首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This article describes a complete sedimentary succession of an ancient macrotidal tide-dominated estuarine system based on the detailed outcrop study. The Eocene siliciclastic sedimentary facies of Ameki Group in the south-eastern Nigeria provides a record of the sedimentary response to an initial regression, followed by marine incursion (transgression) into the Niger Delta Basin. These sedimentary successions are analogues to the subsurface petrolific Niger Delta lithostratigraphic units. Seven facies associations (FA 1 to FA 7) are documented in the study area and the sediments are interpreted as fluvial channel, tidally influenced fluvial channel, tidal channel, tidal flats, supratidal, tidal sand bar and estuarine embayment (open estuarine) deposits. The occurrence of low diversity ichnofaunal assemblages and/or localised high-density monospecific ichnofossil assemblages indicates brackish-water condition typical of estuarine settings. The suites of assemblages include Scoyenia, Skolithos, Cruziana, mixed Skolithos-Cruziana, Glossifungites, Psilonichnus and Teredolites ichnofacies. A complete depositional sequence is encountered in the Eocene Ameki Group which consists of the lowstand, transgressive, highstand and falling stage systems tracts. This depositional succession was most probably controlled by relative sea level changes, sediment supply, accommodation and regional tectonics which affected the development of Niger Delta Basin.  相似文献   

2.
The Fall River Formation is a 45 m thick layer of fluvial-dominated valley-fills and shore-zone strata deposited on the stable cratonic margin of the Cretaceous Western Interior Seaway. Fall River deposits in Red Canyon, in the south-west corner of South Dakota (USA), expose a cross-section of a 3.5 km wide valley-fill sandstone and laterally adjacent marine deposits. The marine deposits comprise three 10 m thick upward-shoaling sequences; each composed of multiple metres-thick upward-coarsening successions. The lower two of these sequences are laterally cut by the valley-fill sandstone, and are capped by metres-thick muddy palaeosols. The upper sequence spans the top of the valley-fill sandstone, and is overlain by the Skull Creek Shale. The 30 m thick valley sandstone is partitioned into four distinct fills by major erosion surfaces, and each of these fills contain many metres-thick channel-form bodies. Deposits in the lower parts of these fills are sheet-like, top-truncated channel bodies, whereas deposits in the upper parts of fills are upward-concave, laterally amalgamated channel bodies, more completely preserved heterolithic channel bodies, or wave-deposited sheets. Each valley-fill basal erosion surface records an episode of valley incision and relative sea-level fall, and the gradual progression from fluvial to more estuarine deposits upwards within each fill records relative sea-level rise. All fills are dominantly channel deposits and are capped by marine flooding surfaces. The dominance of channel deposits, the gradual change to more estuarine facies in the upper parts of fills, and the location of flooding surfaces at valley-fill tops all suggest that sediment supply initially kept pace with relative sea-level rise and valleys filled during late marine lowstand and transgression, not during subsequent highstands. Recently proposed facies models have focused on variations in the relative strength of tide, wave and river currents as controls on valley-fill deposits. However, relative rates of sediment supply and basin accommodation change, and the shift in this ratio along the depositional profile during multiple-scale cycles in relative sea-level, are equally important controls on the style of valley-fill deposits.  相似文献   

