首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
胶州湾口海底沙波的类型、特征及发育影响因素   总被引:3,自引:1,他引:3  
采用多波束资料对胶州湾口的海底沙波类型、特征进行了研究,发现研究区主要有线性沙波(二维)、沙丘(三维)2种沙波类型。结合水流流速、海底构造和表层沉积物综合分析发现:海底沙波缓坡朝向与优势流向不完全一致,为强流作用的产物,在涨、落潮作用下均可形成;沉积物的多寡是研究区海底沙波类型分布的决定因素,海底松散沉积物较为丰富的地区形成二维沙波。在水动力强大的胶州湾口,沉积物多分布在构造低洼地带,使二维线性沙波的分布与海底断裂延伸方向一致。  相似文献   

2.
通过多种资料的分析,对胶州湾湾口区的地形地貌、断裂构造、沉积特点进行初步研究,认为湾口区地形复杂,海底沙波、潮成沙体和深水洼地等多种地貌均有发育。断裂构造以北东、北西向断裂为主,且均为陆上断裂在海域的延伸。受潮流作用的制约,湾口区沉积厚度微薄,基岩大面积裸露,风化程度很不均匀。  相似文献   

3.
青岛胶州湾3.2级地震构造背景与控震断裂   总被引:1,自引:0,他引:1  
本文应用构造分析的方法 ,对青岛胶州湾 3.2级地震发生的地震地质背景和构造背景进行分析。结果表明 :胶州湾 3.2级地震主要受 NEE向郝官庄断裂和 NNW向大沽河断裂控制 ,并根据现代活动断裂的标志 ,对上述 2组断裂活动性特征作了阐述  相似文献   

4.
基于2000年5~6月在台湾岛以东海域调查获得的多波束全覆盖测深等地质和地球物理资料,对该海域海底地形特征进行了研究,探讨了构造对海底地形的控制作用及其构造地质意义.研究表明,琉球岛弧岛坡区和琉球海沟表现为典型的西太平洋沟-弧-盆体系控制下的构造地形;台湾岛东部岛坡等深线近南北向平行密集排列,地形坡度大,弧陆碰撞造就了该区独特的地形特征;花东盆地海底峡谷发育,其形成主要受基底起伏和走滑断裂的控制;加瓜海脊东西两侧水深和地形特征明显不同,但其基底可能属于花东盆地,加瓜海脊的东侧对应了两个不同性质板块的边界;西菲律宾海盆表现为北西向线状脊-槽相间排列,并遭受北东向转换断层的切割,根据海底地形、转换断层和磁异常条带的方向推测,研究区海底形成于距今60~45Ma的西菲律宾海盆北东-南西向扩张期.  相似文献   

5.
根据2005年开展的海底地形调查资料并结合前人资料,对废弃的黄河口三角洲海区的海底地形特征及演化进行了分析。通过分析表明,近20年来,本区海岸处于侵蚀状态,蚀退速率约在50~80 m/a之间,海底地形处于冲涮状态,5m和10m等深线向岸方向移动600~900 m左右。  相似文献   

6.
基于多波束声呐的人工鱼礁区地形特征分析   总被引:4,自引:3,他引:1  
李东  唐诚  邹涛  刘斌  侯朝伟  张华 《海洋科学》2017,41(5):127-133
建设人工鱼礁(Artificial Reef,AR)是恢复和养护近海渔业资源的重要措施。尽管中国沿海各地人工鱼礁规模宏大,但对于鱼礁投放后的监测明显不足。传统调查方法存在效率低、成本高等缺点,多波束测深系统(Multibeam Echo Sounder,MBES)为探测鱼礁区地形地貌提供了一种有效的技术手段。本文利用高分辨率的多波束测深系统,获取礁区详细的测深数据,快速确定鱼礁位置、形态等信息;应用地形分析工具提取地形变量(坡度、曲率、粗糙度、地形耐用指数及地形起伏度),分析投石后海底地形特征。研究表明,礁石投放后海底地形发生显著变化(水深5~10 m),礁石发生沉降现象(下沉深度约0.45 m),礁石周围出现冲淤地形(礁石堆高1.65 m,影响范围5 m左右)。分析人工鱼礁引起的微地形地貌的变化,可以为鱼礁的监测与效果评估工作提供一种新的技术方法,具有较强的现实意义。  相似文献   

