首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
At Rakiraki in northeastern Viti Levu, the Pliocene Ba Volcanic Group comprises gently dipping, pyroxene-phyric basaltic lavas, including pillow lava, and texturally diverse volcanic breccia interbedded with conglomerate and sandstone. Three main facies associations have been identified: (1) The primary volcanic facies association includes massive basalt (flows and sills), pillow lava and related in-situ breccia (pillow-fragment breccia, autobreccia, in-situ hyaloclastite, peperite). (2) The resedimented volcaniclastic facies association consists of bedded, monomict volcanic breccia and scoria lapilli-rich breccia. (3) The volcanogenic sedimentary facies association is composed of bedded, polymict conglomerate and breccia, together with volcanic sandstone and siltstone-mudstone facies. Pillow lava and coarse hyaloclastite breccia indicate a submarine depositional setting for most of the sequence. Thick, massive to graded beds of polymict breccia and conglomerate are interpreted as volcaniclastic mass-flow deposits emplaced below wave base. Well-rounded clasts in conglomerate were reworked during subaerial transport and/or temporary storage in shoreline or shallow water environments prior to redeposition. Red, oxidised lava and scoria clasts in bedded breccia and conglomerate also imply that the source was partly subaerial. The facies assemblage is consistent with a setting on the submerged flanks of a shoaling basaltic seamount. The coarse grade and large volume of conglomerate and breccia reflect the high supply rate of clasts, and the propensity for collapse and redeposition on steep palaeoslopes. The clast supply may have been boosted by vigorous fragmentation processes accompanying transition of lava from subaerial to submarine settings. The greater proportion of primary volcanic facies compared with resedimented volcaniclastic and volcanogenic sedimentary facies in central and northwestern exposures (near Rakiraki) indicates they are more proximal than those in the southeast (towards Viti Levu Bay). The proximal area coincides with one of two zones where NW-SE-trending mafic dykes are especially abundant, and it is close to several, small, dome-like intrusions of intermediate and felsic igneous rocks. The original surface morphology of the volcano is no longer preserved, though the partial fan of bedding dip azimuths in the south and east and the wide diameter (exceeding 20 km) are consistent with a broad shield.  相似文献   

2.
Volcán Alcedo is one of the seven western Galápagos shields and is the only active Galápagos volcano known to have erupted rhyolite as well as basalt. The volcano stands 4 km above the sea floor and has a subaerial volume of 200 km3, nearly all of which is basalt. As Volcán Alcedo grew, it built an elongate domal shield, which was partly truncated during repeated caldera-collapse and partial-filling episodes. An outward-dipping sequence of basalt flows at least 250 m thick forms the steepest (to 33°) flanks of the volcano and is not tilted; thus a constructional origin for the steep upper flanks is favored. About 1 km3 of rhyolite erupted late in the volcano's history from at least three vents and in 2–5 episodes. The most explosive of these produced a tephra blanket that covers the eastern half of the volcano. Homogeneous rhyolitic pumice is overlain by dacite-rhyolite commingled pumice, with no stratigraphic break. The tephra is notable for its low density and coarse grain size. The calculated height of the eruption plume is 23–30 km, and the intensity is estimated to have been 1.2x108 kg/s. Rhyolitic lavas vented from the floor of the caldera and from fissures along the rim overlie the tephra of the plinian phase. The age of the rhyolitic eruptions is 120 ka, on the basis of K-Ar ages. Between ten and 20 basaltic lava flows are younger than the rhyolites. Recent faulting resulted in a moat around part of the caldera floor. Alcedo most resently erupted sometime between 1946 and 1960 from its southern flank. Alcedo maintains an active, transient hydrothermal system. Acoustic and seismic activity in 1991 is attributed to the disruption of the hydrothermal system by a regional-scale earthquake.  相似文献   