3.
The Lower Eocene Ametlla Formation of the Ager Basin, Spanish Pyrenees, is a rapidly deposited shallow marine unit formed in a setting characterized by syn-sedimentary tectonic activity. Mapping of the formation over a distance of 25 km was conducted according to sequence stratigraphical principles with emphasis on facies analysis. Twelve facies, grouped in five facies associations, have been recognized in the Ametlla Formation. The studied succession records a vertical transition from deltaic systems prograding onto a sediment-starved shelf, via estuarine deposits associated with incised valleys, to sandbar complexes in a tidal seaway. In terms of sequence stratigraphy, three scales of genetic sedimentary units were recognized. (1) At the regional scale, elements of two 3rd-order composite sequences (sensu Exxon) have been recognized. These include a 3rd-order highstand sequence set encompassing the lowermost part of the Ametlla Formation and the underlying Passarella Formation, and a 3rd-order transgressive sequence set that constitutes the middle parts of the Ametlla Formation. The sequence sets are separated by an unconformity with up to 35 m of incision that is interpreted as a major sequence boundary. It is argued that the incised valleys associated with this unconformity were infilled during landward-stepping of the shelfal depositional system. Basinwards, the unconformable surface becomes subhorizontal and is overlain by a 2 m thick oyster bed formed in a sediment-starved setting subsequent to flooding of the incised valleys (which still acted as sediment conduits). Sandstones dominate the transgressive sequence set, whereas the highstand sequence set is dominated by siltstones, particularly in the lower part. In the transgressive sequence set, an upward increase in sand content and calibre is observed, relatable to punctuations of the transgressive trend by high-frequency sea-level fluctuations, and to downslope redistribution of sand. (2) At the subregional scale, detailed mapping indicates the presence of five 4th-order sequences. The 4th-order sequence boundaries are associated with sediment bypassing and minimal erosional relief, and were created by forced regressions during periods of relative sea-level fall. Sharp-based sandstones overlying these unconformities are believed to have accumulated during subsequent rise of relative sea-level. Where 4th-order maximum flooding surfaces can be recognized, the sequences may be subdivided into a sandstone-dominated transgressive systems tract and a siltstone-dominated highstand systems tract. (3) At the local scale, 2–9 5th-order parasequences are present within the 4th-order sequences. Superimposed parasequences are separated by flooding surfaces characterized by bioclastic accumulations, pervasive burrowing and extensive calcite cementation. The parasequences are commonly stacked in a landward-stepping manner.  相似文献   

4.
Richly fossiliferous and disconformity-bounded facies successions, termed Mid-Cycle Condensed Shellbeds (MCS), occupy a mid-cycle position within depositional sequences in the Castlecliff section (mid-Pleistocene, Wanganui Basin, New Zealand). These shell-rich intervals (0.1–4.5 m thick) comprise the upper of two loci of shell accumulation in Castlecliff sequences. The lower disconformable contacts are sharp and variably burrowed, and are interpreted as submarine transgressive surfaces formed by storm or tidal current erosion at the feather-edge of contemporary transgressive systems tracts. Above (i.e. seaward) of this erosion surface, macrofossil remains (mainly bivalves and gastropods) accumulated, with little reworking, on the inner-shelf under conditions of reduced terrigenous sediment supply. The upper contacts are sharp transitions from shell-rich to relatively shell-poor lithofacies; parautochthonous shell accumulation was ‘quenched’by downlapping highstand systems tract shelf siltstones and muddy fine sandstones. Castlecliff MCS, together with the basal shell-rich part of overlying highstand systems tracts, occupy a stratigraphic position which corresponds to the condensed section that forms at the transgressive/highstand systems tract boundary in the sequence model of Haq et al. (1987). Palaeoenvironmental analysis indicates that Castlecliff MCS are substantially, if not entirely, transgressive deposits. This study therefore shows that the ‘condensation maximum’within a depositional sequence does not necessarily bracket the transgressive systems tract/highstand systems tract boundary.  相似文献   

5.
The post-glacial succession in the Cobequid Bay — Salmon River incised valley contains two sequences, the upper one incomplete. The lower sequence contains only highstand system tracts (HST) deposits which accumulated under microtidal, glacio-marine deltaic conditions. The upper sequence contains two, retrogradationally stacked parasequences. The lower one accumulated in a wave-dominated estuarine environment under micro-mesotidal conditions. It belongs to the lowstand system tract (LST) or early transgressive system tract (TST) depending on the timing and location of the lowstand shoreline, and contains a gravel barrier that has been overstepped and preserved with little modification. The upper parasequence accumulated in the modern, macrotidal estuary, and is assignable to the late TST. Recent, net progradation of the fringing marshes indicates that a new HST has begun. The sequence boundary separating the two sequences was formed by fluvial incision, and perhaps also by subtidal erosion during the relative sea level fall. Additional local erosion by waves and tidal currents occurred during the transgression. The base of the macrotidal sands is a prominent tidal ravinement surface which forms the flooding surface between the backstepping estuarine parasequences. Because fluvial deposition continued throughout the transgression, the fluvial-estuarine contact is diachronous and cannot be used as the transgressive surface. The maximum flooding surface will be difficult to locate in the macrotidal sands, but is more easily identified in the fringing muddy sediments. These observations indicate that: (1) large incised valleys may contain a compound fill that consists of more than one sequence; (2) relative sea level changes determine the stratal stacking patterns, but local environmental factors control the nature of the facies and surfaces; (3) these surfaces may have complex origins, and commonly become amalgamated; (4) designation of the transgressive surface (and thus the LST) is particularly difficult as many of the prominent surfaces in the valley fill are diachronous facies boundaries; and (5) the transgression of complex topography may cause geologically instantaneous changes in tidal range, due to resonance under particular geographical configurations.  相似文献   