7.
渤海海底地形特征   总被引:5,自引:0,他引:5       下载免费PDF全文
基于2004—2010年渤海海底地形地貌调查资料,结合前人对渤海海底地形的认识,对渤海海底地形5个区(辽东湾、渤海湾、莱州湾、渤海中央盆地和渤海海峡)的地形及微地形,进行了全面的分析描述。并与1985年出版的渤海地形图进行比较,寻找渤海地形近几十年来的变化并分析其原因。分析表明:渤海海底地形平缓,从辽东湾、渤海湾和莱州湾三个海湾向渤海中央盆地及东部渤海海峡倾斜,平均水深18m;由于环境变化和人类活动,导致部分近岸海域的水深比40多a前的水深变浅,而渤海中央盆地发生侵蚀,水深加深。  相似文献   

8.
基于ROV的近海底地形测量及其在马努斯盆地热液区的应用   总被引:3,自引:0,他引:3  
针对重点的特殊深海研究区(如热液冷泉、洋中脊区域),在船载多波束数据获得研究区大面积地形资料的基础上,有必要选取典型深海小靶区进行高分辨率地形测量为进一步深入研究提供保障。根据船载多波束实测数据选取PACMANUS热液区作为靶区,基于长基线定位,利用“发现”ROV搭载多波束系统进行近海底全覆盖地形测量。结果表明,依托于船动力定位系统及差分GPS,长基线为ROV提供了可靠的高精度定位,使得近海底测量的地形数据分辨率数倍优于船载多波束测得的地形数据的分辨率。高分辨率地形清晰的显示了PACMANUS热液区锥形丘体等特殊微地形,与已发现的热液点和火山区有很好的对应。进一步分析发现,该区域活动的热液区主要发育于坡度大于30°斜坡上的地形突变区,其成因仍需深入研究。利用ROV搭载多波束近底测量是获取深海小靶区高分辨率地形的可靠途径和方法,有利于提高深海海底研究的针对性,将促进我国深海科学研究的发展。  相似文献   

9.
前人在南海东北部发现许多与天然气渗漏相关的规模大小不一的泥火山。受数据类型和分辨率所限,这些泥火山规模大小存在数据断层。利用多波束地形数据,在研究区域新发现了27个直径在300~1 170m、高度在5~120m范围内的泥火山,并且这些泥火山大多发育在海底侵蚀作用强烈的峡谷中。南海东北部海底地层中泥质和烃类来源充足,较快的沉积速率构成的超压体系以及强烈的挤压构造应力作用,使得含气高压泥浆上涌,穿透峡谷较薄的沉积层,这些黏性泥质在海底表面堆积形成了泥火山。  相似文献   

10.
2006年6月在胶州湾采集柱状岩心并对岩心沉积物中铅-210比活度进行测试分析,结果表明,铅-210沿岩心的垂向分布具有两段、三段模式和异常的多段、倒置模式等。基于铅-210的CIC(constant initial concentration)计年模式和铯-137时标,并且结合历史海底地形对比,计算出近百年来胶州湾海域的现代沉积速率为1.49~24.96 mm/a,沉积通量为0.17~2.62 g/(cm2.a)。除沧口水道末端个别区域外,胶州湾多数区域(包含水道)的沉积速率较低,量级为100mm/a,湾内水道主要呈现出微淤甚至侵蚀,表明近百年来胶州湾沉积环境相对稳定,在可作为航道资源的湾内水道并未出现显著淤积。  相似文献   

