首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freshwater (FW) leaves the Arctic Ocean through sea-ice export and the outflow of low-salinity upper ocean water. Whereas the variability of the sea-ice export is known to be mainly caused by changes in the local wind and the thickness of the exported sea ice, the mechanisms that regulate the variability of the liquid FW export are still under investigation. To better understand these mechanisms, we present an analysis of the variability of the liquid FW export from the Arctic Ocean for the period 1950–2007, using a simulation from an energy and mass conserving global ocean–sea ice model, coupled to an Energy Moisture Balance Model of the atmosphere, and forced with daily winds from the NCEP reanalysis. Our results show that the simulated liquid FW exports through the Canadian Arctic Archipelago (CAA) and the Fram Strait lag changes in the large-scale atmospheric circulation over the Arctic by 1 and 6 years, respectively. The variability of the liquid FW exports is caused by changes in the cyclonicity of the atmospheric forcing, which cause a FW redistribution in the Arctic through changes in Ekman transport in the Beaufort Gyre. This in turn causes changes in the sea surface height (SSH) and salinity upstream of the CAA and Fram Strait, which affect the velocity and salinity of the outflow. The SSH changes induced by the large-scale atmospheric circulation are found to explain a large part of the variance of the liquid FW export, while the local wind plays a much smaller role. We also show that during periods of increased liquid FW export from the Arctic, the strength of the simulated Atlantic meridional overturning circulation is reduced and the ocean heat transport into the Arctic is increased. These results are particularly relevant in the context of global warming, as climate simulations predict an increase in the liquid FW export from the Arctic during the twenty-first century.  相似文献   

2.
In this study, we perform a stand-alone sensitivity study using the Los Alamos Sea ice model version 6(CICE6) to investigate the model sensitivity to two Ice-Ocean(IO) boundary condition approaches. One is the two-equation approach that treats the freezing temperature as a function of the ocean mixed layer(ML) salinity, using two equations to parametrize the IO heat exchanges. Another approach uses the salinity of the IO interface to define the actual freezing temperature, so an equation describ...  相似文献   

3.
《大气与海洋》2013,51(2):229-242
Abstract

Numerous studies have reported decreases in Arctic sea‐ice cover over the past several decades and General Circulation Model (GCM) simulations continue to predict future decreases. These decreases — particularly in thick perennial or multi‐year ice (MYI) — have led to considerable speculation about a more accessible Northwest Passage (NWP) as a transit route through the Canadian Arctic Archipelago (CAA). The Canadian Ice Service Digital Archive (CISDA) is used to investigate dynamic import/export and in situ growth of MYI within the western CAA regions of the NWP from 1968 to 2006. This analysis finds that MYI conditions in the western CAA regions of the NWP have remained relatively stable because the M'Clintock Channel and Franklin regions continuously operate as a drain‐trap mechanism for MYI. Results also show that in addition to the Queen Elizabeth Islands (QEI) region, the Western Parry Channel and the M'Clintock Channel are also regions where a considerable amount of MYI forms in situ and combined with dynamic imports contributes to heavy MYI conditions. There is also evidence to suggest that more frequent dynamic import of MYI appears to have occurred since‐1999 compared to the formation of more MYI in situ before 1999. As a result, the drain‐trap mechanism that has historically maintained heavy MYI conditions in the NWP is perhaps operating faster now than it was in the past. Based on the 38‐year MYI record examined in this study, it is likely that the mechanisms operating within the western CAA regions of the NWP can facilitate the continued presence of MYI for quite some time.  相似文献   

