首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Estuarial saline wetlands have been recognized as a vital role in CO2 cycling. However, insufficient attention has been paid to estimating CO2 fluxes from estuarial saline wetlands. In this study, the static chamber-gas chromatography (GC) method was used to quantify CO2 budget of an estuarial saline reed (Phragmites australis) wetland in Jiaozhou Bay in Qingdao City of Shandong Province, China during the reed growing season (May to October) in 2014. The CO2 budget study involved net ecosystem CO2 exchange (NEE), ecosystem respiration (Reco) and gross primary production (GPP). Temporal variation in CO2 budget and the impact of air/soil temperature, illumination intensity and aboveground biomass exerted on CO2 budget were analyzed. Results indicated that the wetland was acting as a net sink of 1129.16 g/m2during the entire growing season. Moreover, the values of Reco and GPP were 1744.89 g/m2 and 2874.05 g/m2, respectively; the ratio of Reco and GPP was 0.61. Diurnal and monthly patterns of CO2 budget varied significantly during the study period. Reco showed exponential relationships with air temperature and soil temperature at 5 cm, 10 cm, 20 cm depths, and soil temperature at 5 cm depth was the most crucial influence factor among them. Meanwhile, temperature sensitivity (Q10) of Reco was negatively correlated with soil temperature. Light and temperature exerted strong controls over NEE and GPP. Aboveground biomass over the whole growing season showed non-linear relationships with CO2 budget, while those during the early and peak growing season showed significant linear relationships with CO2 budget. This research provides valuable reference for CO2 exchange in estuarial saline wetland ecosystem.  相似文献   

2.
In order to study the diurnal variation of soil CO_2 efflux from temperate meadow steppes in Northeast China, and determine the best time for observation, a field experiment was conducted with a LI-6400 soil CO_2 flux system under five typical plant communities(Suaeda glauca(Sg), Chloris virgata(Cv), Puccinellia distans(Pd), Leymus chinensis(Lc) and Phragmites australis(Pa)) and an alkali-spot land(As) at the meadow steppe of western Songnen Plain. The results showed that the diurnal variation of soil CO_2 efflux exhibited a single peak curve in the growing season. Diurnal maximum soil respiration(Rs) often appeared between 11:00 and 13:00, while the minimum occurred at 21:00–23:00 or before dawn. Air temperature near the soil surface(Ta) and soil temperature at 10 cm depth(T10) exerted dominant control on the diurnal variations of soil respiration. The time-windows 7:00–9:00 could be used as the optimal measuring time to represent the daily mean soil CO_2 efflux at the Cv, Pd, Lc and Pa sites. The daily mean soil CO_2 efflux was close to the soil CO_2 efflux from 15:00 to 17:00 and the mean of 2 individual soil CO_2 efflux from 15:00 to 19:00 at the As and Sg sites, respectively. During nocturnal hours, negative soil CO_2 fluxes(CO_2 downwards into the soil) were frequently observed at the As and Sg sites, the magnitude of the negative CO_2 fluxes were 0.10–1.55 μmol/(m~2·s) and 0.10–0.69 μmol/(m~2·s)at the two sites. The results implied that alkaline soils could absorb CO_2 under natural condition, which might have significant implications to the global carbon budget accounting.  相似文献   

3.
Chinese cabbage was cultivated in upland soil with the addition of biochar in order to investigate the potential for reduction of greenhouse gas emissions. Barley straw biochar (BSB) was introduced in a Wagner pot (1/5000a) in amounts of 0 (BSB0, control), 100 (BSB100), 300 (BSB300), and 500 (BSB500) kg 10a-1. After the addition of BSB into the upland soil, carbon dioxide (CO2) emission increased while methane (CH4) and nitrous oxide (N2O) emissions decreased. The highest CO2 flux was measured for the BSB500 sample, (84.6 g m-2) followed by BSB300, BSB100, and BSB0 in decreasing order. Relative to those of control, the total CH4 flux and N2O flux for the BSB500 treatment were lower by 31.6% and 26.1%, respectively. The global warming potential (GWP) of the treatment without biochar was 281.4 g CO2 m-2 and those for treatments with biochar were in the range from 194.1 to 224.9 g CO2 m-2. Therefore, introducing BSB into upland soil to cultivate Chinese cabbages can reduce the global warming potential.  相似文献   