3.
天池火山东北侧造盾玄武岩可划分出8个流动单元,熔岩流的流动距离主要集中在30~50km,熔岩流宽度以5km左右为主。通过由野外调查获得的天池火山东北侧不同熔岩流单元的地表坡度、熔岩流厚度等,结合温度、密度与黏度等物理参数,按照熔岩流速度公式恢复的头道组和早白山组0.5m厚晶体含量5%的玄武岩熔岩流流速集中在0~1m/s之间。晶体含量为30%、厚度为0.5m的晚白山组和老房子小山组玄武岩熔岩流的流动速度集中在0~0.12m/s之间。厚度增大至2m左右,晶体含量不变的头道组和早白山组的玄武岩熔岩流流动速度可加快至11m/s。天池火山2m厚的碱性熔岩流在12h内达到或接近了它的最远距离,而各组内2m厚拉斑玄武岩熔岩流在20h内接近了最远距离。0.5m厚的熔岩流在10d内接近最大距离。50km是预计的熔岩流长度,在未来制定减灾措施时,可将此长度作为重要依据之一。天池火山熔岩流灾害主要表现为熔岩流动时对房屋建筑、农田、道路、林地、电站的毁坏,火灾及大量的人口伤亡  相似文献   

4.
 On King George Island during latest Oligocene/earliest Miocene time, submarine eruptions resulted in the emplacement of a small (ca. 500 m estimated original diameter) basalt lava dome at Low Head. The dome contains a central mass of columnar rock enveloped by fractured basalt and basalt breccia. The breccia is crystalline and is a joint-block deposit (lithic orthobreccia) interpreted as an unusually thick dome carapace breccia cogenetic with the columnar rock. It was formed in situ by a combination of intense dilation, fracturing and shattering caused by natural hydrofracturing during initial dome effusion and subsequent endogenous emplacement of further basalt melt, now preserved as the columnar rock. Muddy matrix with dispersed hyaloclastite and microfossils fills fractures and diffuse patches in part of the fractured basalt and breccia lithofacies. The sparse glass-rich clasts formed by cooling-contraction granulation during interaction between chilled basalt crust and surrounding water. Together with muddy sediment, they were injected into the dome by hydrofracturing, local steam fluidisation and likely explosive bulk interaction. The basalt lava was highly crystallised and degassed prior to extrusion. Together with a low effusion temperature and rapid convective heat loss in a submarine setting, these properties significantly affected the magma rheology (increased the viscosity and shear strength) and influenced the final dome-like form of the extrusion. Conversely, high heat retention was favoured by the degassed state of the magma (minimal undercooling), a thick breccia carapace and viscous shear heating, which helped to sustain magmatic (eruption) temperatures and enhanced the mobility of the flow. Received: 1 August 1996 / Accepted: 15 September 1997  相似文献   

5.
Understanding the volcanic processes operating during continental break-up is hampered by the subsequent burial of the majority of the volcanic pile beneath thick sedimentary sequences currently located in bathymetrically deep offshore regions. Although portions of these volcanic systems are currently exposed on land, a full understanding of the volcanic structure, the eruptive styles and their evolution is not possible as these localities have been partially eroded. Furthermore, as the onshore exposure represents a volumetrically minor part of the entire system, the documented eruptive styles may not be representative. The increasing availability of 3D seismic reflection data has the potential to significantly enhance our understanding of break-up related volcanism, as it allows direct access to detailed information from the buried volcanic succession. However, conventional seismic interpretation methodologies cannot determine lava flow morphologies, and as a result, eruptive styles and their evolution are still largely based on extrapolation from the accessible onshore outcrop data. New 3D seismic volume visualisation techniques allow the buried basalt morphologies to be examined for the first time in a manner similar to outcrop, aerial photographic or satellite-based observations. Applying this new approach for 3D seismic data to the North Rockall Trough, U.K. Atlantic margin, demonstrates that a range of volcanic features indicative of eruptive style can be determined. The data reveal a complex terrain containing lava flows originating from discrete volcanic centres, contemporaneous normal faults, linear fissures a few kilometres long, radial fissures and inflation ridges. Lava flow morphologies that are indicative of tube-fed inflated sheetflows, intracanyon flows and elongate subaerial flows that enter water downslope to produce a large hyaloclastite delta are observed.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Editorial responsibility: J. Stix  相似文献   