4.
A quasi-oscillatory multi-centennial mode of open ocean deep convection in the Atlantic sector of the Southern Ocean in the Kiel Climate Model is described. The quasi-periodic occurrence of the deep convection causes variations in regional and global surface air temperature, Southern Hemisphere sea ice coverage, Southern Ocean and North Atlantic sea surface height, the Antarctic Circumpolar Current and the Atlantic Meridional Overturning Circulation (AMOC). The deep convection is stimulated by a strong built-up of heat at mid-depth. When the heat reservoir is virtually depleted a coincidental strong freshening event at the sea surface shuts down the convection. The heat originates from relatively warm deep water formed in the North Atlantic. The several decades lasting recharge process of the heat reservoir depends on the AMOC and the Weddell Gyre and sets a minimum delay for the deep convection to recur. While the strength of the AMOC increases, the Weddell Gyre weakens during the non-convective regime. Convection onset and shutdown also depend on the stochastic occurrence of favorable sea surface conditions, which contributes to the multi-centennial period of the phenomenon. The shutdown triggers a century-long deviation in AMOC strength caused by significant reductions in bottom water formation and surface salinity in the Southern Ocean’s Atlantic sector. Additional numerical experimentation reveals that sea ice has an important effect on the frequency of occurrence and intensity of the deep convection. Further, we find intriguing similarities to the Weddell Polynya observed during the 1970s.  相似文献   

5.
This study documents simulated oceanic circulations and sea ice by the coupled climate system model FGOALS-f3-L developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, under historical forcing from phase 6 of the Coupled Model Intercomparison Project (CMIP6). FGOALS-f3-L reproduces the fundamental features of global oceanic circulations, such as sea surface temperature (SST), sea surface salinity (SSS), mixed layer depth (MLD), vertical temperature and salinity, and meridional overturning circulations. There are notable improvements compared with the previous version, FGOALS-s2, such as a reduction in warm SST biases near the western and eastern boundaries of oceans and salty SSS biases in the tropical western Atlantic and eastern boundaries, and a mitigation of deep MLD biases at high latitudes. However, several obvious biases remain. The most significant biases include cold SST biases in the northwestern Pacific (over 4°C), freshwater SSS biases and deep MLD biases in the subtropics, and temperature and salinity biases in deep ocean at high latitudes. The simulated sea ice shows a reasonable distribution but stronger seasonal cycle than observed. The spatial patterns of sea ice are more realistic in FGOALS-f3-L than its previous version because the latitude–longitude grid is replaced with a tripolar grid in the ocean and sea ice model. The most significant biases are the overestimated sea ice and underestimated SSS in the Labrador Sea and Barents Sea, which are related to the shallower MLD and weaker vertical mixing.  相似文献   

6.
Summary Three one-year experimental simulations with the National Center for Atmospheric Research Community Climate Model (NCAR CCM) were performed with three sea ice albedo parameterizations and compared with control run results to examine their impact on polar surface temperature, planetary albedo and clouds. The first integration utilized sea ice albedos of the Arctic Basin for the spring and summer of 1977 derived from defence Meteorological Satellite Imagery (DMSP). The second simulation employed prescribed lead and melt pond fractions and an albedo weighting scheme. The third simulation involved the coupling of an interactive sea ice/snow albedo parameterization made a function of surface state.Results show that prescribed, and assumed true satellite sea ice albedos produced higher planetary albedos than those calculated with the standard CCM sea ice albedo scheme in the control run. As a result, lower temperatures (up to 0.5 K) and increased cloudiness are generated for the Arctic region. The standard CCM sea ice albedo scheme is used as an adjustment to maintain normal temperatures for the polar oceans. The radiative impact of leads and melt ponds warmed sea ice regions only for short time periods. The third scheme generated markedly lower planetary albedos (reductions of 0.07 to 0.17) and higher surface temperatures (up to 2.0 K) than control values.The CCM simulates a gradual decrease in spring and summer Arctic cloud cover whereas observations show a sharp spring increase. Examination of the CCM code, particularly the cloud parameterization, is required to address this problem.With 12 Figures  相似文献   