11.
The seafloor morphology and the subsurface of the continental slope of the Olbia intraslope basin located along the eastern, passive Sardinian margin (Tyrrhenian Sea) has been mapped through the interpretation of high-resolution multibeam bathymetric data, coupled with air-gun and sparker seismic profiles. Two areas, corresponding to different physiographic domains, have been recognized along the Olbia continental slope. The upper slope domain, extending from 500 to 850 m water depth, exhibits a series of conical depressions, interpreted as pockmarks that are particularly frequent in seafloor sectors coincident with buried slope channels. In one case, they are aligned along a linear gully most likely reflecting the course of one of the abandoned channels. The location of the pockmarks thus highlights the importance of the distribution of lithologies within different sedimentary bodies in the subsurface in controlling fluid migration plumbing systems. A linear train of pockmarks is, however, present also away from the buried channels being related to a basement step, linked to a blind fault. Two bathymetric highs, interpreted as possible carbonate mounds, are found in connection with some of the pockmark fields. Although the genetic linkage of the carbonate mounds with seafloor fluid venting cannot be definitively substantiated by the lack of in situ measurements, the possibility of a close relationship is here proposed. The lower slope domain, from 850 m down to the base of the slope at 1,200 m water depth is characterized by a sudden gradient increase (from 2° to 6°) that is driven by the presence of the basin master fault that separates the continental slope from the basin plain. Here, a series of km-wide headwall scars due to mass wasting processes are evident. The landslides are characterized by rotated, relatively undeformed seismic strata, which sometimes evolve upslope into shallow-seated (less than 10 m), smaller scale failures and into headless chutes. Slope gradient may act as a major controlling factor on the seafloor instability along the Olbia continental slope; however, the association of landslides with pockmarks has been recognized in several continental slopes worldwide, thus the role of over-pressured fluids in triggering sediment failure in the Olbia slope can not be discarded. In the absence of direct ground truthing, the geological processes linked to subsurface structures and their seafloor expressions have been inferred through the comparison with similar settings where the interpretation of seafloor features from multibeam data has been substantiated with seafloor sampling and geochemical data.  相似文献   

12.
Using automated supervised segmentation of multibeam backscatter data to delineate seafloor substrates is a relatively novel technique. Low-frequency multibeam echosounders (MBES), such as the 12-kHz EM120, present particular difficulties since the signal can penetrate several metres into the seafloor, depending on substrate type. We present a case study illustrating how a non-targeted dataset may be used to derive information from multibeam backscatter data regarding distribution of substrate types. The results allow us to assess limitations associated with low frequency MBES where sub-bottom layering is present, and test the accuracy of automated supervised segmentation performed using SonarScope® software. This is done through comparison of predicted and observed substrate from backscatter facies-derived classes and substrate data, reinforced using quantitative statistical analysis based on a confusion matrix. We use sediment samples, video transects and sub-bottom profiles acquired on the Chatham Rise, east of New Zealand. Inferences on the substrate types are made using the Generic Seafloor Acoustic Backscatter (GSAB) model, and the extents of the backscatter classes are delineated by automated supervised segmentation. Correlating substrate data to backscatter classes revealed that backscatter amplitude may correspond to lithologies up to 4 m below the seafloor. Our results emphasise several issues related to substrate characterisation using backscatter classification, primarily because the GSAB model does not only relate to grain size and roughness properties of substrate, but also accounts for other parameters that influence backscatter. Better understanding these limitations allows us to derive first-order interpretations of sediment properties from automated supervised segmentation.  相似文献   

13.
多波束反向散射强度数据处理研究   总被引:8,自引:5,他引:8  
在探讨多波束测深系统反向散射强度与海底底质类型的关系基础上,研究影响反向散射强度的各种因素,主要分析了海底地形起伏、中央波束区反射信号对反向散射强度的影响,并给出了消除这些影响的方法;将处理后的“纯”反向散射强度数据镶嵌生成海底声像图,为海底底质类型划分以及地貌解译提供了基础数据和辅助判读依据.  相似文献   