4.
Wetland stores substantial amount of carbon and may contribute greatly to global climate change debate. However, few researches have focused on the effects of global climate change on carbon mineralization in Zoigê al-pine wetland, Qinghai-Tibet Plateau, which is one of the most important peatlands in China. Through incubation ex-periment, this paper studied the effects of temperature, soil moisture, soil type (marsh soil and peat soil) and their in-teractions on CO2 and CH4 emission rates in Zoigê alpine wetland. Results show that when the temperature rises from 5℃ to 35℃, CO2 emission rates increase by 3.3-3.7 times and 2.4-2.6 times under non-inundation treatment, and by 2.2-2.3 times and 4.1-4.3 times under inundation treatment in marsh soil and peat soil, respectively. Compared with non-inundation treatment, CO2 emission rates decrease by 6%-44%, 20%-60% in marsh soil and peat soil, respec-tively, under inundation treatment. CO2 emission rate is significantly affected by the combined effects of the tempera-ture and soil type (p < 0.001), and soil moisture and soil type (p < 0.001), and CH4 emission rate was significantly af-fected by the interaction of the temperature and soil moisture (p < 0.001). Q10 values for CO2 emission rate are higher at the range of 5℃-25℃ than 25℃-35℃, indicating that carbon mineralization is more sensitive at low temperature in Zoigê alpine wetland.  相似文献   

5.
The distributions and relationships of O2, CO2, and dimethylsulfide (DMS) in the Changjiang (Yangtze) Estuary and its adjacent waters were investigated in June 2014. In surface water, mean O2 saturation level, partial pressure of CO2 (pCO2), and DMS concentrations (and ranges) were 110% (89%–167%), 374 μatm (91–640 μatm), and 8.53 nmol L?1 (1.10–27.50 nmol L?1), respectively. The sea-to-air fluxes (and ranges) of DMS and CO2 were 8.24 μmol m?2 d?1 (0.26–62.77 μmol m?2 d?1), and ?4.7 mmol m?2 d?1 (?110.8-31.7 mmol m?2 d?1), respectively. Dissolved O2 was oversaturated, DMS concentrations were relatively high, and this region served as a sink of atmospheric CO2. The pCO2 was significantly and negatively correlated with the O2 saturation level, while the DMS concentration showed different positive relationships with the O2 saturation level in different water masses. In vertical profiles, a hypoxic zone existed below 20 m at a longitude of 123°E. The stratification of temperature and salinity caused by the Taiwan Warm Current suppressed seawater exchange between upper and lower layers, resulting in the formation of a hypoxic zone. Oxidative decomposition of organic detritus carried by the Changjiang River Diluted Water (CRDW) consumed abundant O2 and produced additional CO2. The DMS concentrations decreased because of low phytoplankton biomass in the hypoxic zone. Strong correlations appeared between the O2 saturation level, pCO2 and DMS concentrations in vertical profiles. Our results strongly suggested that CRDW played an important role in the distributions and relationships of O2, CO2, and DMS.  相似文献   

6.
Soil respiration (SR) Wis one of the largest contributors of terrestrial CO_2 to the atmosphere.Environmental as well as physicochemical parameters influence SR and thus, different land use practices impact the emissions of soil CO_2. In this study, we measured SR, bi-monthly, over a one-year period in a terrace tea plantation, a forest tea plantation and a secondary forest, in a subtropical mountain area in Xishuangbanna, China. Along with the measurement of SR rates, soil characteristics for each of the land use systems were investigated. Soil respiration rates in the different land use systems did not differ significantly during the dry season, ranging from2.7±0.2 μmol m~(-2) s~(-1) to 2.8±0.2 μmol m~(-2) s~(-1). During the wet season, however, SR rates were significantly larger in the terrace tea plantation(5.4±0.5 μmol m~(-2)s~(-1)) and secondary forest(4.9±0.4 μmol m~(-2)s~(-1)) than in the forest tea plantation(3.7±0.2 μmol m~(-2) s~(-1)).This resulted in significantly larger annual soil CO_2 emissions from the terrace tea and secondary forest,than from the forest tea plantation. It is likely that these differences in the SR rates are due to the 0.5times lower soil organic carbon concentrations in thetop mineral soil in the forest tea plantation, compared to the terrace tea plantation and secondary forest.Furthermore, we suggest that the lower sensitivity to temperature variation in the forest tea soil is a result of the lower soil organic carbon concentrations. The higher SR rates in the terrace tea plantation were partly due to weeding events, which caused CO_2 emission peaks that contributed almost 10% to the annual CO_2 flux. Our findings suggest that moving away from heavily managed tea plantations towards low-input forest tea can reduce the soil CO_2 emissions from these systems. However, our study is a casestudy and further investigations and upscaling are necessary to show if these findings hold true at a landscape level.  相似文献   

