on the normal Sq field at low latitude ionosphere during disturbed periods, the source of which has to be clearly defined. Further correlative data analysis is required to isolate these sources of the disturbed equatorial electric fields.  相似文献   

13.
Using EISCAT data, we have studied the behavior of the E region electron temperature and of the lower F region ion temperature during a period that was particularly active geomagnetically. We have found that the E region electron temperatures responded quite predictably to the effective electric field. For this reason, the E region electron temperature correlated well with the lower F region ion temperature. However, there were several instances during the period under study when the magnitude of the E region electron temperature response was much larger than expected from the ion temperature observations at higher altitudes. We discovered that these instances were related to very strong neutral winds in the 110–175 km altitude region. In one instance that was scrutinized in detail using E region ion drift measurement in conjunction with the temperature observations, we uncovered that, as suspected, the wind was moving in a direction closely matching that of the ions, strongly suggesting that ion drag was at work. In this particular instance the wind reached a magnitude of the order of 350 m/s at 115 km and of at least 750 m/s at 160 km altitude. Curiously enough, there was no indication of strong upper F region neutral winds at the time; this might have been because the event was uncovered around noon, at a time when, in the F region, the E × B drift was strongly westward but the pressure gradients strongly northward in the F region. Our study indicates that both the lower F region ion temperatures and the E region electron temperatures can be used to extract useful geophysical parameters such as the neutral density (through a determination of ion-neutral collision frequencies) and Joule heating rates (through the direct connection that we have confirmed exists between temperatures and the effective electric field).  相似文献   

14.
This paper presents more data on the properties of type-1 irregularities in the nighttime midlatitude E-region ionosphere. The measurements were made with a 50-MHz Doppler radar system operating in Crete, Greece. The type-1 echoes last from several seconds to a few minutes and are characterized by narrow Doppler spectra with peaks corresponding to wave phase velocities of 250–350 m/s. The average velocity of 285 m/s is about 20% lower than nominal E-region ion-acoustic speeds, probably because of the presence of heavy metallic ions in the sporadic-E-layers that appear to be associated with the mid-latitude plasma instabilities. Sometimes the type-1 echoes are combined with a broad spectrum of type-2 echoes; at other times they dominate the spectrum or may appear in the absence of any type-2 spectral component. We believe these echoes are due to the modified two-stream plasma instability driven by a polarization electric field that must be larger than 10 mV/m. This field is similar in nature to the equatorial electrojet polarization field and can arise when patchy nighttime sporadic-E-layers have the right geometry.  相似文献   

15.
Small-scale (scales of ∼0.5–256 km) electric fields in the polar cap ionosphere are studied on the basis of measurements of the Dynamics Explorer 2 (DE-2) low-altitude satellite with a polar orbit. Nineteen DE-2 passes through the high-latitude ionosphere from the morning side to the evening side are considered when the IMF z component was southward. A rather extensive polar cap, which could be identified using the ɛ-t spectrograms of precipitating particles with auroral energies, was formed during the analyzed events. It is shown that the logarithmic diagrams (LDs), constructed using the discrete wavelet transform of electric fields in the polar cap, are power law (μ ∼ s α). Here, μ is the variance of the detail coefficients of the signal discrete wavelet transform, s is the wavelet scale, and index α characterizes the LD slope. The probability density functions PE, s) of the electric field fluctuations δE observed on different scales s are non-Gaussian and have intensified wings. When the probability density functions are renormalized, that is constructed of δE/s γ, where γ is the scaling exponent, they lie near a single curve, which indicates that the studied fields are statistically self-similar. In spite of the fact that the amplitude of electric fluctuations in the polar cap is much smaller than in the auroral zone, the quantitative characteristics of field scaling in the two regions are similar. Two possible causes of the observed turbulent structure of the electric field in the polar cap are considered: (1) the structure is transferred from the solar wind, which is known to have turbulent properties, and (2) the structure is generated by convection velocity shears in the region of open magnetic field lines. The detected dependence of the characteristic distribution of turbulent electric fields over the polar cap region on IMF B y and the correlation of the rms amplitudes of δE fluctuations with IMF B z and the solar wind transfer function (B y 2 + B z 2)1/2sin(θ/2), where θ is the angle between the geomagnetic field and IMF reconnecting on the dayside magnetopause when IMF B z < 0, together with the absence of dependence on the IMF variability are arguments for the second mechanism.  相似文献   