7.
As a member of the Chinese modeling groups,the coupled ocean-ice component of the Chinese Academy of Sciences’Earth System Model,version 2.0(CAS-ESM2.0),is taking part in the Ocean Model Intercomparison Project Phase 1(OMIP1)experiment of phase 6 of the Coupled Model Intercomparison Project(CMIP6).The simulation was conducted,and monthly outputs have been published on the ESGF(Earth System Grid Federation)data server.In this paper,the experimental dataset is introduced,and the preliminary performances of the ocean model in simulating the global ocean temperature,salinity,sea surface temperature,sea surface salinity,sea surface height,sea ice,and Atlantic Meridional Overturning Circulation(AMOC)are evaluated.The results show that the model is at quasi-equilibrium during the integration of 372 years,and performances of the model are reasonable compared with observations.This dataset is ready to be downloaded and used by the community in related research,e.g.,multi-ocean-sea-ice model performance evaluation and interannual variation in oceans driven by prescribed atmospheric forcing.  相似文献   

8.
Air–sea ice–ocean interactions in the Ross Sea sector form dense waters that feed the global thermohaline circulation. In this paper, we develop the new limited-area ocean–sea ice–atmosphere coupled model TANGO to simulate the Ross Sea sector. TANGO is built up by coupling the atmospheric limited-area model MAR to a regional configuration of the ocean–sea ice model NEMO. A method is then developed to identify the mechanisms by which local coupling affects the simulations. TANGO is shown to simulate realistic sea ice properties and atmospheric surface temperatures. These skills are mostly related to the skills of the stand alone atmospheric and oceanic models used to build TANGO. Nonetheless, air temperatures over ocean and winter sea ice thickness are found to be slightly improved in coupled simulations as compared to standard stand alone ones. Local atmosphere ocean feedbacks over the open ocean are found to significantly influence ocean temperature and salinity. In a stand alone ocean configuration, the dry and cold air produces an ocean cooling through sensible and latent heat loss. In a coupled configuration, the atmosphere is in turn moistened and warmed by the ocean; sensible and latent heat loss is therefore reduced as compared to the stand alone simulations. The atmosphere is found to be less sensitive to local feedbacks than the ocean. Effects of local feedbacks are increased in the coastal area because of the presence of sea ice. It is suggested that slow heat conduction within sea ice could amplify the feedbacks. These local feedbacks result in less sea ice production in polynyas in coupled mode, with a subsequent reduction in deep water formation.  相似文献   

9.
Sea ice variability in the Barents Sea and its impact on climate are analyzed using a 465-year control integration of a global coupled atmosphere–ocean–sea ice model. Sensitivity simulations are performed to investigate the response to an isolated sea ice anomaly in the Barents Sea. The interannual variability of sea ice volume in the Barents Sea is mainly determined by variations in sea ice import into Barents Sea from the Central Arctic. This import is primarily driven by the local wind field. Horizontal oceanic heat transport into the Barents Sea is of minor importance for interannual sea ice variations but is important on longer time scales. Events with strong positive sea ice anomalies in the Barents Sea are due to accumulation of sea ice by enhanced sea ice imports and related NAO-like pressure conditions in the years before the event. Sea ice volume and concentration stay above normal in the Barents Sea for about 2 years after an event. This strongly increases the albedo and reduces the ocean heat release to the atmosphere. Consequently, air temperature is much colder than usual in the Barents Sea and surrounding areas. Precipitation is decreased and sea level pressure in the Barents Sea is anomalously high. The large-scale atmospheric response is limited with the main impact being a reduced pressure over Scandinavia in the year after a large ice volume occurs in the Barents Sea. Furthermore, high sea ice volume in the Barents Sea leads to increased sea ice melting and hence reduced surface salinity. Generally, the climate response is smallest in summer and largest in winter and spring.  相似文献   

