首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
Internal solitons can bring about strong force on the oil drilling platform and pipeline at sea, which causes severe threat to the ocean engineering. Cai et al. (2003) introduced Morison's empirical formula, modal separation method and regression analyses to estimate the forces exerted by internal soliton on cylindrical piles. However, this method is very complicated and it requires some observational current data which are generally very difficult to obtain synchronically. In this paper, it is shown that the force by the first mode internal wave dominates most part of the global force, thus a new simple estimation method of the force based on only the first mode internal wave is put forward without some complicated steps and observational current data in the old method. The force can be estimated by the local vertical observational temperature, salinity data and amplitude of internal soliton.  相似文献   

2.
Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies   总被引:7,自引:0,他引:7  
In a recent study, satellite images have shown that internal solitons are active in the northern South China Sea (SCS). During the Asian Seas International Acoustic Experiment (ASIAEX) pilot studies, current profiler and thermistor chain moorings were deployed in the spring of 1999 and 2000 to investigate internal solitons northeast of Tung-Sha Island on the continental slope of the northern SCS. Most of the observed internal solitons were first baroclinic mode depression waves. The largest horizontal current velocity, vertical displacement, and temperature variation induced by the internal solitons were around 240 cm/s, 106 m, and 11/spl deg/C, respectively, while the estimated nonlinear phase speed was primarily westward at 152 /spl plusmn/ 4 cm/s. The observed internal solitons could be categorized as four types. The first type is the incoming wave from deep water and can be described reasonably well with the KdV equation. The second and third types are in the transition zone before and close to the turning point (where the upper and lower layer depths are equal), respectively. These two types of solitons were generally near the wave-breaking stage. The fourth type of soliton is a second baroclinic mode and probably was locally generated. The time evolutions are asymmetric, especially at the middle depths. A temperature kink following the main pulse of the soliton is often seen. Higher order nonlinear and shallow topographic effects could be the primary cause for these features. The appearance/disappearance of internal solitons coincides mostly with spring/neap tide. The internal soliton is irregularly seen during the neap tide period and its amplitude is generally small. The time interval between two leading solitons is generally around 12 h. The first baroclinic mode of the semidiurnal tide has a larger amplitude than the diurnal tide and could redistribute its energy into the soliton.  相似文献   

3.
Results of satellite observations of surface manifestations of internal waves in the Caspian Sea are presented. It is proposed that the possible cause of generation of the revealed internal waves is uninodal seiches with a nodal line located in the vicinity of the Apsheron Sill. The basic parameters of internal waves in the Caspian Sea, having the form of classical soliton trains, are determined. Seasonal variability of surface manifestations of the internal waves is revealed. The horizontal current velocity of the solitons is assessed. According to the estimation, velocity is about 0.2 m/s, which is sufficient for wind ripple modulation.  相似文献   

4.
《Oceanologica Acta》1999,22(4):367-380
A statistical evaluation of vertical current velocity profiles w(z) has been undertaken using data provided by current meter profilers. The calculation of profiles w(z) involves the estimation of the standard deviation of vertical current at each depth level, and the standard deviation of the statistical variability of that estimate. Profiles w(z) have been computed for the northwestern Black Sea, using current meter and CTD data from three surveys carried out during 1992–1994. The calculations show w(z) to have a two-layered structure, with zero values occurring in the main pycnocline. Such vertical current structures are consistent with a hydrodynamic model, whereby the current field is induced by buoyancy fluxes through the lateral basin boundaries. Existence of zero vertical current velocities at the pycnoclines yields the key to understanding the mechanisms responsible for the oxic-anoxic interface, and of the zones with steep vertical gradients in hydrochemical and hydrooptical characteristics.  相似文献   