7.
CARBON DYNAMICS OF WETLAND IN THE SANJIANG PLAIN   总被引:2,自引:0,他引:2  
1INTRODUCTIONWetlandsplayanimportant roleintheprocessofcar-bonstorage.Thetotalcarbonstoredindifferentkindsofwetlandsisabout15%-35%ofthetotalcarboninthegloballandsoils(POSTetal.,1982;GORHAM,1991).Inaddition,wetlandsaresignificantnaturalsources fortheatmospheric CH4 (MOORE,1994).It isestimatedthatabout110×1012gCH4 originates fromanaerobicdecompositioninthenaturalwetlands,CH4 emission fromthenaturalwetlandsis15%-30%oftheglobalCH4 emission andtheCH4 emission from thepeat land at hi…  相似文献   

8.
The process-oriented model Forest-DNDC describing biogeochemical cycling of C and N and GHGs (greenhouse gases) fluxes (CO2, NO and N2O) in forest ecosystems was applied to simulate carbon sequestration and GHGs emissions in Abies fabric forest of the Gongga Mountains at southeastern edge of the Tibetan Plateau. The results indicated that the simulated gross primary production (GPP) of Abies fabric forest was strongly affected by temperature. The annual total GPP was 24,245.3 kg C ha^-1 yr^-1 for 2005 and 26,318.8 kg C ha^-1 yr^-1 for 2006, respectively. The annual total net primary production (NPP) was 5,935.5 and 4,882.2 kg C ha^-1 yr^-1 for 2005 and 2006, and the annual total net ecosystem production (NEP) was 4,815.4 and 3,512.8 kg C ha^-1 yr^-1 for 2005 and 2006, respectively. The simulated seasonal variation in CO2 emissions generally followed the seasonal variations in temperature and precipitation. The annual total CO2 emissions were 3,109.0 and 4,821.0 kg C ha^-1 yr^-1 for 2005 and 2006, the simulated annual total N2O emissions from forest soil were 1.47 and 1.36 kg N ha^-1 yr^-1 for 2005 and 2006, and the annual total NO emissions were 0.09 and o.12 kg N ha^-1 yr^-1 for 2005 and 2006, respectively.  相似文献   

9.
Crop residue incorporation has been widely accepted as a way to increase soil carbon (C) sequestration and sustain soil fertility in agroecosystems. However, effect of crop residue incorporation on greenhouse gas (GHG) emissions in rice paddy soils remains uncertain. A field experiment was conducted to quantify emissions of CH4 and N2O and soil heterotrophic respiration (RH) from a paddy rice field under five different crop residue treatments (i.e., 150 kg N ha-1 of synthetic N fertilizer application only [NF], 150 kg N ha-1 of synthetic N fertilizer plus 5.3 Mg ha-1 wheat residue [NF-WR1], 150 kg N ha-1 of synthetic N fertilizer plus 10.6 Mg ha-1 wheat residue [NF-WR2], 75 kg N ha-1 of synthetic N fertilizer plus 10.6 Mg ha-1 wheat residue [50%NF-WR2] and 150 kg N ha-1 of synthetic N fertilizer plus 21.2 Mg ha-1 wheat residue [NF-WR3]) in southwest China. Our results showed that crop residue incorporation treatments (NF-WR1, NF-WR2, 50%NF-WR2, NF-WR3) significantly increased CH4 emissions by at least 60%, but N2O emissions were not enhanced and even suppressed by 25% in the NF-WR3 treatment as compared to the NF treatment. Soil RH emissions were comparable among experimental treatments, while crop residue incorporation treatments significantly increased soil carbon sequestrations relative to the NF treatment. Overall, CH4 emissions dominated total global warming potentials (GWP) across all experimental treatments. The average yieldscaled GWPs for the NF and NF-WR1 treatments were significantly lower than for the NF-WR2, 50%NFWR2 and NF-WR3 treatments. Given the comparable yield-scaled GWPs between the NF and NF-WR1 treatments, the NF-WR1 treatment could gain net carbon sequestration as compared with the NF treatment with net soil carbon loss. Our findings suggest that the NF-WR1 treatment should be an effective option to sustain rice production while mitigating GHG emissions from the rice field in China.  相似文献   

