首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Development of the IAP Dynamic Global Vegetation Model   总被引:1,自引:0,他引:1  
ABSTRACT The lAP Dynamic Global Vegetation Model (IAP-DGVM) has been developed to simulate the distribution and structure of global vegetation within the framework of Earth System Models. It incorporates our group's recent developments of major model components such as the shrub sub-model, establishment and competition parameterization schemes, and a process-based fire parameterization of intermediate complexity. The model has 12 plant functional types, including seven tree, two shrub, and three grass types, plus bare soil. Different PFTs are allowed to coexist within a grid cell, and their state variables are updated by various governing equations describing vegetation processes from fine-scale biogeophysics and biogeochemistry, to individual and population dynamics, to large-scale biogeography. Environmental disturbance due to fire not only affects regional vegetation competition, but also influences atmospheric chemistry and aerosol emissions. Simulations under observed atmospheric conditions showed that the model can correctly reproduce the global distribution of trees, shrubs, grasses, and bare soil. The simulated global dominant vegetation types reproduce the transition from forest to grassland (savanna) in the tropical region, and from forest to shrubland in the boreal region, but overestimate the region of temperate forest.  相似文献   

2.
利用一个基于过程的动态植被模型LPJ DGVM(Lund Potsdam Jena Dynamic Global Vegetation Model),模拟了中国区域潜在植被分布,考察了1981~1998年中国区域净初级生产〖JP〗力(NPP)、异养呼吸(Rh)和净生态系统生产力(NEP)的年际变化。模拟结果表明,在LPJ模型提供的植被功能类型(PFT)划分的条件下,中国区域除了分布裸土外,主要分布了6种潜在植被功能类型,即热带常绿阔叶林带、温带常绿阔叶林带、温带夏绿阔叶林带、北方常绿针叶林带、北方夏绿针叶林带和温带草本植物。在所考察的时间段内,中国区域总NPP从2.91 Gt · a-1(C)(1982年)变化到3.37 Gt · a-1(C)(1990年),平均每年增加0.025 Gt(C),其平均增长率为096%。中国区域总Rh从2.59 Gt · a-1(C)(1986年)变化到3.19 Gt · a-1(C)(1998年),具有105% 的平均年增长率,即平均每年增加0.025 Gt(C),并且中国区域温带草本植物相比其他植被功能类型,其NPP和Rh线性增加的趋势最为显著。研究结果还表明,LPJ模型在引入火灾机制后,中国区域总NEP的变化范围更加合理,即每年总NEP在-0.06 Gt · a-1(C)(1998年)和0.34 Gt · a-1(C)(1992年)之间变化,其平均值为0.12 Gt · a-1(C)。该结果表明,在所考察的时间段内,中国区域的陆地生态系统是碳汇。上述结果与其他研究结果基本一致,因而此模型模拟中国区域潜在植被分布和碳循环是有效的。    相似文献   

3.
The capability of an improved Dynamic Global Vegetation Model (DGVM) in reproducing the impact of climate on the terrestrial ecosystem is evaluated. The new model incorporates the Community Land ModelDGVM (CLM3.0-DGVM) with a submodel for temperate and boreal shrubs, as well as other revisions such as the two-leaf scheme for photosynthesis and the definition of fractional coverage of plant functional types (PFTs). Results show that the revised model may correctly reproduce the global distribution of tempera...  相似文献   

4.
Investigations of the ecological, atmospheric chemical, and climatic impacts of contemporary fires in tropical vegetation have received increasing attention during the last 10 years. Little is known, however, about the impacts of climate changes on tropical vegetation and wildland fires. This paper summarizes the main known interactions of fire, vegetation, and atmosphere. Examples of predictive models on the impacts of climate change on the boreal and temperate zones are given in order to highlight the possible impacts on the tropical forest and savanna biomes and to demonstrate parameters that need to be involved in this process. Response of tropical vegetation to fire is characterized by degradation towards xerophytic and pyrophytic plant communities dominated by grasses and fire-tolerant tree and bush invaders. The potential impacts of climate change on tropical fire regimes are investigated using a GISS GCM-based lightning and fire model and the Model for the Assessment of Greenhouse Gas-Induced Climate Change (MAGICC).  相似文献   