5.
A three-dimensional tidal current model is developed and applied to the East China Sea (ECS), the Yellow Sea and the Bohai Sea. The model well reproduces the major four tides, namely M2, S2, K1 and O1 tides, and their currents. The horizontal distributions of the major four tidal currents are the same as those calculated by the horizontal two-dimensional models. With its high resolutions in the horizontal (12.5 km) and the vertical (20 layers), the model is used to investigate the vertical distributions of tidal current. Four vertical eddy viscosity models are used in the numerical experiments. As the tidal current becomes strong, its vertical shear becomes large and its vertical profile becomes sensitive to the vertical eddy viscosity. As a conclusion, the HU (a) model (Davieset al., 1997), which relates the vertical eddy viscosity to the water depth and depth mean velocity, gives the closest results to the observed data. The reproduction of the amphidromic point of M2 tide in Liaodong Bay is discussed and it is concluded that it depends on the bottom friction stress. The model reproduces a unique vertical profile of tidal current in the Yellow Sea, which is also found in the observed data. The reason for the reproduction of such a unique profile in the model is investigated.  相似文献   

6.
Dissolved organic carbon(DOC) and particulate organic carbon(POC) are basic variables for the ocean carbon cycle.Knowledge of the distribution and inventory of these variables is important for a better estimation and understanding of the global carbon cycle.Owing to its considerable advantages in spatial and temporal coverage,remote sensing data provide estimates of DOC and POC inventories,which are able to give a synthetic view for the distribution and transportation of carbon pools.To estimate organic carbon inventories using remote sensing involves integration of the surface concentration and vertical profile models,and the development of these models is critical to the accuracy of estimates.Hence,the distribution and control factors of DOC and POC in the ocean first are briefly summarized,and then studies of DOC and POC inventories and flux estimations are reviewed,most of which are based on field data and few of which consider the vertical distributions of POC or DOC.There is some research on the estimation of POC inventory by remote sensing,mainly in the open ocean,in which three kinds of vertical profile models have been proposed:the uniform,exponential decay,and Gauss models.However,research on remote-sensing estimation of the DOC inventory remains lacking.A synthetic review of approaches used to estimate the organic carbon inventories is offered and the future development of methods is discussed for such estimates using remote sensing data in coastal waters.  相似文献   

7.
Comparison of current measurements from moored (paddle-wheel rotor) Aanderaa current meters and acoustic Doppler current profilers in a strong tidal flow on Georges Bank indicates rate under-reading by the Aanderaa meters at some vertical positions. The under-reading may arise from mooring-line vibrations induced by vortex shedding from spherical buoyancy packages, and shielding of the paddle-wheel rotors due to the meters' inability to remain aligned with the fluctuating relative water velocity. Field tests and a simple model are used to investigate this explanation. The authors briefly review the Georges Bank observations that instigated this investigation. An explanation for the degradation of the Aanderaa measurements is proposed, observational information from field tests is discussed, and the model and its implications are presented. The model results support the hypothesis that high-frequency mooring-line vibration causes the degradation of the Aanderaa measurements  相似文献   

8.
南海东沙岛西南大陆坡内潮特征   总被引:2,自引:0,他引:2  
2008年4月-10月,在南海东沙岛西南大陆坡底部布放了1套全剖面锚系,同时沿大陆坡底部布放了3套近底锚系,应用谱分析和调和分析方法分析温度和海流连续观测资料,进而研究该海域的内潮特征.结果表明,东沙岛西南大陆坡存在强内潮现象,大陆坡底部温度变化受到内潮波的影响,上层海洋存在强日潮周期的内潮波振动;正压潮和斜压潮均以O...  相似文献   

9.
内孤立波具有较大的振幅与较强的垂向剪切,能对海洋工程设施产生极大的破坏作用。本文设计实验研究了内孤立波与直立小直径桩柱的相互作用,采用粒子图像速度测量法(PIV)测量内孤立波的流速场,并采用自行设计的测力天平测量桩柱受力,测量分析了内孤立波对小直径直立桩柱产生作用力的实验值,与Morison公式计算的理论值比较。实验结果表明,第一模态内孤立波的流速方向以及作用力在桩柱的上下部分方向相反,产生很强的速度切变和扭力,对小直径直立桩柱造成破坏。通过与Morison公式计算的理论值比较,发现实验值与理论值的大小以及分布规律基本相同。  相似文献   