6.
This work presents the first detailed facies analysis of the upper Nyalau Formation exposed around Bintulu, Sarawak, Malaysia. The Lower Miocene Nyalau Formation exposures in NW Sarawak represent one of the closest sedimentological outcrop analogues to the age equivalent, hydrocarbon-bearing, offshore deposits of the Balingian Province. Nine types of facies associations are recognised in the Nyalau Formation, which form elements of larger-scale facies successions. Wave-dominated shoreface facies successions display coarsening upward trends from Offshore, into Lower Shoreface and Upper Shoreface Facies Associations. Fluvio-tidal channel facies successions consist of multi-storey stacks of Fluvial-Dominated, Tide-Influenced and Tide-Dominated Channel Facies Associations interbedded with minor Bay and Mangrove Facies Associations. Estuarine bay facies successions are composed of Tidal Bar and Bay Facies Associations with minor Mangrove Facies Associations. Tide-dominated delta facies successions coarsen upward from an Offshore into the Tidal Bar Facies Association. The Nyalau Formation is interpreted as a mixed wave- and tide-influenced coastal depositional system, with an offshore wave-dominated barrier shoreface being incised by laterally migrating tidal channels and offshore migrating tidal bars. Stratigraphic successions in the Nyalau Formation form repetitive high frequency, regressive–transgressive cycles bounded by flooding surfaces, consisting of a basal coarsening upward, wave-dominated shoreface facies succession (representing a prograding barrier shoreface and/or beach-strandplain) which is sharply overlain by fluvio-tidal channel, estuarine bay or tide-dominated delta facies successions (representing more inshore, tide-influenced coastal depositional environments). An erosion surface separates the underlying wave-dominated facies succession from overlying tidal facies successions in each regressive–transgressive cycle. These erosion surfaces are interpreted as unconformities formed when base level fall resulted in deep incision of barrier shorefaces. Inshore, fluvio-tidal successions above the unconformity display upward increase in marine influence and are interpreted as transgressive incised valley fills.  相似文献   

7.
Holocene deposits of the Hawkesbury River estuary, located immediately north of Sydney on the New South Wales coast, record the complex interplay between sediment supply and relative sea-level rise within a deeply incised bedrock-confined valley system. The present day Hawkesbury River is interpreted as a wave-dominated estuarine complex, divisible into two broad facies zones: (i) an outer marine-dominated zone extending 6 km upstream from the estuary mouth that is characterized by a large, subtidal sandy flood-tidal delta. Ocean wave energy is partially dissipated by this flood-tidal delta, so that tidal level fluctuations are the predominant marine mechanism operating further landward; (ii) a river-dominated zone that is 103 km long and characterized by a well developed progradational bayhead delta that includes distributary channels, levees, and overbank deposits. This reach of the Hawkesbury River undergoes minor tidal level fluctuations and low fluvial runoff during baseflow conditions, but experiences strong flood flows during major runoff events. Fluvial deposits of the Hawkesbury River occur upstream of this zone. The focus of this paper is the Hawkesbury River bayhead delta. History of deposition within this delta over the last c. 12 ka is interpreted from six continuous cores located along the upper reaches of the Hawkesbury River. Detailed sedimentological analysis of facies, whole-core X-ray analysis of burrow traces and a chronostratigraphic framework derived from 10 C-14 dates reveal four stages of incised-valley infilling in the study area: (1) before 17 ka BP, a 0–1 m thick deposit of coarse-grained fluvial sand and silt was laid down under falling-to-lowstand sea level conditions; (2) from 17 to 6·5 ka BP, a 5–10 m thick deposit composed of fine-grained fluvial sand and silt, muddy bayhead delta and muddy central-basin deposits developed as the incised valley was flooded during eustatic sea-level rise; (3) during early highstand, between 6·5 and 3 ka BP, a 3–8 m thick bed of interbedded muddy central-basin deposits and sandy river flood deposits, formed in association with maximum flooding and progradation of sandy distributary mouth-bar deposits commenced; (4) since 3 ka BP, fluvial deposits have prograded toward the estuary mouth in distributary mouth-bar, interdistributary-bay and bayhead-delta plain environments to produce a 5–15 m thick progradational to aggradational bayhead-delta deposit. At the mouth of the Hawkesbury estuary subaqueous fluvial sands interfinger with and overlie marine sands. The Hawkesbury River bayhead-delta depositional succession provides an example of the potential for significant variation of facies within the estuarine to fluvial segment of incised-valley systems.  相似文献   