5.
 A global, three-dimensional climate model, developed by coupling the CCCma second-generation atmospheric general circulation model (GCM2) to a version of the GFDL modular ocean model (MOM1), forms the basis for extended simulations of past, current and projected future climate. The spin-up and coupling procedures are described, as is the resulting climate based on a 200 year model simulation with constant atmospheric composition and external forcing. The simulated climate is systematically compared to available observations in terms of mean climate quantities and their spatial patterns, temporal variability, and regional behavior. Such comparison demonstrates a generally successful reproduction of the broad features of mean climate quantities, albeit with local discrepancies. Variability is generally well-simulated over land, but somewhat underestimated in the tropical ocean and the extratropical storm-track regions. The modelled climate state shows only small trends, indicating a reasonable level of balance at the surface, which is achieved in part by the use of heat and freshwater flux adjustments. The control simulation provides a basis against which to compare simulated climate change due to historical and projected greenhouse gas and aerosol forcing as described in companion publications. Received: 24 September 1998 / Accepted: 8 October 1999  相似文献   

6.
利用MODIS卫星观测资料,对一个考虑了生态系统碳氮循环过程的动态植被模型ICM的模拟性能进行了评估.重点对反映植被动力学的关键参数--叶面积指数(LAI)的模拟结果与观测进行了对比分析,评估了ICM对LAI季节变化特征的模拟能力.结果表明,ICM基本能够模拟出植被的季节变化特征.总体而言,模拟值在低纬度和高纬度地区大...  相似文献   

7.
The participation of different vegetation types within the physical climate system is investigated using a coupled atmosphere-biosphere model, CCM3-IBIS. We analyze the effects that six different vegetation biomes (tropical, boreal, and temperate forests, savanna, grassland and steppe, and shrubland/tundra) have on the climate through their role in modulating the biophysical exchanges of energy, water, and momentum between the land-surface and the atmosphere. Using CCM3-IBIS we completely remove the vegetation cover of a particular biome and compare it to a control simulation where the biome is present, thereby isolating the climatic effects of each biome. Results from the tropical and boreal forest removal simulations are in agreement with previous studies while the other simulations provide new evidence as to their contribution in forcing the climate. Removal of the temperate forest vegetation exhibits behavior characteristic of both the tropical and boreal simulations with cooling during winter and spring due to an increase in the surface albedo and warming during the summer caused by a reduction in latent cooling. Removal of the savanna vegetation exhibits behavior much like the tropical forest simulation while removal of the grassland and steppe vegetation has the largest effect over the central United States with warming and drying of the atmosphere in summer. The largest climatic effect of shrubland and tundra vegetation removal occurs in DJF in Australia and central Siberia and is due to reduced latent cooling and enhanced cold air advection, respectively. Our results show that removal of the boreal forest yields the largest temperature signal globally when either including or excluding the areas of forest removal. Globally, precipitation is most affected by removal of the savanna vegetation when including the areas of vegetation removal, while removal of the tropical forest most influences the global precipitation excluding the areas of vegetation removal.  相似文献   

8.
In the past several decades, dynamic global vegetation models(DGVMs) have been the most widely used and appropriate tool at the global scale to investigate vegetation-climate interactions. At the Institute of Atmospheric Physics, a new version of DGVM(IAP-DGVM) has been developed and coupled to the Common Land Model(CoLM) within the framework of the Chinese Academy of Sciences' Earth System Model(CAS-ESM). This work reports the performance of IAP-DGVM through comparisons with that of the default DGVM of CoLM(CoLM-DGVM) and observations. With respect to CoLMDGVM, IAP-DGVM simulated fewer tropical trees, more "needleleaf evergreen boreal tree" and "broadleaf deciduous boreal shrub", and a better representation of grasses. These contributed to a more realistic vegetation distribution in IAP-DGVM,including spatial patterns, total areas, and compositions. Moreover, IAP-DGVM also produced more accurate carbon fluxes than CoLM-DGVM when compared with observational estimates. Gross primary productivity and net primary production in IAP-DGVM were in better agreement with observations than those of CoLM-DGVM, and the tropical pattern of fire carbon emissions in IAP-DGVM was much more consistent with the observation than that in CoLM-DGVM. The leaf area index simulated by IAP-DGVM was closer to the observation than that of CoLM-DGVM; however, both simulated values about twice as large as in the observation. This evaluation provides valuable information for the application of CAS-ESM, as well as for other model communities in terms of a comparative benchmark.  相似文献   