6.
Detailed facies analysis of hyaloclastites and associated lavas from eight table mountains and similar "hyaloclastite volcanoes" in the Icelandic rift zone contradict a rapid and continuous, "monogenetic", entirely subglacial evolution of most volcanoes studied. The majority of the exposed hyaloclastite deposits formed in large, stable lakes as indicated by widespread, up to 300-m-thick, continuous sections of deep water, shallow water and emergent facies. Salient features include extensively layered or bedded successions comprising mainly debris flow deposits, turbidites, base surge and fallout deposits consisting of texturally and compositionally variable, slightly altered hyaloclastites, as well as sheet and pillow lavas. In contrast, chaotic assemblages of coarser-grained, more poorly sorted and more strongly palagonitized hyaloclastite tuffs and breccias, as well as scoria and lava are interpreted to have formed under sub- or englacial conditions in small, chimney-like ice cavities or ice-bound lakes. Irregularly shaped and erratically arranged hyaloclastite bodies produced at variable water levels appear to have resulted mainly from rapid changes of the eruptive environment due to repeated build-up and drainage of ice-bound lakes as well as the restricted space between the ice walls. We distinguish a "deep water" facies formed during high water levels of the lake, a hydroclastic shallow water and emergent facies (leakage of the lake or growth of the volcano above the water surface). Our model implies the temporary existence of large, stable lakes in Iceland probably formed by climatically induced ice melting. The highly complex edifices of many table mountains and similar volcanoes were constructed during several eruptive periods in changing environments characterized by contrasting volcanic and sedimentary processes. Received: 10 June 1997 / Accepted: 28 July 1998  相似文献   

7.
 Pliocene–Recent volcanic outcrops at Seal Nunataks and Beethoven Peninsula (Antarctic Peninsula) are remnants of several monogenetic volcanoes formed by eruption of vesiculating basaltic magma into shallow water, in an englacial environment. The diversity of sedimentary and volcanic lithofacies present in the Antarctic Peninsula outcrops provides a clear illustration of the wide range of eruptive, transportational and depositional processes which are associated with englacial Surtseyan volcanism. Early-formed pillow lava and glassy breccia, representing a pillow volcano stage of construction, are draped by tephra erupted explosively during a tuff cone stage. The tephra was resedimented around the volcano flanks, mainly by coarse-grained sediment gravity flows. Fine-grained lithofacies are rare, and fine material probably bypassed the main volcanic edifice, accumulating in the surrounding englacial basin. The pattern of sedimentation records variations in eruption dynamics. Products of continuous-uprush eruptions are thought to be represented by stacks of poorly bedded gravelly sandstone, whereas better bedded, lithologically more diverse sequences accumulated during periods of quiescence or effusive activity. Evidence for volcano flank failure is common. In Seal Nunataks, subaerial lithofacies (mainly lavas and cinder cone deposits) are volumetrically minor and occur at a similar stratigraphical position to pillow lava, suggesting that glacial lake drainage may have occurred prior to or during deposition of the subaerial lithofacies. By contrast, voluminous subaerial effusion in Beethoven Peninsula led to the development of laterally extensive stratified glassy breccias representing progradation of hyaloclastite deltas. Received: 5 February 1996 / Accepted: 17 January 1997  相似文献   