10.
长江口徐六泾洪季水沙特性观测研究   总被引:3,自引:0,他引:3  
程江  何青  王元叶  车越  张经 《海洋通报》2003,22(5):86-91
2001年7月,在长江口徐六泾对流速、流向和悬浮泥沙浓度进行了大小潮定点观测。观测数据分析表明徐六泾处大潮流速及其变化远大于小潮流速。大潮悬沙浓度大于小潮悬沙浓度。由于径流的影响,落潮期间垂向速度梯度比涨潮期间大,落潮垂向切变增强,使落潮期间悬沙浓度的变化幅度大于涨潮期间的泥沙变化幅度,同时存在泥沙浓度峰值滞后于流速峰值的现象。  相似文献   

11.
In this paper, by non-dimensional analysis, it is found that finite-depth theory is more appropriate to the study of internal solitary waves (ISWs) in the South China Sea (SCS) than shallow-water theory. The 1-degree grid data of monthly mean temperature and salinity data at standard levels in the SCS are used to solve the linearized vertical eigenvalue problem. The nonlinear parameter and the wave phase speed are computed, then the nonlinear phase speed and the characteristic half-width of ISWs are calculated respectively by two different theories to investigate the difference between these two parameters in the SCS. The nonlinearity is the strongest near the continental slope of the SCS or islands where the bottom topography changes sharply, it is stronger in summer than that in winter; it increases (decreases) as pycnocline depth deepens (shallows), stratification strengthens (weakens) and pycnocline thickness thins (thickens). The nonlinear wave phase speed and the characteristic half-width are the largest in deep sea area, they then reduce peripherally in shallower water. The nonlinear wave phase speed in the SCS changes slightly with time, but the characteristic half-width changes somewhat larger with time. In most of the SCS basin, the nonlinear wave phase speed derived from shallow-water theory is very close to that derived from finite-depth theory, but the characteristic half-width derived from shallow-water theory is about 0.2–0.6 times larger than that derived from finite-depth theory. The ISW induced horizontal current velocity derived from shallow-water theory is larger than that derived from finite-depth theory. Some observed and numerical modeled ISW characteristic half-widths are compared with those derived from shallow-water and finite-depth theories, respectively. It is shown that, the characteristic half-widths derived from finite-depth theory agree better with observational and numerical modeled results than those derived from shallow-water theory in most cases, finite-depth theory is more applicable to the estimation of ISW characteristic half-widths in the northern SCS. It is also suggested that, to derive the precise ISW parameters in further study, the physical non-dimensional ratios which are related with ISW characteristic half-width, amplitude, thermocline and water depths should be calculated, so that an appropriate theory can be chosen for estimation.  相似文献   

12.
《Coastal Engineering》2004,51(10):1021-1049
A numerical process-based model to forecast beach profile morphodynamics has been developed. In the present paper, an analysis of various modelling approaches and key parametrizations involved in the estimation of the wave-driven current and the suspended sediment concentration is carried out.Several resolution techniques for the 1DV horizontal (i.e., in the x-direction perpendicular to coastline) momentum equation governing the Mean Horizontal Velocity (MHV) are analysed. In the first kind of techniques, the mean horizontal velocity is computed from the momentum equation, whereas the Mean Water Level (MWL) is computed using a parametrization of the depth-averaged momentum equation. Two boundary or integral conditions are thus needed. In the second kind, both mean horizontal velocity and mean water level gradient in the x-direction are the unknowns of the momentum equation, thus, three boundary or integral conditions are needed. Various additional conditions are discussed. We show that using a technique of the first kind is equivalent to imposing the difference between the surface and the bottom shear stresses in the 1D vertical equation. Both techniques lead to results that are in good agreement with the Delta Flume experimental data, provided the Stokes drift flow discharge is imposed as an additional condition. The influence of the breaking roller model and of the turbulent viscosity parametrization are also analysed.Suspended sediment transport by the mean current and wave-induced bedload transport are taken into account in the sediment flux. Three turbulent diffusivity parametrizations are compared for suspended sediment concentration estimations. A linear profile for the turbulent diffusivity taking into account the wave bottom shear stress and the surface wave breaking turbulence production is shown to give the best results. Using experimental data, we put forward the poor estimation of the bottom sediment concentration given by the three implemented parametrizations. We thus propose a new parametrization relying on a Shields parameter based on the breaking roller induced surface shear stress. Using this new parametrization, the bottom profile used in the tests keeps its two bars which disappear otherwise. However, the morphodynamical model still overestimates the bars offshore motion, a bias already observed in other models.  相似文献   