9.
Based on numerical experiments using the NCAR CAM3-CLM3 models, this paper examines the impact of soil moisture, vegetation, and sea surface temperature (SST) on the inter-annual variability of climate over land. For each element, two experiments are carried out, with the inter-annual variability preserved in one experiment and eliminated in the other. Differences in the standard deviation of the precipitation and air temperature at the inter-annual time scale are used to quantify the impacts from soil moisture dynamics, vegetation dynamics, and oceanic forcing. The impact of oceanic forcing is mainly limited to the Tropics, with the strongest signal in the equatorial zone, and moisture convergence is the key linkage between SST forcing and tropical precipitation. Soil moisture plays a significant role in climate variability during the rainy seasons of all semi-arid regions (which is consistent with many previous studies), and during the dry seasons of the humid Amazon. Evapotranspiration is identified as the main mechanism linking precipitation variability to soil moisture. Amazon is the only region where vegetation dynamics has a significant influence on precipitation variability. However, the impact of vegetation dynamics on temperature is strong over the US Great Plains in all four seasons and in the Amazon region during the dry and dry-to-wet transition seasons.  相似文献   

10.
基于卫星遥感的植被NDVI对气候变化响应的研究进展   总被引:10,自引:1,他引:9  
回顾了以往植被对气候响应的有关研究,从此类研究常使用的数据、方法及获取的结论3个方面进行了分析,重点阐述了归一化植被指数(Normalized Difference Vegetation Index,NDVI)对降水、温度和辐射等气候因子的响应特征,并探讨了未来的发展趋势。结果表明,植被NDVI对降水的显著响应往往出现在干旱半干旱地区和干湿季气候差异明显地区,且具有一定的滞后特征,滞后的时间尺度与局地条件关系密切;温度成为植被NDVI 控制因子的情况常出现在温带或寒温带地区,与对降水的滞后响应相比,植被对于温度的滞后响应并不是特别明显;辐射对于植被的主导影响主要出现在低纬度的部分区域、高云量区域和高纬度地区的特定时间段内。认为量化人类在植被对气候变化响应过程中的作用,全球变暖情形下植被对气候响应特征的深入分析,以及植被受气候影响的多尺度特征可能是以后此类研究的发展方向。  相似文献   

11.
Vegetation population dynamics play an essential role in shaping the structure and function of terrestrial ecosystems.However,large uncertainties remain in the parameterizations of population dynamics in current Dynamic Global Vegetation Models(DGVMs).In this study,the global distribution and probability density functions of tree population densities in the revised Community Land Model-Dynamic Global Vegetation Model(CLM-DGVM) were evaluated,and the impacts of population densities on ecosystem characteristics were investigated.The results showed that the model predicted unrealistically high population density with small individual size of tree PFTs(Plant Functional Types) in boreal forests,as well as peripheral areas of tropical and temperate forests.Such biases then led to the underestimation of forest carbon storage and incorrect carbon allocation among plant leaves,stems and root pools,and hence predicted shorter time scales for the building/recovering of mature forests.These results imply that further improvements in the parameterizations of population dynamics in the model are needed in order for the model to correctly represent the response of ecosystems to climate change.  相似文献   

