首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Among the more popular spatial modeling techniques, artificial neural networks (ANN) are tools that can deal with non-linear relationships, can classify unknown data into categories by using known examples for training, and can deal with uncertainty; characteristics that provide new possibilities for data exploration. Radial basis functional link nets (RBFLN), a form of ANN, are applied to generate a series of prospectivity maps for orogenic gold deposits within the Paleoproterozoic Central Lapland Greenstone Belt, Northern Fennoscandian Shield, Finland, which is considered highly prospective yet clearly under explored. The supervised RBFLN performs better than previously applied statistical weights-of-evidence or conceptual fuzzy logic methods, and equal to logistic regression method, when applied to the same geophysical and geochemical data layers that are proxies for conceptual geological controls. By weighting the training feature vectors in terms of the size of the gold deposits, the classification of the neural network results provides an improved prediction of the distribution of the more important deposits/occurrences. Thus, ANN, more specifically RBFLN, potentially provide a better tool to other methodologies in the development of prospectivity maps for mineral deposits, hence aiding conceptual exploration.  相似文献   

2.
3.

With an increasing demand for raw materials, predictive models that support successful mineral exploration targeting are of great importance. We evaluated different machine learning techniques with an emphasis on boosting algorithms and implemented them in an ArcGIS toolbox. Performance was tested on an exploration dataset from the Iberian Pyrite Belt (IPB) with respect to accuracy, performance, stability, and robustness. Boosting algorithms are ensemble methods used in supervised learning for regression and classification. They combine weak classifiers, i.e., classifiers that perform slightly better than random guessing to obtain robust classifiers. Each time a weak learner is added; the learning set is reweighted to give more importance to misclassified samples. Our test area, the IPB, is one of the oldest mining districts in the world and hosts giant volcanic-hosted massive sulfide (VMS) deposits. The spatial density of ore deposits, as well as the size and tonnage, makes the area unique, and due to the high data availability and number of known deposits, well-suited for testing machine learning algorithms. We combined several geophysical datasets, as well as layers derived from geological maps as predictors of the presence or absence of VMS deposits. Boosting algorithms such as BrownBoost and Adaboost were tested and compared to Logistic Regression (LR), Random Forests (RF) and Support Vector machines (SVM) in several experiments. We found performance results relatively similar, especially to BrownBoost, which slightly outperformed LR and SVM with respective accuracies of 0.96 compared to 0.89 and 0.93. Data augmentation by perturbing deposit location led to a 7% improvement in results. Variations in the split ratio of training and test data led to a reduction in the accuracy of the prediction result with relative stability occurring at a critical point at around 26 training samples out of 130 total samples. When lower numbers of training data were introduced accuracy dropped significantly. In comparison with other machine learning methods, Adaboost is user-friendly due to relatively short training and prediction times, the low likelihood of overfitting and the reduced number of hyperparameters for optimization. Boosting algorithms gave high predictive accuracies, making them a potential data-driven alternative for regional scale and/or brownfields mineral exploration.

  相似文献   

4.
Lin  Nan  Chen  Yongliang  Lu  Laijun 《Natural Resources Research》2020,29(1):173-188

Mineral potential prediction is a process of establishing a statistical model that describes the relationship between evidence variables and mineral occurrences. In this study, evidence variables were constructed from geological, remote sensing, and geochemical data collected from the Lalingzaohuo district, Qinghai Province, China. Based on these evidence variables, a conjugate gradient logistic regression (CG-LR) model was established to predict exploration targets in the study area. The receiver operating characteristic (ROC) and prediction–area (P-A) curves were used to evaluate the effectiveness of the CG-LR model in mineral potential mapping. The difference between the vertical and horizontal coordinates of each point on the ROC curve was used to determine the optimal threshold for classifying the exploration targets. The optimal threshold corresponds to the point on the ROC curve where the difference between the vertical coordinate and the horizontal coordinate is the largest. In exploration target prediction in the study area, the CG algorithm was used to optimize iteratively the LR coefficients, and the prediction effectiveness was tested for different epochs. With increasing iterations, the prediction performance of the model becomes increasingly better. After 60 iterations, the LR model becomes stable and has the best performance in exploration target prediction. At this point, the exploration targets predicted by the CG-LR model occupy 14.39% of the study area and contain 93% of the known mineral deposits. The exploration targets predicted by the model are consistent with the metallogenic geological characteristics of the study area. Therefore, the CG-LR model can effectively integrate geological, remote sensing, and geochemical data for the study area to predict targets for mineral exploration.