10.
Dung deposition is an important pathway of nutrient return and redistribution in alpine grasslands of the Qinghai-Tibetan Plateau.To date,information on the greenhouse gas emissions of yak dung on alpine grasslands,especially where there are large amounts of rock fragments,is limited.Our aim,therefore,was to evaluate variations in N_2O,CH_4,and CO_2 emissions from yak dung(CCD),and compare it to dung placed on rock fragments(RCD),alpine steppe soil(CSD),and a soil and rock fragment mixture(RSD) over a 30-day incubation period.The results showed that the total N_2O emissions from treatments without soil were significantly(P 0.05) lower than those from treatments with soil.The highest total CH_4 emissions were detected in the CSD treatment,while CH_4 losses from treatments without rock fragments were significantly(P 0.05) greater than those with rock fragments.The total CO_2 emissions from the RSD treatment was 6.30%–12.0% lower than those in the other three treatments.The soil beneath yak dung pats elevated the globalwarming potential(GWP),while the addition of rock fragments to the soil significantly(P 0.05) decreased the GWP by reducing emissions of the three greenhouse gases.We therefore suggest that interactions between rock fragments and alpine steppe soil are effective in decreasing yak dung greenhouse gas emissions.This finding indicates that rock fragments are an effective medium for reducing greenhouse gas emissions from dung pats,and more attention should therefore be paid to evaluate its ecological impact in future studies.These results should help guide scientific assessments of regional GHG budgets in agricultural ecosystems where the addition of livestock manure to soils with large amounts of rock fragments is common.  相似文献   

11.
Rock weathering plays an important role in studying the long-term carbon cycles and global climatic change. According to the statistics analysis, the Huanghe (Yellow) River water chemistry was mainly controlled by evaporite and carbonate weathering, which were responsible for over 90% of total dissolved ions. As compared with the Huanghe River basin, dissolved load of the Changjiang (Yangtze) River was mainly originated from the carbonate dissolution. The chemical weathering rates were estimated to be 39.29t/(km2·a) and 61.58t/(km2·a) by deducting the HCO 3 derived from atmosphere in the Huanghe River and Changjiang River watersheds, respectively. The CO2 consumption rates by rock weathering were calculated to be 120.84×103mol/km2 and 452.46×103mol/km2annually in the two basins, respectively. The total CO2 consumption of the two basins amounted to 918.51×109mol/a, accounting for 3.83% of the world gross. In contrast to other world watersheds, the stronger evaporite reaction and infirm silicate weathering can explain such feature that CO2 consumption rates were lower than a global average, suggesting that the sequential weathering may be go on in the two Chinese drainage basins. Foundation item: Under the auspices of Ministry of Science and Technology Project of China (No. G1999043075) Biography: LI Jing-ying (1974-), female, a native of Xinye of Henan Province, Ph.D., associate professor, specialized in environmental geochemistry. E-mail: wxxljy2001@public.qd.sd.cn  相似文献   