13.
Recent numerical studies (Hibiya et al., 1996, 1998, 2002) showed that the energy cascade across the internal wave spectrum down to small dissipation scales was under strong control of parametric subharmonic instabilities (PSI) which transfer energy from low vertical mode double-inertial frequency internal waves to high vertical mode near-inertial internal waves. To see whether or not the numerically-predicted energy cascade process is actually dominant in the real deep ocean, we examine the temporal variability of vertical profiles of horizontal velocity observed by deploying a number of expendable current profilers (XCPs) at one location near the Izu-Ogasawara Ridge. By calculating EOFs, we find the observed velocity profiles are dominated by low mode semidiurnal (∼double-inertial frequency) internal tides and high mode near-inertial internal waves. Furthermore, we find that the WKB-stretched vertical scales of the near-inertial current shear are about 250 sm and 100 sm. The observed features are reasonably explained if the energy cascade down to small dissipation scales is dominated by PSI.  相似文献   

14.
基于2002年夏季开展的"中国近海环流形成变异机理、数值预测方法及对环境的影响"观测项目获得的往复走航温盐流资料,结合同期的卫星观测(风、SST、海表动力高度)数据,初步探讨了粤东陆架边缘上升流区的内潮现象及其局地反馈特征.研究结果表明:粤东陆架边缘海域存在显著的、间歇性的相对低温海水的沿陆坡涌升现象,其中A航段的低温(18~23℃)海水涌升发生在约50~150m深度,B航段的低温(<18℃)海水涌升则主要位于150 m以深.由于观测期间海表风变化很小,而海洋涡旋在几周至几个月内相对稳定,并且研究海域涡旋对流场的影响似乎局限于75 m以浅的上层海洋,因而A、B航段的差异显然不能用海表风或海表动力高度变化来解释.进一步的分析表明粤东陆架边缘上升流区存在显著的内潮现象,尽管资料所限使得我们无法准确判定该内潮性质,往复走航海流剖面的确揭示了1阶和5阶内潮模的存在.内潮的不同模态极大地改变了上层海洋的热力和环流结构;低阶内潮模导致沿最大温度水平梯度处水温的剧烈垂向起伏(>30 m)以及跃层两侧的海流反向现象;高阶内潮模导致垂直陆坡方向水平流速的多次反向,强烈的流剪切可能与增强的混合联系在一起.导致低阶内潮模(A航段)向高阶内潮模(B航段)转变的原因可能是由于内潮特征线倾角与地形坡度比较接近而激发的"临界反射"效应.分析结果还表明,不同内潮模态导致的环流结构变异叠加在背景环流场之上,会显著影响粤东陆架边缘上升流的空间结构及强度.  相似文献   

15.
Based on the moored current and temperature observations during the summer of 2005, the vertical structure of the internal tides on the continental shelf of the northwestern South China Sea (SCS) is studied. The vertical structure of the internal tides was found to differ greatly between semidiurnal and diurnal constituents. Generally, the diurnal constituents are dominated by the first-mode motions, which are consistent with the overwhelming first-mode signals in the northeastern SCS. In contrast, the semidiurnal internal tides, unlike the predomination of the first-mode variations in the northeastern area, exhibit a higher modal structure with dominate second-mode signals in the observational region. Moreover, although the diurnal internal tides are much stronger than the semidiurnal component, the shear caused by the latter over various scales was found to be significant compared to that induced by the diurnal tides, probably due to the superposition of the first-mode and higher-mode (smaller scale) semidiurnal variations. Further analysis demonstrates that the shear induced by the diurnal internal tides is larger than that induced by the semidiurnal variations around 45 m depth, where the first-mode current reversal in the vertical happens, while below 45 m depth higher-mode semidiurnal internal tides generally produce larger shear than that by the diurnal component. The northwest-propagating semidiurnal internal tides of higher-mode with small vertical scale, probably do not originate from a distant source like Luzon Strait, but were likely generated near the experiment site.  相似文献   