8.
Mio-Pliocene deposits of the forebulge–backbulge depozones of the Beni-Mamore foreland Basin indicate tidally to fluvially dominated sedimentation. Seven facies assemblages have been recognized: FAA–FAG. FAA represents a distal bottom lake assemblage, FAB and FAD are interpreted as tidal flat deposits, FAC and FAG are interpreted as fluvial systems, FAE sediments are deposited in a subtidal/shoreface setting, and FAG represents a meandering fluvial system. The identification of stratigraphic surfaces (SU, MFS, and MRS) and the relationship among the facies assemblages permit the characterization of several systems tracts: a falling-stage systems tract (FSST) followed by a lowstand systems tract (LST), a transgressive systems tract (TST), and a highstand systems tract (HST). The FSST and LST may have been controlled by the uplift of the Beni-Mamore forebulge, whereas TST may result from a quiescent stage in the forebulge. Subaerial unconformity two (SU2) records the passage from a tide-influenced depositional system to a fully continental depositional system. The Miocene tidal-influenced deposits in the Beni–Mamore Basin suggest that it experienced a connection, either with the South Atlantic Ocean or the Caribbean Sea or both.  相似文献   

9.
Existing facies models of tide‐dominated deltas largely omit fine‐grained, mud‐rich successions. Sedimentary facies and sequence stratigraphic analysis of the exceptionally well‐preserved Late Eocene Dir Abu Lifa Member (Western Desert, Egypt) aims to bridge this gap. The succession was deposited in a structurally controlled, shallow, macrotidal embayment and deposition was supplemented by fluvial processes but lacked wave influence. The succession contains two stacked, progradational parasequence sets bounded by regionally extensive flooding surfaces. Within this succession two main genetic elements are identified: non‐channelized tidal bars and tidal channels. Non‐channelized tidal bars comprise coarsening‐upward sandbodies, including large, downcurrent‐dipping accretion surfaces, sometimes capped by palaeosols indicating emergence. Tidal channels are preserved as single‐storey and multilateral bodies filled by: (i) laterally migrating, elongate tidal bars (inclined heterolithic strata, 5 to 25 m thick); (ii) forward‐facing lobate bars (sigmoidal heterolithic strata, up to 10 m thick); (iii) side bars displaying oblique to vertical accretion (4 to 7 m thick); or (iv) vertically‐accreting mud (1 to 4 m thick). Palaeocurrent data show that channels were swept by bidirectional tidal currents and typically were mutually evasive. Along‐strike variability defines a similar large‐scale architecture in both parasequence sets: a deeply scoured channel belt characterized by widespread inclined heterolithic strata is eroded from the parasequence‐set top, and flanked by stacked, non‐channelized tidal bars and smaller channelized bodies. The tide‐dominated delta is characterized by: (i) the regressive stratigraphic context; (ii) net‐progradational stratigraphic architecture within the succession; (iii) the absence of upward deepening trends and tidal ravinement surfaces; and (iv) architectural relations that demonstrate contemporaneous tidal distributary channel infill and tidal bar accretion at the delta front. The detailed facies analysis of this fine‐grained, tide‐dominated deltaic succession expands the range of depositional models available for the evaluation of ancient tidal successions, which are currently biased towards transgressive, valley‐confined estuarine and coarser grained deltaic depositional systems.  相似文献   