10.
A coupled ice-ocean model of the Arctic is developed in order to study the effects of precipitation and river runoff on sea ice. A dynamic-thermodynamic sea ice model is coupled to an ocean general circulation model which includes a turbulent closure scheme for vertical mixing. The model is forced by interannually varying atmospheric temperature and pressure data from 1980–1989, and spatially varying mean monthly precipitation and river runoffs. Salinity and fresh water fluxes to the ocean from ice growth, snow melt, rain, and runoffs are computed, with no artificial constraints on the ocean salinity. The modeled ice thickness is similar to the observed pattern, with the thickest ice remaining against the Canadian Archipelago throughout the year. The modeled ice drift reproduces the Beaufort gyre and Transpolar drift exiting through Fram Strait. The stable arctic halocline produced by the vertical mixing scheme isolates the surface from the Atlantic layer and reduces the vertical fluxes of heat and salinity. A sensitivity experiment with zero precipitation results in rapidly decreasing ice thickness, in response to greater ocean heat flux from a weakening of the halocline, while an experiment with doubled precipitation results in a smaller increase in ice thickness. A zero-runoff experiment results in a slower decrease in ice thickness than the zero-precipitation case, due to the decadal time scale of the transport of runoff in the model. The results suggest that decadal trends in both arctic precipitation and river runoffs, caused either by anthropogenic or natural climatic change, have the potential to exert broad-scale impacts on the arctic sea ice regime. Received: 6 February 1996 / Accepted: 4 April 1996  相似文献   

11.
This paper evaluates the simulation of Arctic sea ice states using an ocean-ice coupled model that employs LASG/IAP(the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/the Institute of Atmospheric Physics) Climate Ocean Model(LICOM) and the sea-ice model from the Bergen Climate Model(BCM).It is shown that the coupled model can reasonably reproduce the major characteristics of the mean state,annual cycle,and interannual variability of the Arctic sea ice concentration.The coupled model also shows biases that were generally presented in other models,such as the underestimation of summer sea ice concentration and thickness as well as the unsatisfactory sea ice velocity.Sensitivity experiments indicate that the insufficient performance of the ocean model at high latitudes may be the main reason for the biases in the coupled model.The smoother and the fake "island",which had to be used due to the model’s grid in the North Pole region,likely caused the ocean model’s weak performance.Sea ice model thermodynamics are also responsible for the sea ice simulation biases.Therefore,both the thermodynamic module of the sea ice component and the model grid of the ocean component need to be further improved.  相似文献   

12.
Climate change may affect ocean and ice conditions in coastal oceans and thus have significant impacts on coastal infrastructure, marine navigation, and marine ecosystems. In this study a three-dimensional ice–ocean model is developed to examine likely changes of ocean and ice conditions over the Newfoundland and Labrador Shelves in response to climate change. The model is configured with a horizontal grid of approximately 7?km and a vertical grid of 46 levels and is run from 1979 to 2069. The projection period is 2011 to 2069 under a median emission scenario A1B used by the Intergovernmental Panel on Climate Change. For the projection period, the surface atmospheric forcing fields used are from the Canadian Regional Climate Model over the North Atlantic. The open boundary conditions come from the Canadian Global Climate Model, Version 3 (CGCM3), adjusted for the 1981–2010 mean of the Simple Ocean Data Assimilation model output. The simulated fields over the 1981–2010 period have patterns consistent with observations. Over the Newfoundland and Labrador Shelves during the projection period, the model shows general trends of warming, freshening, and decreasing ice. From 2011 to 2069, the model projects that under A1B sea surface temperature will increase by 1.4°C; bottom temperature will increase by 1.6°C; sea surface salinity will decrease by 0.7; bottom salinity will decrease by 0.3; and sea-ice extent will decrease by 70%. The sea level will rise by 0.11?m at the St. John's tide-gauge station because of oceanographic change, and the freshwater transport of the Labrador Current will double as a result of freshening. The regional ice–ocean model reproduces more realistic present climate conditions and projects considerably different future climate conditions than CGCM3.  相似文献   

13.

As Arctic sea ice declines in response to climate change, a shift from thick multiyear ice to a thinner ice cover is occurring. With this transition, ice thicknesses approach a threshold below which ice no longer insulates the atmosphere from oceanic surface fluxes. While this is well known, there are no estimates of the magnitude of this threshold, nor of the proportion of sea ice area that is below this threshold as ice thins. We determine this threshold by simulating the atmospheric response to varying thicknesses, ranging from 0.0 to 2.0 m and determine that threshold to be 0.40–0.50 m. The resulting “effective” ice area is 4–14% lower than reported total ice area, as 0.39–0.97 × 106 km2 of the total ice area falls below the threshold throughout the twentieth century, including during notable ice minima. The atmosphere above large non-insulating ice-covered regions is susceptible to more than 2 °C of warming despite ice presence. Observed mean Arctic Ocean ice thickness is projected to fall below this threshold as early as the mid-2020s. Studies on ocean–atmosphere interactions in relation to sea ice area should focus on this insulating sea ice area, where ice is at least 0.40–0.50 m thick, and treat ice regions below 0.40–0.50 m thickness with caution.