12.
The physiological responses of Nitzschia palea Kvtzing, a freshwater diatom, to elevated CO2 were investigated and compared with those of a marine diatom, Chaetoceros muelleri Lemmermann previously reported. Elevated CO2 concentration to 700 μl/L increased the dissolved inorganic carbon (D!C) and lowered the pH in the cultures of N. palea, thus enhancing the growth by 4%-20% during the whole growth period. High CO2-grown N. palea cells showed lower levels of dark respiration rates and higher Ik values. Light-saturated photosynthetic rates and photosynthetic efficiencies decreased in N. palea with the doubling CO2 concentration in airflow to the bottom of cultures, although the doubling CO2 concentration in airflow to the surface cultures had few effects on these two photosynthetic parameters. N. palea cells were found to be capable of using HCO5 in addition to gaseous CO2, and the CO2 enrichment decreased their affinity for HCO5 and CO2. Although doubled CO2 level would enhance the biomass of N. patea and C. muelleri to different extents, compared with the marine diatom, it had a significant effect on the specific growth rates of N. palea. In addition, the responses of photosynthetic parameters of IV. palea to doubled CO2 concentration were almost opposite to those of C. muelleri.  相似文献   

13.
To evaluate the influence of wetland reclamation on vertical distribution of carbon and nitrogen in coastal wetland soils, we measured the soil organic carbon(SOC), soil total nitrogen(STN) and selected soil properties at five sampling plots(reed marsh, paddy field, corn field, forest land and oil-polluted wetland) in the Liaohe River estuary in September 2013. The results showed that reclamation significantly changed the contents of SOC and STN in the Liaohe River estuary(P 0.001). The SOC concentrations were in the order: oil-polluted wetland corn field paddy field forest land reed marsh, with mean values of 52.17, 13.14, 11.46, 6.44 and 6.16 g/kg, respectively. STN followed a similar order as SOC, with mean values of 1351.14, 741.04, 632.32, 496.17 and 390.90 mg/kg, respectively. Interaction of reclamation types and soil depth had significant effects on SOC and STN, while soil depth had significant effects on SOC, but not on STN. The contents of SOC and STN were negatively correlated with pH and redox potential(Eh) in reed marsh and corn field, while the SOC and STN in paddy field had positive correlations with electrical conductivity(EC). Dissolved organic carbon(DOC), ammonium nitrogen(NH_4~+-N) and nitrate nitrogen(NO_3~–-N) were also significantly changed by human activities. NH_4~+-N and NO_3~–-N increased to different degrees, and forest land had the highest NO_3~–-N concentration and lowest DOC concentration, which could have been caused by differences in soil aeration and fertilization. Overall, the results indicate that reed harvest increased soil carbon and nitrogen release in the Liaohe River Estuary, while oil pollution significantly increased the SOC and STN; however, these cannot be used as indicators of soil fertility and quality because of the serious oil pollution.  相似文献   

14.
The changes in soil organic carbon(C) mineralization as affected by anthropogenic disturbance directly determine the role of soils as C source or sink in the global C budget. The objectives of this study were to investigate the effects of anthropogenic disturbance(aquaculture pond, pollutant discharge and agricultural activity) on soil organic C mineralization under different water conditions in the Minjiang River estuary wetland, Southeast China. The results showed that the organic C mineralization in the wetland soils was significantly affected by human disturbance and water conditions(P 0.001), and the interaction between human disturbance activities and water conditions was also significant(P 0.01). The C mineralization rate and the cumulative mineralized carbon dioxide-carbon(CO_2-C)(at the 49th day) ranked from highest to lowest as follows: Phragmites australis wetland soil aquaculture pond sediment soil near the discharge outlet rice paddy soil. This indicated that human disturbance inhibited the mineralization of C in soils of the Minjiang River estuary wetland, and the inhibition increased with the intensity of human disturbance. The data for cumulative mineralized CO_2-C showed a good fit(R~2 0.91) to the first-order kinetic model C_t = C_0(1 – exp(–kt)). The kinetic parameters C_0, k and C_0 k were significantly affected by human disturbance and water conditions. In addition, the total amount of mineralized C(in 49 d) was positively related to C_0, C_0 k and electrical conductivity of soils. These findings indicated that anthropogenic disturbance suppressed the organic C mineralization potential in subtropical coastal wetland soils, and changes of water pattern as affected by human activities in the future would have a strong influence on C cycling in the subtropical estuarine wetlands.  相似文献   