10.
《Sedimentary Geology》2006,183(1-2):1-13
Integrated sedimentological and micropaleontological (foraminifers and ostracods) analyses of two 55 m long borehole cores (S3 and S4) drilled in the subsurface of Lesina lagoon (Gargano promontory—Italy) has yielded a facies distribution characteristic of alluvial, coastal and shallow-marine sediments. Stratigraphic correlation between the two cores, based on strong similarity in facies distribution and AMS radiocarbon dates, indicates a Late Pleistocene to Holocene age of the sedimentary succession.Two main depositional sequences were deposited during the last 60-ky. These sequences display poor preservation of lowstand deposits and record two major transgressive pulses and subsequent sea-level highstands. The older sequence, unconformably overlying a pedogenized alluvial unit, consists of paralic and marine units (dated by AMS radiocarbon at about 45–50,000 years BP) that represent the landward migration of a barrier-lagoon system. These units are separated by a ravinement surface (RS1). Above these tansgressive deposits, highstand deposition is characterised by progradation of the coastal sediments.The younger sequence, overlying an unconformity of tectonic origin, is a 10 m-thick sedimentary body, consisting of fluvial channel sediments overlain by transgressive–regressive deposits of Holocene age. A ravinement surface (RS2), truncating the transgressive (lagoonal and back-barrier) deposits in core S4, indicates shoreface retreat and landward migration of the barrier/lagoon system. The overlying beach, lagoon and alluvial deposits are the result of mid-Holocene highstand sedimentation and coastal progradation.  相似文献   

11.
The Lower Jurassic Mashabba Formation crops out in the core of the doubly plunging Al-Maghara anticline, North Sinai, Egypt. It represents a marine to terrestrial succession deposited within a rift basin associated with the opening of the Neotethys. Despite being one of the best and the only exposed Lower Jurassic strata in Egypt, its sedimentological and sequence stratigraphic framework has not been addressed yet. The formation is subdivided informally into a lower and upper member with different depositional settings and sequence stratigraphic framework. The sedimentary facies of the lower member include shallow-marine, fluvial, tidal flat and incised valley fill deposits. In contrast, the upper member consists of strata with limited lateral extension including fossiliferous lagoonal limestones alternating with burrowed deltaic sandstones. The lower member contains three incomplete sequences (SQ1-SQ3). The depositional framework shows transgressive middle shoreface to offshore transition deposits sharply overlain by forced regressive upper shoreface sandstones (SQ1), lowstand fluvial to transgressive tidal flat and shallow subtidal sandy limestones (SQ2), and lowstand to transgressive incised valley fills and shallow subtidal sandy limestones (SQ3). In contrast, the upper member consists of eight coarsening-up depositional cycles bounded by marine flooding surfaces. The cycles are classified as carbonate-dominated, siliciclastic-dominated, and mixed siliciclastic-carbonate. The strata record rapid changes in accommodation space. The unpredictable facies stacking pattern, the remarkable rapid facies changes, and chaotic stratigraphic architecture suggest an interplay between allogenic and autogenic processes. Particularly syndepositional tectonic pulses and occasional eustatic sea-level changes controlled the rate and trends of accommodation space, the shoreline morphology, the amount and direction of siliciclastic sediment input and rapid switching and abandonment of delta systems.  相似文献   

12.
The Ouémé River estuary is located on the seasonally humid tropical coast of Benin, west Africa. A striking feature of this microtidal estuary is the presence of a large sand barrier bounding a 120 km2 circular central basin, Lake Nokoué, that is being infilled by heterogeneous fluvial deposits supplied by a relatively large catchment (50 000 km2). Borehole cores from the lower estuary show basal Pleistocene lowstand alluvial sediments overlain by Holocene transgressive–highstand lagoonal mud and by transgressive to probably early highstand tidal inlet and flood‐tidal delta sand deposited in association with non‐preserved transgressive sand barriers. The change in estuary‐mouth sedimentation from a transgressive barrier‐inlet system to a regressive highstand barrier reflects regional modifications in marine sand supply and in the cross‐barrier tidal flux associated with barrier‐inlet systems. As barrier formation west of the Ouémé River led to an increasingly rectilinear shoreline, the longshore drift cell matured, ensuring voluminous eastward transport of sand from the Volta Delta in Ghana, the major purveyor of sand, to the Ouémé embayment, 200 km east. Concomitantly, the number of tidal inlets, and the tidal flux associated with a hitherto interlinked lagoonal system on this coast, diminished. Complete sealing of Lake Nokoué has produced a large, permanently closed estuary, where tidal intrusion is assured through the interconnected coastal lagoon via an inlet located 60 km east. Since 1885, tides have entered the estuary directly through an artificial outlet cut across the sand barrier. Although precluding the seaward loss of fluvial sediments, permanent estuary‐mouth closure has especially deprived the highstand estuary of marine sand, a potentially important component in estuarine infill on wave‐dominated coasts. In spite of a significant fluvial sediment supply, estuarine infill has been moderate, because of the size of the central basin. Estuarine closure has resulted in two co‐existing highstand sediment suites, with limited admixture, the marine‐derived, estuary‐mouth barrier and upland‐derived back‐barrier sediments. This situation differs from that of mature barrier estuaries characterized by active fluvial‐marine sediment mixing and facies interfingering.  相似文献   