  相似文献   

14.
Atlantic Multidecadal Variability (AMV) is investigated in a millennial control simulation with the Kiel Climate Model (KCM), a coupled atmosphere–ocean–sea ice model. An oscillatory mode with approximately 60 years period and characteristics similar to observations is identified with the aid of three-dimensional temperature and salinity joint empirical orthogonal function analysis. The mode explains 30 % of variability on centennial and shorter timescales in the upper 2,000 m of the North Atlantic. It is associated with changes in the Atlantic Meridional Overturning Circulation (AMOC) of ±1–2 Sv and Atlantic Sea Surface Temperature (SST) of ±0.2 °C. AMV in KCM results from an out-of-phase interaction between horizontal and vertical ocean circulation, coupled through Irminger Sea convection. Wintertime convection in this region is mainly controlled by salinity anomalies transported by the Subpolar Gyre (SPG). Increased (decreased) dense water formation in this region leads to a stronger (weaker) AMOC after 15 years, and this in turn leads to a weaker (stronger) SPG after another 15 years. The key role of salinity variations in the subpolar North Atlantic for AMV is confirmed in a 1,000 year long simulation with salinity restored to model climatology: No low frequency variations in convection are simulated, and the 60 year mode of variability is absent.  相似文献   

15.
Abstract

The role of sea‐ice in affecting the stability and long‐term variability of the oceanic thermohaline circulation (THC) is studied in this paper. The emphasis is placed on studying how sea‐ice might affect the stability and the long‐term variability of the THC through modulations of the surface heat and freshwater fluxes. A simple box model is analyzed to elucidate qualitatively the distinct physical meanings of these two processes. The analytical solution of this simple model indicates that, for the long timescales considered here, the thermal insulation stabilizes the THC while the freshwater feedback increases the effective inertia of the coupled ice‐ocean system. Sea‐ice insulation lessens the negative feedback between heat flux and the SST, and therefore, allows the SST to play a greater role in counteracting changes of the THC and high latitude salinity field. The freshwater feedback effectively links the surface heat flux to a freshwater reservoir, and thus, increases the effective inertia of the coupled ocean‐ice system. A two‐dimensional ocean model coupled with a thermodynamic sea‐ice model is used to estimate quantitatively the magnitudes of these two feedbacks. The numerical experiments involve the model's responses both to initial anomalies and to changes of forcing fields. For the free response cases (model responses to initial anomalies without changing the forcing fields), the model shows that the decay rate of an initial anomaly is greater when sea‐ice is included. For small perturbations the thermal insulation effect dominates over the freshwater feedback. The latter becomes increasingly more important for larger perturbations. In response to a change of external forcing, the presence of sea‐ice reduces the magnitude and the pace of the model's response. The numerical results are qualitatively consistent with the analytical solution of the box model.  相似文献   

16.
Simulations performed with the climate model LOVECLIM, aided with a simple data assimilation technique that forces a close matching of simulated and observed surface temperature variations, are able to reasonably reproduce the observed changes in the lower atmosphere, sea ice and ocean during the second half of the twentieth century. Although the simulated ice area slightly increases over the period 1980–2000, in agreement with observations, it decreases by 0.5 × 106 km2 between early 1960s and early 1980s. No direct and reliable sea ice observations are available to firmly confirm this simulated decrease, but it is consistent with the data used to constrain model evolution as well as with additional independent data in both the atmosphere and the ocean. The simulated reduction of the ice area between the early 1960s and early 1980s is similar to the one simulated over that period as a response to the increase in greenhouse gas concentrations in the atmosphere while the increase in ice area over the last decades of the twentieth century is likely due to changes in atmospheric circulation. However, the exact contribution of external forcing and internal variability in the recent changes cannot be precisely estimated from our results. Our simulations also reproduce the observed oceanic subsurface warming north of the continental shelf of the Ross Sea and the salinity decrease on the Ross Sea continental shelf. Parts of those changes are likely related to the response of the system to the external forcing. Modifications in the wind pattern, influencing the ice production/melting rates, also play a role in the simulated surface salinity decrease.  相似文献   