8.
Geologic mapping on a scale of 1:10000 and detailed stratigraphic studies of lava flows and tephra deposits of the Arenal-Chato volcanic system reveal a complex and cyclic volcanic history. This cyclicity provides insight into the evolution of magma batches during the growth of the andesitic volcanic system. The Arenal and Chato volcanoes have a central zone comprised of a lava armor and a distal zone comprised of a tephra apron. During Arenal's last two eruptive periods major craters formed near intersections of regional fractures at the lava armortephra apron transition. We suggest that such intersections are potential sites for future major explosions. The earliest rocks, i.e., the Chato lava flows, range in composition from basaltic andesite to andesite. These rocks, except for the andesitic domes of Chatito and La Espina, appear to have evolved from a common parental magma. The last active period of Chato volcano occurred 3550 B. P. The earliest known activity of Arenal volcano is 2900 B. P. Arenal lava flows have 54–56 wt% SiO2 and may be subdivided into a high-alumina group (HAG, Al2O3 = 20 wt%) and a low-alumina group (LAG, Al2O3 = 19 wt%). Compared to the HAG, the LAG also has smaller amounts of incompatible elements and higher amounts of FeO and MgO. Arenal tephra deposits were emplaced by Plinian-Sub-Plinian explosions occurring at 300±150-yr intervals. These deposits are compositionally zoned and alternate between dacite and basalt. The stratigraphy reveals an apparent magmatic cycle consisting of (a) dacitic-andesitic tephra, (b) HAG lava flows, (c) LAG lava flows, and (d) andesitic-basaltic tephra. This magmatic cycle is repeated four times during Arenal's history and is interpreted to have developed by the crystal fractionation and crystal redistribution of a single magma batch. The period of this cycle, and consequently the life of a magma batch, is about 800 years. If the cyclic pattern continues, a basaltic explosive phase may occur in the next 250 years.  相似文献   

9.
Measurements of H and V (dimensions in the horizontal and vertical directions of pillows exposed in vertical cross-section) were made on 19 pillow lavas from the Azores, Cyprus, Iceland, New Zealand, Tasmania, the western USA and Wales. The median values of H and V plot on a straight line that defines a spectrum of pillow sizes, having linear dimensions five times greater at one end than at the other, basaltic toward the small-size end and andesitic toward the large-size end. The pillow median size is interpreted to reflect a control exercised by lava viscosity. Pillows erupted on a steep flow-foot slope in lava deltas can, however, have a significantly smaller size than pillows in tabular pillowed flows (inferred to have been erupted on a small depositonal slope), indicating that the slope angle also exercised a control. Pipe vesicles, generally abundant in the tabular pillowed flows and absent from the flow-foot pillows, have potential as a paleoslope indicator. Pillows toward the small-size end of the spectrum are smooth-surfaced and grew mainly by stretching of their skin, whereas disruption of the skin and spreading were important toward the large-size end. Disruption involved increasing skin thicknesses with increasing pillow size, and pillows toward the large-size end are more analogous with toothpaste lava than with pahoehoe and are inferred from their thick multiple selvages to have taken hours to grow. Pseudo-pillow structure is also locally developed. An example of endogenous pillow-lava growth, that formed intrusive pillows between normal pillows, is described from Sicily. Isolated pillow-like bodies in certain andesitic breccias described from Iceland were previously interpreted to be pillows but have anomalously small sizes for their compositions; it is now proposed that they may lack an essential attribute of pillows, namely, the development of bulbous forms by the inflation of a chilled skin, and are hence not true pillows. Para-pillow lava is a common lava type in the flow-foot breccias. It forms irregular flow-sheets that are locally less than 5 cm thick, and failed to be inflated to pillows perhaps because of an inadequate lava-supply rate or too high a flow velocity.  相似文献   