13.
Integrated sedimentologic, macrofossil, trace fossil, and palynofacies data from Paleocene-Middle Eocene outcrops document a comprehensive sequence stratigraphy in the Anambra Basin/Afikpo Syncline complex of southeastern Nigeria. Four lithofacies associations occur: (1) lithofacies association I is characterized by fluvial channel and/or tidally influenced fluvial channel sediments; (2) lithofacies association II (Glossifungites and Skolithos ichnofacies) is estuarine and/or proximal lagoonal in origin; (3) lithofacies association III (Skolithos and Cruziana ichnofacies) is from the distal lagoon to shallow shelf; and (4) shoreface and foreshore sediments (Skolithos ichnofacies) comprise lithofacies association IV. Five depositional sequences, one in the Upper Nsukka Formation (Paleocene), two in the Imo Formation (Paleocene), and one each in the Ameki Group and Ogwashi-Asaba Formation (Eocene), are identified. Each sequence is bounded by a type-1 sequence boundary, and contains a basal fluvio-marine portion representing the transgressive systems tract, which is succeeded by shoreface and foreshore deposits of the highstand systems tract. In the study area, the outcropping Ogwashi-Asaba Formation is composed of non-marine/coastal aggradational deposits representing the early transgressive systems tract. The occurrence of the estuarine cycles in the Palaeogene succession is interpreted as evidence of significant relative sea level fluctuations, and the presence of type-1 sequence boundaries may well be the stratigraphic signature of major drops in relative sea level during the Paleocene and Eocene. Sequence architecture appears to have been tectono-eustatically controlled.  相似文献   

14.
The Beni Suef Basin is a petroliferous rift basin straddling the River Nile containing a thick Mesozoic–Paleogene succession. The Kharita Formation is formed in the syn-rift phase of the basin formation and is subdivided into the Lower and Upper Kharita members. These two members are regarded as two third-order depositional sequences (DSQ-1 and DSQ-2). The lowstand systems tract (LST-1) of the DSQ-1 is represented by thick amalgamated sandstone bodies deposited by active braided channels. Mid-Albian tectonic subsidence led to a short-lived marine invasion which produced coastal marine and inner-shelf facies belts during an ensuing transgressive systems tract (TST-1). At the end of the mid-Albian, a phase of tectonic uplift gradually rose the continent creating a fall in relative sea level, resulting in deposition of shallow marine and estuarine facies belts during a highstand systems tract (HST-1). During the Late Albian, a new phase of land-rejuvenation commenced, with a prolonged phase of fluvial depositional. Fluvial deposits consisted of belts of amalgamated, vertically aggraded sandstones interpreted as braided and moderately sinuous channels, in the lower part of the Upper Kharita Member lowstand stage (LST-2). The continuous basin filling, coupled with significant lowering in the surrounding highlands changed the drainage regime into a wide belt of meandering river depositing the transgressive stage (TST-2). The history of the Kharita Formation finalized with a Cenomanian marine transgressive phase. Economically, the TST-1 and HST-1 play a significant role as source rocks for hydrocarbon accumulations, whereas LST-2 act as good reservoir rocks in the Early Cretaceous in the Basin.  相似文献   

15.
This paper reports on the structural and sedimentary evolution of the middle to late Eocene of the Prepyrenean External Sierras (southern Pyrenees, Spain). The initiation, duration and kinematics of a set of growth structures that developed in a shallow marine depositional setting is documented. The detailed analysis of the syntectonic marine sediments not only confirms the already known east to west progression of deformation, but also reveals the continued growth of the early formed structures as later ones propagate towards the foreland. The sedimentary units coevally deposited with these growth structures are arranged in four depositional sequences. Their boundaries correspond to flooding surfaces which grade basinwards into correlative conformities. They are also indicated by the presence of both angular unconformities and onlap geometries. Each depositional sequence generally consists of two systems tracts. The lower one, or transgressive systems tract, is formed by up to 400 m of azoic marls deposited in outer ramp areas. The upper one, or highstand systems tract, mainly consists of shallow siliciclastic and carbonate facies, up to 200 m thick, deposited in middle to inner ramp areas. These depositional sequences are interpreted to be controlled by regional tectonic pulses. An increase of tectonic activity resulted in the flooding of the basin and in the subsequent deposition of a thick succession of nearly azoic blue marls (i.e. transgressive systems tract). The overlying highstand systems tract developed following periods of diminished tectonism, with the consequent growth and progradation of shallow carbonate platform facies.  相似文献   