12.
Blocking is a major component of the extratropical climate and any changes in it would be a very important aspect of climate change there. Previous studies have shown that mid-latitude variability such as blocking is sensitive to tropical sea surface temperature (SST) anomalies and to variations in tropical precipitation. Climate models exhibit a wide range of skill in representing blocking, with all models having deficiencies in certain respects. In addition, coupled climate models often exhibit significant biases in both tropical precipitation and tropical and extratropical SSTs. This suggests that tropical systematic biases in coupled climate models may influence the representation of blocking and its sensitivity to climate change. We examine the relationship between winter north Pacific blocking and tropical precipitation and tropical SSTs through the use of idealised SST anomaly experiments. We find that interannual variations in convection over the Maritime Continent and eastern equatorial Pacific regions both influence the central and eastern Pacific winter blocking frequency. In addition, systematic underestimation of tropical rainfall over the Maritime Continent region in climate models can lead to underestimation of time-mean winter Pacific blocking. Finally, the sign, magnitude and variability of tropical SST biases in a coupled model, and their associated effects on tropical precipitation, could influence its representation of northern hemisphere blocking, and thus affect its ability to represent this mode of remotely-forced mid-latitude variability. These results have important implications for model development.  相似文献   

13.
 The mid-Holocene `green' Sahara represents the largest anomaly of the atmosphere-biosphere system during the last 12 000 years. Although this anomaly is attributed to precessional forcing leading to a strong enhancement of the African monsoon, no climate model so far has been able to simulate the full extent of vegetation in the Sahara region 6000 years ago. Here two atmospheric general circulation models (LMD 5.3 and ECHAM 3) are asynchronously coupled to an equilibrium biogeography model to give steady-state simulations of climate and vegetation 6000 years ago, including biogeophysical feedback. The two model results are surprisingly different, and neither is fully realistic. ECHAM shows a large northward extension of vegetation in the western part of the Sahara only. LMD shows a much smaller and more zonal vegetation shift. These results are unaffected by the choice of `green' or modern initial conditions. The inability of LMD to sustain a `green' Sahara 6000 years ago is linked to the simulated strength of the tropical summer circulation. During the northern summer monsoon season, the meridional gradient of sea-level pressure and subsidence over the western part of northern Africa are both much weaker in ECHAM than in LMD in the present as well as the mid-Holocene. These features allow the surface moist air flux to penetrate further into northern Africa in ECHAM than in LMD. This comparison illustrates the importance of correct simulation of atmospheric circulation features for the sensitivity of climate models to changes in radiative forcing, particularly for regional climates where atmospheric changes are amplified by biosphere-atmosphere feedbacks. Received: 20 April 1999 / Accepted: 20 January 2000  相似文献   

14.
15.
西藏藏北高原典型植被生长对气候要素变化的响应   总被引:4,自引:2,他引:4       下载免费PDF全文
选取西藏藏北高原西部高寒草原植被、中部高寒草甸植被及东南部高寒灌丛草甸植被 3 种藏北地区最典型的植被类型, 结合临近 3 个气象观测站的资料, 分析这 3 种典型植被类型地区 1999—2001 年旬平均气温、旬总降水量和 SPOT VEGETATION 卫星 10 d 最大值合成归一化植被指数 (NDVI) 变化特征以及 3 种典型植被基于 SPOT VEGETATION NDVI 的生长变化对旬平均气温和旬总降水量两个主要气候要素变化的响应关系。 结果表明: 藏北地区降水资源的空间分布特点是东南部向西北部逐渐减少, 气温则由南向北逐渐递减, 与降水资源分布相反, 蒸发量西部高, 东部低; SPOT VEGETATION NDVI 能够较为准确地反映 3 种典型植被生长变化特征, 所反映的植被返青期和枯黄期等重要植被生长阶段与由积温计算的植被生长特征基本一致; 藏北地区基于 SPOT VEGETATION NDVI 的植被生长变化与气温的相关系数明显高于与降水的相关系数 , 其中以那曲为代表的高寒草甸植被的 NDVI 与旬气温和旬降水总量的相关系数最大, 分别为 0.81 和 0.68 , 表明藏北地区由于海拔高, 气候寒冷, 气温对该地区植被生长的影响明显高于降水的影响, 即该地区植被生长变化对气温的响应程度明显高于对降水的响应程度 , 是植被生长的限制性因素; 不同植被类型对气温和降水两个要素的响应程度大小依次是高寒草甸、高寒灌丛草甸和高寒草原。  相似文献   