10.
Mechanically, many volcanoes may be regarded as elastic inclusions, either softer (with a lower Young's modulus) or stiffer (with a higher Young's modulus) than the host-rock matrix. For example, many central volcanoes (stratovolcanoes, composite volcanoes) are composed of rocks that are softer than the crustal segments that host them. This is particularly clear in Iceland where central volcanoes are mostly made of soft rocks such as rhyolite, pyroclastics, hyaloclastites, and sediments whereas the host rock is primarily stiff basaltic lava flows. Most active central volcanoes also contain fluid magma chambers, and many have collapse calderas. Fluid magma chambers are best modelled as cavities (in three dimensions) or holes (in two dimensions), entire calderas as holes, and the ring faults themselves, which commonly include soft materials such as breccias, as soft inclusions. Many hyaloclastite (basaltic breccias) mountains partly buried in the basaltic lava pile also function as soft inclusions. Modelling volcanoes as soft inclusions or holes, we present three main numerical results. The first, using the hole model, shows the mechanical interaction between all the active central volcanoes in Iceland and, in particular, those forming the two main clusters at the north and south end of the East Volcanic Zone (EVZ). The strong indication of mechanical interaction through shared dykes and faults in the northern cluster of the EVZ is supported by observations. The second model, using a soft inclusion, shows that the Torfajökull central volcano, which contains the largest active caldera in Iceland, suppresses the spreading-generated tensile stress in its surroundings. We propose that this partly explains why the proper rift zone northeast of Torfajökull has not managed to propagate through the volcano. Apparently, Torfajökull tends to slow down the rate of southwest propagation of the rift-zone part of the EVZ. The third model, again using a soft inclusion, indicates how the lateral propagation of a segment of the 1783 Laki fissure became arrested in the slopes of the hyaloclastite mountain Laki.  相似文献   

11.
An introduction to the flood basalt volcanism of the Columbia Plateau and Eastern Iceland is followed by more detailed comparative notes. These stress that the volcanism in the two areas was of the same general type. In both regions sub-aerial fissure eruptions gave rise to very extensive basalt flows, particularly on the Columbia Plateau, where some individual lavas cover more than 10,000 km2. The feeding fissures were localized in swarms, and this led in each case to the development of thick, low, shield-like accumulations of flows over the source areas. Progressive (isostatic?) subsidence of the central parts of the basalt pile accentuated the natural tendency for the succession to be thickest in the neighborhood of the feeding fissure swarms. Related differentiates were erupted from the central parts of the fissure vent areas, while olivine-rich basalt flows were apparently often erupted from the edges of the main swarm. Volcanism in Iceland is clearly directly related to the tensional stresses associated with part of the world ridge-rift system. However, this does not appear to be the case on the Columbia Plateau. Consequently it is suggested that flood basalt volcanism of the type described above is simply related to tensional zones in the crust and not directly to the ridge-rift system.  相似文献   

12.
Well defined, laterally continuous welded tuff beds from <1 cm to 2 m thick are more common than has previously been recognized. Examples ranging in composition from rhyolitic to basaltic are described from Ordovician volcanic areas in Britain and Norway, and from the Miocene of the Canary Islands. Bedded welded tuffs are most common in areas of alkaline and peralkaline acidic pyroclastics. They generally occur within successions of massive, welded ash-flow tuff, or within non-welded air-fall tuff successions. Sequences consisting entirely of bedded welded tuff range from <1 m up to 75 m thick. Bedded welded tuffs are thought to originate in three ways. Poorly sorted, thick-bedded welded tuffs are interpreted as the deposits of pyroclastic flows, in which case the beds represent either individual flows units or the layers within flow units. Better sorted, thin-bedded welded tuffs are thought to be of air-fall origin. Thirdly, welding may be produced by the effects of an external heat source on non-welded bedded tuffs.  相似文献   