16.
The upper portion of the Cuyo Group in the Zapala region, south‐eastern Neuquén Basin (Western Argentina), encompasses marine and transitional deposits (Lajas Formation) overlain by alluvial rocks (Challacó Formation). The Challacó Formation is covered by the Mendoza Group above a second‐order sequence boundary. The present study presents the stratigraphic framework and palaeophysiographic evolution of this Bajocian to Eo‐Calovian interval. The studied succession comprises the following genetic facies associations: (i) offshore and lower shoreface–offshore transition; (ii) lower shoreface; (iii) upper shoreface; iv) intertidal–subtidal; (v) supratidal–intertidal; (vi) braided fluvial to delta plain; (vii) meandering river; and (viii) braided river. The stratigraphic framework embraces four third‐order depositional sequences (C1 to C4) whose boundaries are characterized by the abrupt superposition of proximal over distal facies associations. Sequences C1 to C3 comprise mostly littoral deposits and display well‐defined, small‐scale transgressive–regressive cycles associated with fourth‐order depositional sequences. Such high‐frequency cycles are usually bounded by ravinement surfaces associated with transgressive lags. At last, the depositional sequence C4 delineates an important tectonic reorganization probably associated with an uplift of the Huincul Ridge. This is suggested by an inversion of the transport trend, north‐westward during the deposition of C1 to C3 depositional sequences (Lajas Formation) to a south‐west trend during the deposition of the braided fluvial strata related to the C4 depositional sequence (Challacó Formation).  相似文献   

17.
The Lower Cenomanian Bahariya Formation corresponds to a second-order depositional sequence that formed within a continental shelf setting under relatively low-rate conditions of positive accommodation (< 200 m during 3–6 My). This overall trend of base-level rise was interrupted by three episodes of base-level fall that resulted in the formation of third-order sequence boundaries. These boundaries are represented by subaerial unconformities (replaced or not by younger transgressive wave ravinement surfaces), and subdivide the Bahariya Formation into four third-order depositional sequences.

The construction of the sequence stratigraphic framework of the Bahariya Formation is based on the lateral and vertical changes between shelf, subtidal, coastal and fluvial facies, as well as on the nature of contacts that separate them. The internal (third-order) sequence boundaries are associated with incised valleys, which explain (1) significant lateral changes in the thickness of incised valley fill deposits, (2) the absence of third-order highstand and even transgressive systems tracts in particular areas, and (3) the abrupt facies shifts that may occur laterally over relatively short distances. Within each sequence, the concepts of lowstand, transgressive and highstand systems tracts are used to explain the observed lateral and vertical facies variability.

This case study demonstrates the usefulness of sequence stratigraphic analysis in understanding the architecture and stacking patterns of the preserved rock record, and helps to identify 13 stages in the history of base-level changes that marked the evolution of the Bahariya Oasis region during the Early Cenomanian.  相似文献   


18.
The Lower Tagus Valley in Portugal contains a well-developed valley-fill succession covering the complete Late Pleistocene and Holocene periods. As large-scale stratigraphic and chronologic frameworks of the Lower Tagus Valley are not yet available, this paper describes facies, facies distribution, and sedimentary architecture of the late Quaternary valley fill. Twenty four radiocarbon ages provide a detailed chronological framework. Local factors affected the nature and architecture of the incised valley-fill succession. The valley is confined by pre-Holocene deposits and is connected with a narrow continental shelf. This configuration facilitated deep incision, which prevented large-scale marine flooding and erosion. Consequently a thick lowstand systems tract has been preserved. The unusually thick lowstand systems tract was probably formed in a previously (30,000–20,000 cal BP) incised narrow valley, when relative sea-level fall was maximal. The lowstand deposits were preserved due to subsequent rapid early Holocene relative sea-level rise and transgression, when tidal and marine environments migrated inland (transgressive systems tract). A constant sea level in the middle to late Holocene, and continuous fluvial sediment supply, caused rapid bayhead delta progradation (highstand systems tract). This study shows that the late Quaternary evolution of the Lower Tagus Valley is determined by a narrow continental shelf and deep glacial incision, rapid post-glacial relative sea-level rise, a wave-protected setting, and large fluvial sediment supply.  相似文献   