14.
Most modern submarine geohazard investigations rely heavily on multibeam sonar data, yet there are limitations to these data that must be respected. Disregard of fundamental aspects of spatial sampling, averaging and interpolation, and statistical parameters that accompany all forms of measurement, can lead to over-interpretation of data. Beam spreading and sounding density govern spatial resolution and therefore limit seafloor features that are resolved and interpreted as indicative of geohazards. These resolution limitations are shown with a synthetic model of the seafloor convolved with a spherically spreading wavefront approximated with a spherical smoothing algorithm. This simulation shows the inability to resolve metrics of objects, as well as determine critical parameters such as slope angles with increasing water depth. As well, real case examples are presented showing these effects on identification of targets, slope angles and pockmarks. Misinterpretation of seafloor features is common in multibeam data, particularly without the benefit of coincident subbottom data. Thus it is critical to image the third dimension below the seafloor. Finally, seafloor mapping for geohazards is just one step in a geohazard assessment: it is critical to know frequency of recurrence of geohazard events and their modern geologic context in order to appropriately assess risk.  相似文献   

15.
Abstract

We calibrate a technique to use repeated multibeam sidescan surveys in the deep ocean to recover seafloor displacements greater than a few meters. Displacement measurements from seafloor patches (3?km by 20?km) on the port and starboard side of the ship are used to estimate vertical and across-track displacement. We present displacement measurements from a survey of the Ayu Trough southwest of the Marianas Trench using a 12?kHz multibeam. Vertical and across-track displacement errors for the 12?kHz multibeam sonar are typically 0–2?m with RMS uncertainties of 0.25–0.67 m in the across-track and 0.37–0.75 m in the vertical as determined by 3-way closure tests. The uncertainty of the range-averaged sound velocity is a major error source. We estimate that variations in the sound velocity profile, as quantified using expendable bathythermographs (XBTs) during data collection, contribute up to 0.3?m RMS uncertainty in the across-track direction and 1.6?m RMS uncertainty in the vertical direction.  相似文献   

16.
High-resolution, side-looking sonar data collected near the seafloor (100 m altitude) provide important structural and topographic information for defining the geological history and current tectonic framework of seafloor terrains. DSL-120 kHz sonar data collected in the rift valley of the Lucky Strike segment of the Mid-Atlantic Ridge near 37° N provide the ability to quantitatively assess the effective resolution limits of both the sidescan imagery and the computed phase-bathymetry of this sonar system. While the theoretical, vertical and horizontal pixel resolutions of the DSL-120 system are <1 m, statistical analysis of DSL-120 sonar data collected from the Lucky Strike segment indicates that the effective spatial resolution of features is 1–2 m for sidescan imagery and 4 m for phase-bathymetry in the seafloor terrain of the Mid-Atlantic Ridge rift valley. Comparison of multibeam bathymetry data collected at the sea-surface with deep-tow DSL-120 bathymetry indicates that depth differences are on the order of the resolution of the multibeam system (10–30 m). Much of this residual can be accounted for by navigational mismatches and the higher resolving ability of the DSL-120 data, which has a bathymetric footprint on the seafloor that is 20 times smaller than that of hull-mounted multibeam at these seafloor depths (2000 m). Comparison of DSL-120 bathymetry with itself on crossing lines indicates that residual depth values are ±20 m, with much of that variation being accounted for by navigational errors. A DSL-120 survey conducted in 1998 on the Juan de Fuca Ridge with better navigation and less complex seafloor terrain had residual depth values half those of the Lucky Strike survey. The quality of the bathymetry data varies as a function of position within the swath, with poorer data directly beneath the tow vehicle and also towards the swath edges.Variations in sidescan amplitude observed across the rift valley and on Lucky Strike Seamount correlate well with changes in seafloor roughness caused by transitions from sedimented seafloor to bare rock outcrops. Distinct changes in sonar backscatter amplitude were also observed between areas covered with hydrothermal pavement that grade into lava flows and the collapsed surface of the lava lake in the summit depression of Lucky Strike Seamount. Small features on the seafloor, including volcanic constructional features (e.g., small cones, haystacks, fissures and collapse features) and hydrothermal vent chimneys or mounds taller than 2 m and greater than 9 m2 in surface area, can easily be resolved and mapped using this system. These features at Lucky Strike have been confirmed visually using the submersible Alvin, the remotely operated vehicle Jason, and the towed optical/acoustic mapping system Argo II.  相似文献   