13.
The 1986 eruption of B fissure at Izu-Oshima Volcano, Japan, produced, among other products, one andesite and two basaltic andesite lava flows. Locally the three flows resemble vent-effused holocrystalline blocky or aa lava; however, remnant clast outlines can be identified at most localities, indicating that the flows were spatter fed or clastogenic. The basaltic andesite flows are interpreted to have formed by two main processes: (a) reconstitution of fountain-generated spatter around vent areas by syn-depositional agglutination and coalescence, followed by extensional non-particulate flow, and (b) syn-eruptive collapse of a rapidly built spatter and scoria cone by rotational slip and extensional sliding. These processes produced two morphologically distinct lobes in both flows by: (a) earlier non-particulate flow of agglutinate and coalesced spatter, which formed a thin lobe of rubbly aa lava (ca. 5 m thick) with characteristic open extension cracks revealing a homogeneous, holocrystalline interior, and (b) later scoria-cone collapse, which created a larger lobe of irregular thickness (<20 m) made of large detached blocks of scoria cone interpreted to have been rafted along on a flow of coalesced spatter. The source regions of these lava flows are characterized by horseshoe-shaped scarps (<30 m high), with meso-blocks (ca. 30 m in diameter) of bedded scoria at the base. One lava flow has a secondary lateral collapse zone with lower (ca. 7 m) scarps. Backward-tilted meso-blocks are interpreted to be the product of rotational slip, and forward-tilted blocks the result of simple toppling. Squeeze-ups of coalesced spatter along the leading edge of the meso-blocks indicate that coalescence occurred in the basal part of the scoria cone. This low-viscosity, coalesced spatter acted as a lubricating layer along which basal failure of the scoria cone occurred. Rotational sliding gave way to extensional translational sliding as the slide mass spread out onto the present caldera floor. Squeeze-ups concentrated at the distal margin indicate that the extensional regime changed to one of compression, probably as a result of cooling of the flow front. Sliding material piled up behind the slowing flow front, and coalesced spatter was squeezed up from the interior of the flow through fractures and between rafted blocks. The andesite flow, although morphologically similar to the other two flows, has a slightly different chemical composition which corresponds to the earliest stage of the eruption. It is a much smaller lava flow emitted from the base of the scoria cone 2 days after the eruption had ceased. This lava is interpreted to have been formed by post-depositional coalescence of spatter under the influence of the in-situ cooling rate and load pressure of the deposit. Extrusion occurred through the lower part of the scoria cone, and subsequent non-particulate flow of coalesced material produced a blocky and aa lava flow. The mechanisms of formation of the lava flows described may be more common during explosive eruptions of mafic magma than previously envisaged. Received: 30 May 1997 / Accepted: 19 May 1998  相似文献   

14.
Aoba is a basalt volcano situated in the northern part of a chain containing all the active volcanoes in the New Hebrides. The chain extends the length of the New Hebrides. Growing from a depth of 2,400 meters on the sea floor, the volcano probably emerged above sea level in the late Pliocene or early Pleistocene. The age of the oldest exposed rocks is unknown. Relatively fluid lavas with autobrecciated surfaces probably issued from tissures, initiating a shield-building stage as the volcano emerged. Airfall pyroclastics increase towards the top of these lavas and are overlain by agglomerates marking a more explosive episode. Activity continued with the effusion of picrite basalt, accompanied by spasms of ash emission that formed crystal tuff. Subsequently a more explosive episode produced agglomerate and tuff with occasional tongues of lava. The two oval summit calderas are apparently related to deep-seated subsidence. Lack of pumice deposits, and the basic nature of the magma suggest that the foundering of the calderas was a quiet event, possibly due to massive outpourings of lava at a lower level, although a substantial volume also erupted from the summit volcanoes at this time. A broad pyroclastic cone, which was still growing 360 years ago, occupies the centre of the inner caldera. It is surmounted by a wide crater, or possibly small caldera, containing a lake in which palagonite tuff cones have formed. The western end of the inner caldera is occupied by an explosion crater, and the eastern end by a semicircular lake. A thermal area containing a solfatara on the southeast shore of the eastern lake, and staining in the crater lake suggestive of fumarole activity, are the only evidence of vulcanicity at the present time. It is difficult to correlate events at the centre of the volcano with those at the lateral fissures. Later episodes at the centre are probably broadly contemporaneous with activity along the fissures, the inner ends of which are mantled by younger deposits of the central volcano. Accumulation of material about this axial fiissure system, marked by no less than 64 cruptive foci, mainly spatter cones, and phreatic explosion craters where they intersect the coast, has extended the island to the northeast and southwest, producing the present oval shape. Numerous flows spilled from these fissures, the last reaching the sea at N’dui N’dui only 300 years ago according to local legend. Abundant ash was emitted from both the summit calderas and flank fissures at a late stage, forming a tuff mantle with layers of accretionary lapilli. The last volcanic event was the formation of a lahar which destoyed a village on the northeast slope of the volcano about 100 years ago. No consistent variation with time is evident in the composition of the magma, although plagiophyric and aphyric lava erupted during the later stages. All the rocks are basaltic, and differ only in the presence or absence of phenocryst-forming minerals, and the proportions in which they occur. Picrite basalt and ankaramite erupted from the central volcano and flank fissures, respectively.  相似文献   