17.
A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.  相似文献   

18.
By using a 2-layer AGCM designed by Institute of Atmospheric Physics,Chinese Academy of Sciences.this paper investigates influences of thickness and extent variations in Arctic sea ice on the atmosphere circulation,particularly on climate variations in East Asia.The simulation results have indicated that sea ice thickness variation in the Arctic exhibits significant influences on simulation results,particularly on East Asian monsoon.A nearly reasonable distribution of sea ice thickness in the model leads directly to stronger winter and summer monsoon over East Asia.and improves the model's simulation results for Siberia high and Icelandic low in winter.On the other hand,sea ice thickness variation can excite a teleconnection wave train across Asian Continent,and in low latitudes,the wave propagates from the western Pacific across the equator to the eastern Pacific.In addition,the variation of sea ice thickness also influences summer convective activitiesover the low latitudes including South China Sea and around the Philippines.Effects of winter sea ice extents in the Barents Sea on atmospheric circulation in the following spring and summer are also significant.The simulation result shows that when winter sea ice extent in the target region is larger (smaller) than normal.(1)in the following spring (averaged from April to June).positive (negative) SLP anomalies occupy the northern central Pacific.which leads directly to weakened (deepened)Aleutian low.and further favors the light (heavy) sea ice condition in the Bering Sea:(2)in the following summer,thermal depression in Asian Continent is deepened (weakened).and the subtropical high in the northwestern Pacific shifts northward(southward) from its normal position and to be strengthened (weakened).  相似文献   

19.
By using a 2-layer AGCM designed by Institute of Atmospheric Physics,Chinese Academy ofSciences.this paper investigates influences of thickness and extent variations in Arctic sea ice onthe atmosphere circulation,particularly on climate variations in East Asia.The simulation resuhshave indicated that sea ice thickness variation in the Arctic exhibits significant influences onsimulation results,particularly on East Asian monsoon.A nearly reasonable distribution of sea icethickness in the model leads directly to stronger winter and summer monsoon over East Asia.andimproves the model's simulation results for Siberia high and Icelandic low in winter.On the otherhand,sea ice thickness variation can excite a teleconnection wave train across Asian Continent,andin low latitudes,the wave propagates from the western Pacific across the equator to the easternPacific.In addition,the variation of sea ice thickness also influences summer convective activitiesover the low latitudes including South China Sea and around the Philippines.Effects of winter sea ice extents in the Barents Sea on atmospheric circulation in the followingspring and summer are also significant.The simulation result shows that when winter sea iceextent in the target region is larger (smaller) than normal.(1)in the following spring (averagedfrom April to June).positive (negative) SLP anomalies occupy the northern central Pacific.whichleads directly to weakened (deepened)Aleutian low.and further favors the light (heavy) sea icecondition in the Bering Sea:(2)in the following summer,thermal depression in Asian Continent isdeepened (weakened).and the subtropical high in the northwestern Pacific shifts northward(southward) from its normal position and to be strengthened (weakened).  相似文献   

20.
IAP第四代大气环流模式的耦合气候系统模式模拟性能评估   总被引:7,自引:2,他引:5  
本文首先扼要介绍了基于中国科学院大气物理研究所(简称IAP)第四代大气环流模式的新气候系统模式-CAS-ESM-C(中国科学院地球系统模式气候系统模式分量)的发展和结构,之后主要对该模式在模拟大气、海洋、陆面和海冰的气候平均态、季节循环以及主要的年际变率等方面的能力做一个初步的评估.结果表明:模式没有明显的气候漂移,各...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号