16.
The dependence of the maximal values of the |Dst| and AE geomagnetic indices observed during magnetic storms on the value of the interplanetary electric field (E y ) was studied based on the catalog of the large-scale solar wind types created using the OMNI database for 1976–2000 [Yermolaev et al., 2009]. An analysis was performed for eight categories of magnetic storms caused by different types of solar wind streams: corotating interaction regions (CIR, 86 storms); magnetic clouds (MC, 43); Sheath before MCs (ShMC, 8); Ejecta (95); Sheath (ShE, 56); all ICME events (MC + Ejecta, 138); all compression regions Sheaths before MCs and Ejecta (ShMC + ShE, 64); and an indeterminate type of storm (IND, 75). It was shown that the |Dst| index value increases with increasing electric field E y for all eight types of streams. When electric fields are strong (E y > 11 mV m−1), the |Dst| index value becomes saturated within magnetic clouds MCs and possibly within all ICMEs (MC + Ejecta). The AE index value during magnetic storms is independent of the electric field value E y for almost all streams except magnetic clouds MCs and possibly the compressed (Sheath) region before them (ShMC). The AE index linearly increases within MC at small values of the electric field (E y < 11 mV m−1) and decrease when these fields are strong (E y > 11 mV m−1). Since the dynamic pressure (Pd) and IMF fluctuations (σB) correlate with the E y value in all solar wind types, both geomagnetic indices (|Dst| and AE) do not show an additional dependence on Pd and IMF δB. The nonlinear relationship between the intensities of the |Dst| and AE indices and the electric field E y component, observed within MCs and possibly all ICMEs during strong electric fields E y , agrees with modeling the magnetospheric-ionospheric current system of zone 1 under the conditions of the polar cap potential saturation.  相似文献   

17.
Utilizing shear-wave (S-wave) data acquired with compressional waves (P-waves) is becoming more common as joint imaging and inversion techniques improve. Interest in S-waves radiated from vertical sources and buried explosives exploits conversion to P-waves as primary reflections (SP-waves) for reducing acquisition costs and for application to legacy data. However, recent investigations overstate the extent of SP-wave illumination and show isotropic processing results with narrow bandwidth frequency and wavenumber data. I demonstrate that illumination with SP-waves is limited in general to near vertical polar angles up to around 30° or 35° for VP/VS of 2 or 3, respectively. At greater angles, S-waves are typically in the P-wave evanescent range and cannot excite SP-wave reflections. Contrary to recent claims, these sources for P-wave do not radiate SH-waves polarized in horizontal planes in all azimuths. I show these properties for isotropic media with radiation expressions for amplitude derived in vector slowness coordinates. Also, I extend these expressions to transversely isotropic media with a vertical symmetry axis to show agreement with synthetic seismic data that only quasi SV-waves are radiated and become more narrowly focused towards 45°. Furthermore, in orthorhombic media, synthetic data show that fast S1- and slow S2-waves polarized parallel and perpendicular to fractures may appear as SV- and SH-waves. For the partially saturated fracture model studied here, S1-wave radiation has broader azimuthal illumination than slow S2-waves, which are more narrowly focused in azimuth. These produce SP-wave splitting signatures on vertical component reflection data that are nearly identical to PS-wave signatures on radial horizontal component data. Separating these fast and slow SP-waves is an additional processing challenge.  相似文献   

18.
地震绕射波是地下非连续性地质体的地震响应,绕射波成像对地下断层、尖灭和小尺度绕射体的识别具有重要的意义.在倾角域共成像点道集中,反射波同相轴表现为一条下凸曲线,能量主要集中在菲涅耳带内,绕射波能量则比较发散.由于倾角域菲涅耳带随偏移距变化而存在差异,因此本文提出一种在倾角-偏移距域道集中精确估计菲涅耳带的方法,在各偏移距的倾角域共成像点道集中实现菲涅耳带的精确切除,从而压制反射波.在倾角-偏移距域道集中还可以分别实现绕射波增强,绕射波同相轴相位校正,因此能量弱的绕射波可以清晰地成像.在倾角域共成像点道集中,反射波同相轴的最低点对应于菲涅耳带估计所用的倾角,因此本文提出一种在倾角域共成像点道集中直接自动拾取倾角场的方法.理论与实际资料试算验证了本文绕射波成像方法的有效性.  相似文献   

19.
The diurnal variations in the amplitude and parameters of polarization ellipses of the first Schumann resonance according to three magnetic field components, observed on December 1–10, 2007, at the Barentsburg and Lovozero observatories, have been studied. Ellipses have been constructed in the (H, D) and (H, Z) planes. The value of the minor axis, inclination of the major axis, ellipticity, and the rotation direction have been estimated. The vertical magnetic component of the Schumann resonance is three to four times as small as the horizontal component. The difference in the diurnal variations in the ellipse parameters between both observatories has been found. The effect can be caused by a difference in the Earth’s conductivity in the vicinity of the observatories and by conductivity anisotropy. The major axis inclination and ellipticity have semidiurnal components. The polarization vector mostly rotates from D to H in the horizontal plane and from Z to H in the vertical plane at both stations.  相似文献   

20.
Electrokinetic phenomena in a water-porous medium with a fractal structure above percolation threshold are theoretically investigated. Fracture zone with space-variable porosity is considered as a model of an earthquake hypocenter zone in which the electrokinetic current results from fluid filtration in a fractal pore network. A critical exponent of the streaming potential coefficient is found to depend on both the transport critical exponent and correlation length critical exponent. In this model, logarithmic dependence of electric field amplitude E on the earthquake magnitude M is derived which is compatible with the one observed by the VAN group. Without fractal properties, this form of dependence contradicts the empirical data. The electromagnetic field far from the hypocenter is calculated, which leads to the prediction of weak magnetic field variations. To explain the observed amplitude of VAN's Seismic Electric Signals (SES), the electric source must be at a distance of about 10 km from the registration point if the medium is homogeneous. Therefore, some conductive channel(s) are needed to explain the long distance selective SES transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号