15.
The first account of the effects of wetland reclamation on soil nematode assemblages were provided, three sites in Heihe River Basin of Northwest China, that is grass wetland(GW), Tamarix chinensis wetland(TW) and crop wetland(CW) treatments, were compared. Results showed that the majority of soil nematodes were presented in the 0–20 cm soil layers in CW treatments, followed by in the 20–40 cm and 40–60 cm layers in GW treatments. Plant-feeding nametodes were the most abundant trophic groups in each treatment, where GW(91.0%) TW(88.1%) CW(53.5%). Generic richness(GR) was lower in the TW(16) than that in GW(23) and CW(25). The combination of enrichment index(EI) and structure index(SI) showed that the soil food web in GW was more structured, and those in TW was stressed, while the enrichment soil food web was presented in the CW treatment. Several ecological indices which reflected soil community structure, diversity, Shannon-Weaver diversity(H′), Evenness(J′), Richness(GR) and modified maturity index(MMI) were found to be effective for assessing the response of soil namatode communities to soil of saline wetland reclamation. Furthermore, saline wetland reclamation also exerted great influence on the soil physical and chemical properties(p H, Electric conductivity(EC), Total organic carbon(TOC), Total nitrogen(Total-N) and Nitrate Nitrogen(N-NO3–)). These results indicated that the wetland reclamation had significantly effects on soil nematode community structure and soil properties in this study.  相似文献   

16.
Partial pressure of CO2 (pCO2) was investigated in the Changjiang (Yangtze River) Estuary, Hangzhou Bay and their adjacent areas during a cruise in August 2004, China. The data show that pCO2 in surface waters of the studied area was higher than that in the atmosphere with only exception of a patch east of Zhoushan Archipelago. The pCO2 varied from 168 to 2 264 μatm, which fell in the low range compared with those of other estuaries in the world. The calculated sea-air CO2 fluxes decreased offshore and varied from -10.0 to 88.1 mmol m^-2 d^-1 in average of 24.4 ± 16.5 mmol m^-2 d^-1. Although the area studied was estimated only 2 × 10^4 km^2, it emitted (5.9 ± 4.0) × 10^3 tons of carbon to the atmosphere every day. The estuaries and their plumes must be further studied for better understanding the role of coastal seas playing in the global oceanic carbon cycle.  相似文献   

17.
The nitrogen (N) input and Spartina alterniflora invasion in the tidal marsh of the southeast of China are increasingly serious. To evaluate CH4 emissions in the tidal marsh as affected by the N inputs and S. alterniflora invasion, we measured CH4 emissions from plots with vegetated S. alterniflora and native Cyperus malaccensis, and fertilized with exogenous N at the rate of 0 (NO), 21 (N1) and 42 (N2) g N/(m2.yr), respectively, in the Shanyutan marsh in the Minjiang River estuary, the southeast of China. The average CH4 fluxes during the experiment in the C. malaccensis and S. alterniflora plots without N addition were 3.67 mg CHa/(m2.h) and 7.79 mg CH4/(m2-h), respectively, suggesting that the invasion of S. alterniflora into the Minjiang River estuary stimulated CH4 emission. Exogenous N had positive effects on CH4 fluxes both in native and in invaded tidal marsh. The mean CH4 fluxes of NI and N2 treat- ments increased by 31.05% and 123.50% in the C. malaccensis marsh, and 63.88% and 7.55% in the S. alterniflora marsh, respectively, compared to that of NO treatment. The CH4 fluxes in the two marshes were positively correlated with temperature and pH, and nega- tively correlated with electrical conductivity and redox potential (Eh) at different N addition treatments. While the relationships between CH4 fluxes and environmental variables (especially soil temperature, pH and Eh at different depths) tended to decrease with N additions. Significant temporal variability in CH4 fluxes were observed as the N was gradually added to the native and invaded marshes. In order to better assess the global climatic role of tidal marshes as affected by N addition, much more attention should be paid to the short-term temporal variability in CH4 emission.  相似文献   