15.
The Managalase Plateau in north-east Papua is a faultbounded block of fractured basement metabasalt and basic plutonic rock overlain in the east by some thirty small volcanic centres of late Pleistocene to Recent age which include rhyodacite ash cones and trachybasalt and basaltic latite lava. To the north andesitic strato-volcanoes of Pleistocene and Recent age occur along the margin of the Cape Vogel geosyncline, whereas to the south a series of basaltic latite, alkali basalt and ultra-alkaline lava of Pliocene age margin the Papuan basic-ultrabasic belt. There is a transition, probably by fractional crystallization from alkali basalt through trachybasalt towards trachyandesite, but the basaltic latite and ultraalkaline lava are aberrant offshoots, possibly owing to contamination by phyllite. The « orogenic andesite » shows disequilibrium relations among the minerals including complexly zoned and twinned plagioclase, and common xenocrysts and xenoliths. Their chemistry can be simulated by mixtures of rhyodacite with either alkali basalt or trachybasalt and they are richer in both magnesia and potash than other calc-alkali rock suites. The rhyodacites, however, are of normal cale-alkali character.  相似文献   

16.
Hlöðufell is a familiar 1186 m high landmark, located about 80 km northeast of Reykjavík, and 9 km south of the Langkjökull ice-cap in south-west Iceland. This is the first detailed study of this well-exposed and easily accessible subglacial to emergent basaltic volcano. Eight coherent and eleven volcaniclastic lithofacies are described and interpreted, and its evolution subdivided into four growth stages (I–IV) on the basis of facies architecture. Vents for stages I, II, and IV lie along the same fissure zone, which trends parallel to the dominant NNE–SSW volcano-tectonic axis of the Western Volcanic Zone in this part of Iceland, but the stage III vent lies to the north, and is probably responsible for the present N–S elongation of the volcano. The basal stage (I) is dominated by subglacially erupted lava mounds and ridges, which are of 240 m maximum thickness, were fed from short fissures and locally display lava tubes. Some of the stage I lavas preserve laterally extensive flat to bulbous, steep, glassy surfaces that are interpreted to have formed by direct contact with surrounding ice, and are termed ice-contact lava confinement surfaces. These surfaces preserve several distinctive structures, such as lava shelves, pillows that have one flat surface and mini-pillow (< 10 cm across) breakouts, which are interpreted to have formed by the interplay of lava chilling and confinement against ice, ice melting and ice fracture. The ice-contact lava confinement surfaces are also associated with zones of distinctive open cavities in the lavas that range from about 1 m to several metres across. The cavities are interpreted as having arisen by lava engulfing blocks of ice, that had become trapped in a narrow zone of meltwater between the lava and the surrounding ice, and are termed ice-block meltout cavities. The same areas of the lavas also display included and sometimes clearly rotated blocks of massive to planar to cross-stratified hyaloclastite lapilli tuffs and tuff–breccias, termed hyaloclastite inclusions, which are interpreted as engulfed blocks of hyaloclastite/pillow breccia carapace and talus, or their equivalents reworked by meltwater. Some of the stage I lavas are mantled at the southern end of the mountain by up to 35 m thickness of well-bedded vitric lapilli tuffs (stage II), of phreatomagmatic origin, which were erupted from a now dissected cone, preserved in this area. The tephra was deposited dominantly by subaqueous sediment gravity flows (density currents) in an ice-bound lake (or less likely a sub-ice water vault), and was also transported to the south by sub-ice meltwater traction currents. This cone is onlapped by a subaerial pahoehoe lava-fed delta sequence, formed during stage III, and which was most likely fed from a now buried vent(s), located somewhere in the north-central part of the mountain. A 150 m rise in lake level submerged the capping lavas, and was associated with progradation of a new pahoehoe lava-fed delta sequence, produced during stage IV, and which was fed from the present summit cone vent. The water level rise and onset of stage IV eruptions were not associated with any obviously exposed phreatomagmatic deposits, but they are most likely buried beneath stage IV delta deposits. Stage IV lava-fed deltas display steep benches, which do not appear to be due to syn- or post-depositional mass wasting, but were probably generated during later erosion by ice. The possibility that they are due to shorter progradation distances than the underlying stage III deltas, due to ice-confinement or lower volumes of supplied lava is also considered.  相似文献   