  相似文献   

5.
This paper outlines the process taken to create two separate gold prospectivity maps. The first was created using a combination of several knowledge-driven (KD) techniques. The second was created using a relatively new classification method called random forests (RF). The purpose of this study was to examine the results of the RF technique and to compare the results to that of the KD model. The datasets used for the creation of evidence maps for the gold prospectivity mapping include a comprehensive lake sediment geochemical dataset, interpreted geological structures (form lines), mapped and interpreted faults, lithology, topographic features (lakes), and known Au occurrences. The RF method performed well in that the gold prospectivity map created was a better predictor of the known Au occurrences than the KD gold prospectivity map. This was further validated by a fivefold repetition using a subset of the input training areas. Several advantages to the use of RF include (1) the ability to take both continuous and/or categorical data as variable inputs, (2) an internal, unbiased estimation of the mapping error (out-of-bag error) removing the need for a cross-validation of the final outputs to determine accuracy, and (3) the estimation of importance of each input variable. Efficiency of prediction curves illustrates that the RF method performs better than the KD method. The success rate is significantly higher for the RF method than for the KD method.  相似文献   

6.
Xiao  Fan  Chen  Weilin  Wang  Jun  Erten  Oktay 《Natural Resources Research》2022,31(4):2041-2064
Natural Resources Research - Mineral prospectivity mapping (MPM) is a fundamental task in mineral exploration. The logistic regression (LR) method has been widely used as a data-driven tool for MPM...  相似文献   

7.
The Random Forests (RF) algorithm is a machine learning method that has recently been demonstrated as a viable technique for data-driven predictive modeling of mineral prospectivity, and thus, it is instructive to further examine its usefulness in this particular field. A case study was carried out using data from Catanduanes Island (Philippines) to investigate further (a) if RF modeling can be used for data-driven modeling of mineral prospectivity in areas with few (i.e., <20) mineral occurrences and (b) if RF modeling can handle predictor variables with missing values. We found that RF modeling outperforms evidential belief (EB) modeling of prospectivity for hydrothermal Au–Cu deposits in Catanduanes Island, where 17 hydrothermal Au–Cu prospects are known to exist. Moreover, just like EB modeling, RF modeling allows analysis of the spatial relationships between known prospects and individual layers of predictor data. Furthermore, RF modeling can handle missing values in predictor data through an RF-based imputation technique whereas in EB modeling, missing values are simply represented by maximum uncertainty. Therefore, the RF algorithm is a potentially useful method for data-driven predictive modeling of mineral prospectivity in regions with few (i.e., <20) occurrences of mineral deposits of the type sought. However, further testing of the method in other regions with few mineral occurrences is warranted to fully determine its usefulness in data-driven predictive modeling of mineral prospectivity.  相似文献   