17.
Hydrographic quality bathymetry and quantitative acoustic backscatter data are now being acquired in shallow water on a routine basis using high frequency multibeam sonars. The data provided by these systems produce hitherto unobtainable information about geomorphology and seafloor geologic processes in the coastal zone and on the continental shelf.Before one can use the multibeam data for hydrography or quantitative acoustic backscatter studies, however, it is essential to be able to correct for systematic errors in the data. For bathymetric data, artifacts common to deep-water systems (roll, refraction, positioning) need to be corrected. In addition, the potentially far greater effects of tides, heave, vessel lift/squat, antenna motion and internal time delays become of increasing importance in shallower water. Such artifacts now cause greater errors in hydrographic data quality than bottom detection. Many of these artifacts are a result of imperfect motion sensing, however, new methods such as differential GPS hold great potential for resolving such limitations. For backscatter data, while the system response is well characterised, significant post processing is required to remove residual effects of imaging geometry, gain adjustments and water column effects. With the removal of these system artifacts and the establishment of a calibrated test site in intertidal regions (where the seabed may be intimately examined by eye) one can build up a sediment classification scheme for routine regional seafloor identification.When properly processed, high frequency multibeam sonar data can provide a view of seafloor geology and geomorphology at resolutions of as little as a few decimetres. Specific applications include quantitative estimation of sediment transport rates in large-scale sediment waves, volume effects of iceberg scouring, extent and style of seafloor mass-wasting and delineation of structural trends in bedrock. In addition, the imagery potentially provides a means of quantitative classification of seafloor lithology, allowing sedimentologists the ability to examine spatial distributions of seabed sediment type without resorting to subjective estimation or prohibitively expensive bottom-sampling programs. Using Simrad EM100 and EM1000 sonars as an example, this paper illustrates the nature and scale of possible artifacts, the necessary post-processing steps and shows specific applications of these sonars.  相似文献   

18.
A new highly precise source of data has recently become available using multibeam sonar systems in hydrography. Multibeam sonar systems can provide hydrographic quality depth data as well as high-resolution seafloor sonar images. We utilize the seafloor backscatter strength data of each beam from multibeam sonar and the automatic classification technology so that we can get the seafloor type identification maps. In this article, analyzing all kinds of error effects in backscatter strength, data are based on the relationship between backscatter strength and seafloor types. We emphasize particularly analyzing the influences of local bottom slope and near nadir reflection in backscatter strength data. We also give the correction algorithms and results of these two influent factors. After processing the raw backscatter strength data and correcting error effects, we can get processed backscatter strength data which reflect the features of seafloor types only. Applying the processed backscatter strength data and mosaicked seafloor sonar images, we engage in seafloor classification and geomorphy interpretation in future research.  相似文献   

19.
20.
Processing Multibeam Backscatter Data   总被引:1,自引:0,他引:1  
A new highly precise source of data has recently become available using multibeam sonar systems in hydrography. Multibeam sonar systems can provide hydrographic quality depth data as well as high-resolution seafloor sonar images. We utilize the seafloor backscatter strength data of each beam from multibeam sonar and the automatic classification technology so that we can get the seafloor type identification maps. In this article, analyzing all kinds of error effects in backscatter strength, data are based on the relationship between backscatter strength and seafloor types. We emphasize particularly analyzing the influences of local bottom slope and near nadir reflection in backscatter strength data. We also give the correction algorithms and results of these two influent factors. After processing the raw backscatter strength data and correcting error effects, we can get processed backscatter strength data which reflect the features of seafloor types only. Applying the processed backscatter strength data and mosaicked seafloor sonar images, we engage in seafloor classification and geomorphy interpretation in future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号