17.
18.
The degree of the anisotropy of magnetic susceptibility (AMS) of basaltic rocks, as is known from the large AMS database of these rocks, is generally very low, while in more acidic volcanic rocks such as andesites, trachytes and phonolites, which have been investigated much less frequently, it is in general much higher. In the present study, the AMS of various volcanic rocks including trachytic and phonolitic rocks was investigated in the Tertiary volcanic region of the eské stedohoí Mts. Viscosities of the respective lavas were calculated from the chemical composition using the KWARE program. A rough correlation was found between the degree of AMS and lava viscosities, probably resulting from different mechanisms orienting the magnetic minerals. In basaltic lava flows this mechanism is traditionally considered to be of a hydrodynamic nature, in trachytic and phonolitic bodies it can also be represented by quasi-intrusive flows resembling, at least partially, ductile flow deformation. This is in agreement with the AMS data predicted by the viscous (liquid flow) and line/plane (ductile flow) models.  相似文献   

19.
A major carbonate reef which drowned 13 ka is now submerged 150 m below sea level on the west coast of the island of Hawaii. A 25-km span of this reef was investigated using the submersibleMakali'i. The reef occurs on the flanks of two active volcanoes, Mauna Loa and Hualalai, and the lavas from both volcanoes both underlie and overlie the submerged reef. Most of the basaltic lava flows that crossed the reef did so when the water was much shallower, and when they had to flow a shorter distance from shoreline to reef face. Lava flows on top of the reef have protected it from erosion and solution and now occur at seaward-projecting salients on the reef face. These relations suggest that the reef has retreated shoreward as much as 50 m since it formed. A 7-km-wide shadow zone occurs where no Hualalai lava flows cross the reef south of Kailua. These lava flows were probably diverted around a large summit cone complex. A similar shadow zone on the flank of Mauna Loa volcano in the Kealakekua Bay region is downslope from the present Mauna Loa caldera, which ponds Mauna Loa lava and prevents it from reaching the coastline. South of the Mauna Loa shadow zone the - 150 m reef has been totally covered and obscured by Mauna Loa lava. The boundary between Hualalai and Mauna Loa lava on land occurs over a 6-km-wide zone, whereas flows crossing the - 150 m reef show a sharper boundary offshore from the north side of the subaerial transition zone. This indicates that since the formation of the reef, Hualalai lava has migrated south, mantling Mauna Loa lava. More recently, Mauna Loa lava is again encroaching north on Hualalai lava.  相似文献   

20.
Study of these submarine pyroclastic flows is important for two reasons:
  1. From a regional point of view, submarine pyroclastic flows partially explain the origin of widespread argillized glasses in the Eocene sedimentary series of Central Iran, which have diversely been described by earlier workers as Green Tuffs, Tuffaceous Muds, Green Series.
  2. More generally, in contrast to basaltic volcanism, submarine acid volcanism is still very poorly-known. The mechanism here proposed is as follows: starting with a submarine, highly vesiculated lava containing idiomorphic phenocrysts, gas expansion gives rise to a vitroclastic shardy facies, whereas phenocrysts are fragmented. The whole makes up a gravitational flow that is rich in pumice, glassy shards, broken crystals, and gases; it becomes increasingly turbulent and able to tear-up sea-bottom sediments in its down-stream course. This flow evolves into turbidity currents at its distal reaches.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号