8.
Use of GIS layers, in which the cell values represent fuzzy membership variables, is an effective method of combining subjective geological knowledge with empirical data in a neural network approach to mineral-prospectivity mapping. In this study, multilayer perceptron (MLP), neural networks are used to combine up to 17 regional exploration variables to predict the potential for orogenic gold deposits in the form of prospectivity maps in the Archean Kalgoorlie Terrane of Western Australia. Two types of fuzzy membership layers are used. In the first type of layer, the statistical relationships between known gold deposits and variables in the GIS thematic layer are used to determine fuzzy membership values. For example, GIS layers depicting solid geology and rock-type combinations of categorical data at the nearest lithological boundary for each cell are converted to fuzzy membership layers representing favorable lithologies and favorable lithological boundaries, respectively. This type of fuzzy-membership input is a useful alternative to the 1-of-N coding used for categorical inputs, particularly if there are a large number of classes. Rheological contrast at lithological boundaries is modeled using a second type of fuzzy membership layer, in which the assignment of fuzzy membership value, although based on geological field data, is subjective. The methods used here could be applied to a large range of subjective data (e.g., favorability of tectonic environment, host stratigraphy, or reactivation along major faults) currently used in regional exploration programs, but which normally would not be included as inputs in an empirical neural network approach.  相似文献   

9.
The Gurupi Belt hosts a Paleoproterozoic gold province located in north–northeastern Brazil, at the borders of Pará and Maranhão states. It is considered to be an extension of the prolific West African Craton’s Birimian gold province into South America. Additionally, the belt has been the object of recent mineral exploration programs with significant resource discoveries. This study presents the results of predictive mapping using up-to-date mineral system concepts and recently finished regional-scale geological mapping, stream sediment and airborne geophysical surveys conducted by the Geological Survey of Brazil. We relate gold mineralization to an initially enriched crust, metamorphism, deep fluid pathways, structurally controlled damage zones and hydrothermal alteration. Prospective targets were generated using only regional public datasets and knowledge-driven targeting technique. This work did not incorporate any known gold deposits, yet it predicted the largest known deposits and their satellite targets. Besides, high prospective targets mapped almost 40% of known primary gold occurrences within 7% of the project area. This work allowed considerable search area reduction and identification of new target areas, thus collaborating on reducing costs, time and risk of mineral exploration. Results indicate that we achieved an efficient understanding of the geological processes related to the Gurupi Belt mineral system.  相似文献   

10.
A recently published study has shown that small-scale geologic map data can reproduce mineral assessments made with considerably larger scale data. This result contradicts conventional wisdom about the importance of scale in mineral exploration, at least for regional studies. In order to formally investigate aspects of scale, a weights-of-evidence analysis using known gold occurrences and deposits in the Central Lapland Greenstone Belt of Finland as training sites provided a test of the predictive power of the aeromagnetic data. These orogenic-mesothermal-type gold occurrences and deposits have strong lithologic and structural controls associated with long (up to several kilometers), narrow (up to hundreds of meters) hydrothermal alteration zones with associated magnetic lows. The aeromagnetic data were processed using conventional geophysical methods of successive upward continuation simulating terrane clearance or ‘flight height’ from the original 30 m to an artificial 2000 m. The analyses show, as expected, that the predictive power of aeromagnetic data, as measured by the weights-of-evidence contrast, decreases with increasing flight height. Interestingly, the Moran autocorrelation of aeromagnetic data representing differing flight height, that is spatial scales, decreases with decreasing resolution of source data. The Moran autocorrelation coefficient scems to be another measure of the quality of the aeromagnetic data for predicting exploration targets.  相似文献   

11.
An application of the theory of fuzzy sets to the mapping of gold mineralization potential in the Baguio gold mining district of the Philippines is described. Proximity to geological features is translated into fuzzy membership functions based upon qualitative and quantitative knowledge of spatial associations between known gold occurrences and geological features in the area. Fuzzy sets of favorable distances to geological features and favorable lithologic formations are combined using fuzzy logic as the inference engine. The data capture, map operations, and spatial data analyses are carried out using a geographic information system. The fuzzy predictive maps delineate at least 68% of the known gold occurrences that are used to generate the model. The fuzzy predictive maps delineate at least 76% of the unknown gold occurrences that are not used to generate the model. The results are highly comparable with the results of previous stream-sediment geochemical survey in the area. The results demonstrate the usefulness of a geologically constrained fuzzy set approach to map mineral potential and to redirect surficial exploration work in the search for yet undiscovered gold mineralization in the mining district. The method described is applicable to other mining districts elsewhere.  相似文献   