16.
A model-based approach is proposed to solve the oceanic internal wave signal processing problem that is based on state-space representations of the normal-mode vertical velocity and plane wave horizontal velocity propagation models. It is shown that these representations can be utilized to spatially propagate the modal (depth) vertical velocity functions given the basic parameters (wave numbers, Brunt-Vaisala frequency profile, etc.) developed from the solution of the associated boundary value problem as well as the horizontal velocity components. These models are then generalized to the stochastic case where an approximate Gauss-Markov theory applies. The resulting Gauss-Markov representation, in principle, allows the inclusion of stochastic phenomena such as noise and modeling errors in a consistent manner. Based on this framework, investigations are made of model-based solutions to the signal enhancement problem for internal waves. In particular, a processor is designed that allows in situ recursive estimation of the required velocity functions. Finally, it is shown that the associated residual or so-called innovation sequence that ensues from the recursive nature of this formulation can be employed to monitor the model's fit to the data  相似文献   

17.
In the Boussinesq approximation, we study the nonlinear effects observed in the process of propagation of internal waves in the presence of turbulence. The space damping factor of the waves is evaluated. The Stokes drift velocity and the Euler velocity of the mean current induced by waves due to the presence of nonlinearity are determined. It is shown that the principal contribution to the wave transfer is made by the horizontal velocity of the induced current. The Stokes drift is significant only near the bottom. The vertical component of the Stokes drift velocity obtained with regard for the turbulent viscosity is nonzero.  相似文献   

18.
On the basis of well-known solutions, we analyse an internal surge, i.e. a sharp step-like variation of the pycnocline depth in a shallow basin. According to results obtained, in those cases where the pycnocline is situated approximately at mid-depth of the basin, the surge may have the form of a steadily moving non-linear wave (kink) governed by the combined Korteweg-de Vries equation with quadratic and cubic non-linearities. The vertical velocity component in such a wave has the form of a pulse and represents a soliton. Estimates of surge parameters obtained from real hydrologic data are in good agreement with the experimentally measured data.Translated by Vladimir A. Puchkin.  相似文献   

19.
A new method is presented to process and correct full-depth current velocity data obtained from a lowered acoustic Doppler current profiler (LADCP). The analysis shows that, except near the surface, the echo intensity of a reflected sound pulse is closely correlated with the magnitude of the difference in vertical shear of velocity between downcast and upcast, indicating an error in velocity shear. The present method features the use of echo intensity for the correction of velocity shear. The correction values are determined as to fit LADCP velocity to shipboard ADCP (SADCP) and LADCP bottom-tracked velocities. The method is as follows. Initially, a profile of velocity relative to the sea surface is obtained by integrating vertical shears of velocity after low-quality data are rejected. Second, the relative velocity is fitted to the velocity at 100–800 dbar measured by SADCP to obtain an “absolute” velocity profile. Third, the velocity shear is corrected using the relationship between the errors in velocity shears and echo intensity, in order to adjust the velocity at sea bottom to the bottom-tracked velocity measured by LADCP. Finally, the velocity profile is obtained from the SADCP-fitted velocity at depths less than 800 dbar and the corrected velocity shear at depths greater than 800 dbar. This method is valid for a full-depth LADCP cast throughout which the echo intensity is relatively high (greater than 75 dB in the present analysis). Although the processed velocity may include errors of 1–2 cm s−1, this method produced qualitatively good current structures in the Northeast Pacific Basin that were consistent with the deep current structures inferred from silicate distribution, and the averaged velocities were significantly different from those calculated by the Visbeck (2002) method.  相似文献   

20.
Kurt L. Polzin   《Ocean Modelling》2009,30(4):298-309
Fine- and microstructure observations indicate bottom-intensified turbulent dissipation above rough bathymetry associated with internal wave breaking. Simple analytic representations for the depth profile of turbulent dissipation are proposed here under the assumption that the near bottom wavefield is dominated by a baroclinic tide. This scheme is intended for use in numerical models and thus captures only the gross features of detailed solutions to the energy balance of the internal wavefield. The possible sensitivity of the magnitude and vertical variability of the dissipation rate profile to various environmental parameters is discussed. An expression for the diapycnal buoyancy flux is presented that explicitly treats the difference between the height of an isopycnal above the mean bottom and the actual bottom. This returns a diapycnal velocity estimate that is consistent with both tracer observations of downwelling and a basin scale mass budget that requires upwelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号