19.
The Mono estuary is an infilled, microtidal estuary located on the wave-dominated Bight of Benin coast which is subject to very strong eastward longshore drift. The estuarine fill comprises a thick unit of lagoonal mud deposited in a ‘central basin’between upland fluvial deposits and estuary-mouth wave-tide deposits. This lagoonal fill is capped by organic-rich tidal flat mud. In addition to tidal flat mud, the superficial facies overlying the ‘central basin’fill include remnants of spits resting on transgressive/washover sand, an estuary-mouth association of beach, shoreface, flood-tidal delta and tidal inlet deposits, and a thin sheet of fluvial sediments deposited over tidal flat mud. After an initial phase of spit intrusion over the infilled central basin east of the present Mono channel, the whole estuary mouth became bounded by a regressive barrier formed from sand supplied by the Volta Delta during the middle Holocene eustatic highstand. Barrier progradation ceased late in the Holocene following the establishment of an equilibrium plan-form shoreline alignment that allowed through-drift of Volta sand to sediment sinks further downdrift. Over the same period, accretion, from fluvially supplied sediments, of the estuarine plain close to the limit of spring high tides, or, over much of the lower valley, into a fluvial plain no longer subject to tidal flooding, induced marked meandering of the Mono and its tidal distributaries in response to confinement of much of the tidal prism to these channels. The process resulted in erosion of spit/washover and regressive barrier sand, and in reworking of the tidal flat and floodbasin deposits. The strong longshore drift, equilibrium shoreline alignment and the year-round persistence of a tidal inlet maintained by discharge from the Mono and from Lake Ahémé have resulted in a stationary barrier that is reworked by a mobile inlet. The Mono example shows that advanced estuarine infill may result in considerable facies reworking, obliteration of certain facies and marked spatial imbrication of fluvial, estuarine and wave-tide-deposited facies, and confirms patterns of sedimentary change described for microtidal estuaries on wave-influenced coasts. In addition, this study shows that local environmental factors such as sediment supply relative to limited accommodation space, and strong longshore drift, which may preclude accumulation of sediments in the vicinity of the estuary mouth, may lead to infilled equilibrium or near-equilibrium estuaries that will not necessarily evolve into deltas.  相似文献   

20.
The lower part of the Cretaceous Sego Sandstone Member of the Mancos Shale in east‐central Utah contains three 10‐ to 20‐m thick layers of tide‐deposited sandstone arranged in a forward‐ and then backward‐stepping stacking pattern. Each layer of tidal sandstone formed during an episode of shoreline regression and transgression, and offshore wave‐influenced marine deposits separating these layers formed after subsequent shoreline transgression and marine ravinement. Detailed facies architecture studies of these deposits suggest sandstone layers formed on broad tide‐influenced river deltas during a time of fluctuating relative sea‐level. Shale‐dominated offshore marine deposits gradually shoal and become more sandstone‐rich upward to the base of a tidal sandstone layer. The tidal sandstones have sharp erosional bases that formed as falling relative sea‐level allowed tides to scour offshore marine deposits. The tidal sandstones were deposited as ebb migrating tidal bars aggraded on delta fronts. Most delta top deposits were stripped during transgression. Where the distal edge of a deltaic sandstone is exposed, a sharp‐based stack of tidal bar deposits successively fines upward recording a landward shift in deposition after maximum lowstand. Where more proximal parts of a deltaic‐sandstone are exposed, a sharp‐based upward‐coarsening succession of late highstand tidal bar deposits is locally cut by fluvial valleys, or tide‐eroded estuaries, formed during relative sea‐level lowstand or early stages of a subsequent transgression. Estuary fills are highly variable, reflecting local depositional processes and variable rates of sediment supply along the coastline. Lateral juxtaposition of regressive deltaic deposits and incised transgressive estuarine fills produced marked facies changes in sandstone layers along strike. Estuarine fills cut into the forward‐stepped deltaic sandstone tend to be more deeply incised and richer in sandstone than those cut into the backward‐stepped deltaic sandstone. Tidal currents strongly influenced deposition during both forced regression and subsequent transgression of shorelines. This contrasts with sandstones in similar basinal settings elsewhere, which have been interpreted as tidally influenced only in transgressive parts of depositional successions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号