12.
Estimates of numbers of undiscovered mineral deposits, fundamental to assessing mineral resources, are affected by map scale. Where consistently defined deposits of a particular type are estimated, spatial and frequency distributions of deposits are linked in that some frequency distributions can be generated by processes randomly in space whereas others are generated by processes suggesting clustering in space. Possible spatial distributions of mineral deposits and their related frequency distributions are affected by map scale and associated inclusions of non-permissive or covered geological settings. More generalized map scales are more likely to cause inclusion of geologic settings that are not really permissive for the deposit type, or that include unreported cover over permissive areas, resulting in the appearance of deposit clustering. Thus, overly generalized map scales can cause deposits to appear clustered. We propose a model that captures the effects of map scale and the related inclusion of non-permissive geologic settings on numbers of deposits estimates, the zero-inflated Poisson distribution. Effects of map scale as represented by the zero-inflated Poisson distribution suggest that the appearance of deposit clustering should diminish as mapping becomes more detailed because the number of inflated zeros would decrease with more detailed maps. Based on observed worldwide relationships between map scale and areas permissive for deposit types, mapping at a scale with twice the detail should cut permissive area size of a porphyry copper tract to 29% and a volcanic-hosted massive sulfide tract to 50% of their original sizes. Thus some direct benefits of mapping an area at a more detailed scale are indicated by significant reductions in areas permissive for deposit types, increased deposit density and, as a consequence, reduced uncertainty in the estimate of number of undiscovered deposits. Exploration enterprises benefit from reduced areas requiring detailed and expensive exploration, and land-use planners benefit from reduced areas of concern.  相似文献   

13.
A pedogeochemical exploratory survey of gold deposits was carried out in the region of São Sepé (southernmost Brazil). The region comprises a predominantly metamorphosed belt of volcanoclastics, sediments, serpentinites, basalts, gabbros, chert, tuffs, and banded iron formation of the Proterozoic age. The anomalies were identified first by stream sediment heavy mineral survey at the regional scale of exploration. Once spatial continuity was modeled, ordinary block kriging was performed to generate geochemical maps. Indicator block kriging also was used as an alternative in analyzing and interpreting geochemical data. A novel approach is proposed, which combines both ordinary and indicator kriging for delineating geochemical anomalies. Probability maps proved to be appropriate for selecting new sites for further exploration. Gold anomalies in soils trending NE were well defined by geostatistical analysis and subsequently confirmed by drilling.  相似文献   

14.
Large amounts of digital data must be analyzed and integrated to generate mineral potential maps, which can be used for exploration targeting. The quality of the mineral potential maps is dependent on the quality of the data used as inputs, with higher quality inputs producing higher quality outputs. In mineral exploration, particularly in regions with little to no exploration history, datasets are often incomplete at the scale of investigation with data missing due to incomplete mapping or the unavailability of data over certain areas. It is not always clear that datasets are incomplete, and this study examines how mineral potential mapping results may differ in this context. Different methods of mineral potential mapping provide different ways of dealing with analyzing and integrating incomplete data. This study examines the weights of evidence (WofE), evidential belief function and fuzzy logic methods of mineral potential mapping using incomplete data from the Carajás mineral province, Brazil to target for orogenic gold mineralization. Results demonstrate that WofE is the best one able to predict the location of known mineralization within the study area when either complete or unacknowledged incomplete data are used. It is suggested that this is due to the use of Bayes’ rule, which can account for “missing data.” The results indicate the effectiveness of WofE for mineral potential mapping with incomplete data.  相似文献   