18.
Carbon sequestration occurs when cultivated soils are re-vegetated. In the hilly area of the Loess Plateau, China, black locust(Robinia pseudoacacia) plantation forest and grassland were the two main vegetation types used to mitigate soil and water loss after cultivation abandonment. The purpose of this study was to compare the soil carbon stock and flux of these two types of vegetation which restored for 25 years. The experiment was conducted in Yangjuangou catchment in Yan′an City, Shaanxi Province, China. Two adjacent slopes were chosen for this study. Six sample sites were spaced every 35–45 m from summit to toe slope along the hill slope, and each sample site contained three sampling plots. Soil organic carbon and related physicochemical properties in the surface soil layer(0–10 cm and 10–20 cm) were measured based on soil sampling and laboratory analysis, and the soil carbon dioxide(CO2) emissions and environmental factors were measured in the same sample sites simultaneously. Results indicated that in general, a higher soil carbon stock was found in the black locust plantation forest than that in grassland throughout the hill slope. Meanwhile, significant differences in the soil carbon stock were observed between these two vegetation types in the upper slope at soil depth 0–10 cm and lower slope at soil depth 10–20 cm. The average daily values of the soil CO2 emissions were 1.27 μmol/(m2·s) and 1.39 μmol/(m2·s) for forest and grassland, respectively. The soil carbon flux in forest covered areas was higher in spring and less variation was detected between different seasons, while the highest carbon flux was found in grassland in summer, which was about three times higher than that in autumn and spring. From the carbon sequestration point of view, black locust plantation forest on hill slopes might be better than grassland because of a higher soil carbon stock and lower carbon flux.  相似文献   

19.
Emissions of biogenic sulfur gases (hydrogen sulfide (H2S) and carbonyl sulfide (COS)) from Phragmites australis coastal marsh in the Yellow River estuary of China were determined during April to December in 2014 using static chamber-gas chromatography technique with monthly sampling. The results showed that the fluxes of H2S and COS both had distinct seasonal and diurnal variations. The H2S fluxes ranged from 0.09 μg/(m2·h) to 7.65 μg/(m2·h), and the COS fluxes ranged from–1.10 μg/(m2·h) to 3.32 μg/(m2·h). The mean fluxes of H2S and COS from the P. australis coastal marsh were 2.28 μg/(m2·h), and 1.05 μg/(m2·h), respectively. The P. australis coastal marsh was the emission source of both H2S and COS over the whole year. Fluxes of H2S and COS were both higher in plant growing season than in the non-growing season. Temperature had a dramatic effect on the H2S emission flux, while the correlations between COS flux and the environmental factors were not found during sampling periods. More in-depth and comprehensive research on other related factors, such as vegetation, sediment substrates, and tidal action is needed to discover and further understand the key factors and the release mechanism of sulfur gases.  相似文献   

20.
The venerid clam (Mactra veneriformis Reeve 1854) is one of the main cultured bivalve species in intertidal and shallow subtidal ecosystems along the west coast of Korea. To understand the effects of ocean acidification on the early life stages of Korean clams, we investigated shell growth and abnormality rates and types in the D-shaped, umbonate veliger, and pediveliger stages of the venerid clam M. veneriformis during exposure to elevated seawater pCO2. In particular, we examined abnormal types of larval shell morphology categorized as shell deformations, shell distortions, and shell fissures. Specimens were incubated in seawater equilibrated with bubbled CO2-enriched air at (400±25)×10-6 (ambient control), (800±25)×10-6 (high pCO2), or (1 200±28)×10-6 (extremely high pCO2), the atmospheric CO2 concentrations predicted for the years 2014, 2084, and 2154 (70-year intervals; two human generations), respectively, in the Representative Concentration Pathway (RCP) 8.5 scenario. The mean shell lengths of larvae were significantly decreased in the high and extremely high pCO2 groups compared with the ambient control groups. Furthermore, under high and extremely high pCO2 conditions, the cultures exhibited significantly increased abundances of abnormal larvae and increased severity of abnormalities compared with the ambient control. In the umbonate veliger stage of the experimental larvae, the most common abnormalities were shell deformations, distortions, and fissures; on the other hand, convex hinges and mantle protuberances were absent. These results suggest that elevated CO2 exerts an additional burden on the health of M. veneriformis larvae by impairing early development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号