15.
Huang  Jixian  Mao  Xiancheng  Chen  Jin  Deng  Hao  Dick  Jeffrey M.  Liu  Zhankun 《Natural Resources Research》2020,29(1):439-458

Exploring the spatial relationships between various geological features and mineralization is not only conducive to understanding the genesis of ore deposits but can also help to guide mineral exploration by providing predictive mineral maps. However, most current methods assume spatially constant determinants of mineralization and therefore have limited applicability to detecting possible spatially non-stationary relationships between the geological features and the mineralization. In this paper, the spatial variation between the distribution of mineralization and its determining factors is described for a case study in the Dingjiashan Pb–Zn deposit, China. A local regression modeling technique, geological weighted regression (GWR), was leveraged to study the spatial non-stationarity in the 3D geological space. First, ordinary least-squares (OLS) regression was applied, the redundancy and significance of the controlling factors were tested, and the spatial dependency in Zn and Pb ore grade measurements was confirmed. Second, GWR models with different kernel functions in 3D space were applied, and their results were compared to the OLS model. The results show a superior performance of GWR compared with OLS and a significant spatial non-stationarity in the determinants of ore grade. Third, a non-stationarity test was performed. The stationarity index and the Monte Carlo stationarity test demonstrate the non-stationarity of all the variables throughout the area. Finally, the influences of the degree of non-stationary of all controlling factors on mineralization are discussed. The existence of significant non-stationarity of mineral ore determinants in 3D space opens up an exciting avenue for research into the prediction of underground ore bodies.

  相似文献   

16.
Mineral-potential mapping is the process of combining a set of input maps, each representing a distinct geo-scientific variable, to produce a single map which ranks areas according to their potential to host mineral deposits of a particular type. The maps are combined using a mapping function that must be either provided by an expert (knowledge-driven approach), or induced from sample data (data-driven approach). Current data-driven approaches using multilayer perceptrons (MLPs) to represent the mapping function have several inherent problems: they are highly sensitive to the selection of training data; they do not utilize the contextual information provided by nondeposit data; and there is no objective interpretation of the values output by the MLP. This paper presents a new approach by which MLPs can be trained to output values that can be interpreted strictly as representing posterior probabilities. Other advantages of the approach are that it utilizes all data in the construction of the model, and thus eliminates any dependence on a particular selection of training data. The technique is applied to mapping gold mineralization potential in the Castlemaine region of Victoria, Australia, and results are compared with a method based on estimating probability density functions.  相似文献   

17.
Liu  Lushi  Lu  Jilong  Tao  Chunhui  Liao  Shili  Chen  Shengbo 《Natural Resources Research》2021,30(2):971-987

With the depletion of mineral resources on land, seafloor massive sulfide deposits have the potential to become as important for exploration, development and mining as those on land. However, it is difficult to investigate the ocean environment where seafloor massive sulfide deposits are located. Thus, improving prospecting efficiency by reducing the exploration search space through mineral prospectivity mapping (MPM) is desirable. MPM has been used in the exploration for seafloor deposits on regional scales, e.g., the Mid-Atlantic Ridge and Arctic Ridge. However, studies of MPM on ultraslow-spreading ridges on segment scales to aid exploration for seafloor massive sulfide have not been carried out to date. Here, data of water depth, geology and hydrothermal plume anomalies were analyzed and the weights-of-evidence method was used to study the metallogenic regularity and to predict the potential area for seafloor massive sulfide exploration in 48.7°–50.5° E segments on the ultraslow spreading Southwest Indian Ridge. Based on spatial analysis, 11 predictive maps were selected to establish a mineral potential model. Weight values indicate that the location of seafloor massive sulfide deposits is correlated mainly with mode-E faults and oceanic crust thickness in the study area, which correspond with documented ore-controlling factors on other studied ultraslow-spreading ridges. In addition, the detachment fault and ridge axis, which reflect the deep hydrothermal circulation channel and magmatic activities, also play an important role. Based on the posterior probability values, 3 level A, 2 level B and 2 level C areas were identified as targets for further study. The MPM results were helpful for narrowing the search space and have implications for investigating and evaluating seafloor massive sulfide resources in the study area and on other ultraslow-spreading ridges.

  相似文献   

18.
Geographical information system (GIS) techniques were used to investigate the spatial association between metallic mineral sites and lithodiversity in Nevada. Mineral site data sets include various size and type subsets of about 5,500 metal-bearing occurrences and deposits. Lithodiversity was calculated by counting the number of unique geological map units within four sizes of square-shaped sample neighborhoods (2.5-by-2.5, 5-by-5, 10-by-10, and 20-by-20 km) on three different scales of geological maps (national, 1:2,500,000; state, 1:500,000; county, 1:250,000). The spatial association between mineral sites and lithodiversity was observed to increase with increasing lithodiversity. This relationship is consistent for (1) both basin-range and range-only regions, (2) four sizes of sample neighborhoods, (3) various mineral site subsets, (4) the three scales of geological maps, and (5) areas not covered by large-scale maps. A map scale of 1:500,000 and lithodiversity sampling neighborhood of 5-by-5 km was determined to best describe the association. Positive associations occurred for areas having >3 geological map units per neighborhood, with the strongest observed at approximately >7 units. Areas in Nevada with more than three geological map units per 5-by-5 km neighborhood contain more mineral sites than would be expected resulting from chance. High lithodiversity likely reflects the occurrence of complex structural, stratigraphic, and intrusive relationships that are thought to control, focus, localize, or expose mineralization. The application of lithodiversity measurements to areas that are not well explored may help delineate regional-scale exploration targets and provide GIS-supported mineral resource assessment and exploration activity another method that makes use of widely available geological map data.  相似文献   

19.
Mineral prospectivity mapping is an important preliminary step for mineral resource exploration. It has been widely applied to distinguish areas of high potential to host mineral deposits and to minimize the financial risks associated with decision making in mineral industry. In the present study, a maximum entropy (MaxEnt) model was applied to investigate its potential for mineral prospectivity analysis. A case study from the Nanling tungsten polymetallic metallogenic belt, South China, was used to evaluate its performance. In order to deal with model over-fitting, varying levels of β j -regularization were set to determine suitable β value based on response curves and receiver operating characteristic (ROC) curves, as well as via visual inspections of prospectivity maps. The area under the ROC curve (AUC = 0.863) suggests good performance of the MaxEnt model under the condition of balancing model complexity and generality. The relative importance of ore-controlling factors and their relationships with known deposits were examined by jackknife analysis and response curves. Prediction–area (P–A) curves were used to determine threshold values for demarcating high probability of tungsten polymetallic deposit occurrence within small exploration area. The final predictive map showed that high favorability zones occupy 14.5% of the study area and contain 85.5% of the known tungsten polymetallic deposits. Our study suggests that the MaxEnt model can be efficiently used to integrate multisource geo-spatial information for mineral prospectivity analysis.  相似文献   

20.
常规化探异常信息识别通常都是通过对比观测值与某一异常阈值的高低来判定某样品是否为异常样品,很多方法或者建立在经典统计学基础之上,要求数据符合一定的分布形式,或者面向整个研究区计算异常阈值,而无法顾及实际的地质环境。根据常规方法以数值大小计算异常阈值的原则,并且关注化探数据分布特征信息的分析和挖掘,提出了晕状特征提取方法,该方法能够有效识别局部异常及低缓异常。将此方法用于克拉玛依地区对金矿预测具有指示意义的化探数据的异常信息识别工作,结果表明:该方法能够有效识别化探异常信息,这些异常信息与研究区内已知金矿具有很好的对应关系。晕状特征提取方法在新疆东部的应用案例也显示出较好的结果。该方法可以作为一种有效的化探异常信息识别方法应用于成矿预测实际工作中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号