16.
全球植被与大气之间碳通量的模式估计(英文)   总被引:1,自引:0,他引:1  
用大气植被相互作用模式(AVIM)模拟了全球陆地植被的净初级生产力(NPP)。AVIM由相互耦合的两部分组成:物理过程,包括陆地表面水分和能量在土壤、植被与大气之间的传输;以及生理生态过程,如:光合、呼吸、干物质分配、凋落和物候等。全球的植被分为13类,土壤按质地分为6类。用EMDI提供的全球1637个包括不同植被类型的NPP观测点数据对模型进行了检验。NPP模拟的结果表明:全球陆地植被的平均NPP为405.13gCm-2yr-1,不同植被类型的平均 NPP变化范围在99.58 g Cm-2yr-1(苔原)到996.2 g Cm-2yr-1(热带雨林)之间。全球年总NPP为60.72GtCyr-1,其中最大的部分为热带雨林,15.84GtCyr-1,占全球的26.09%。最大的碳汇是在北半球的温带。模式模拟的NPP在全球的空间和季节分布是合理的。  相似文献   

17.
全球植被与大气之间碳通量的模式估计   总被引:15,自引:0,他引:15  
用大气植被相互作用模式(AⅥM)模拟了全球陆地植被的净初级生产力(NPP)。AⅥM由相互耦合的两部分组成:物理过程,包括陆地表面水分和能量在土壤、植被与大气之间的传输;以及生理生态过程,如:光合、呼吸、干物质分配、凋落和物候等。全球的植被分为13类,土壤按质地分为6类。用EMDI提供的全球1637个包括不同植被类型的NPP观测点数据对模型进行了检验。NPP模拟的结果表明:全球陆地植被的平均NPP为405.13 g C m-2yr-1,不同植被类型的平均NPP变化范围在99.58 g C m-2yr-l(苔原)到996.2 g C m-2yr-l(热带雨林)之间。全球年总NPP为60.72 Gt C yr-l,其中最大的部分为热带雨林,15.84 Gt C yr-1,占全球的26.09%。最大的碳汇是在北半球的温带。模式模拟的NPP在全球的空间和季节分布是合理的。  相似文献   

18.
IAP大气-植被耦合模式的建立及其模拟   总被引:3,自引:3,他引:0  
为了充分理解气候与植被之间在不同时间尺度上的反馈作用,需要把动态植被模式耦合到气候模式里.本研究通过引进动态植被模式VEGAS(VEgetation-Global Atmosphere-Soil),在中国科学院大气物理研究所9层(IAP9L)气候模式的基础上,初步建立了一个新的IAP大气一植被耦合模式IAP9L_VEGAS.对该模式积分多年的结果分析表明:IAP9L_VEGAS可以较合理地模拟出植被生态系统生产力和植被、土壤碳库的总量及其季节变化,而且该模式模拟的叶面积指数的全球分布与观测资料十分接近.与未耦合动态植被模式的IAP9L模式模拟结果的比较表明:在非洲和南美等热带雨林地区,IAP9L_VEGAS模拟的叶面积指数比IAP9L中根据经验设置的大3.5以上,更接近观测;此外,IAP9L-VEGAS模拟的降水和近地面气温均较IAP9L更加接近观测实况.  相似文献   

19.
Environmental changes are expected to shift the distribution and abundance of vegetation by determining seedling establishment and success. However, most current ecosystem models only focus on the impacts of abiotic factors on biogeophysics (e.g., global distribution, etc.), ignoring their roles in the population dynamics (e.g., seedling establishment rate, mortality rate, etc.) of ecological communities. Such neglect may lead to biases in ecosystem population dynamics (such as changes in population density for woody species in forest ecosystems) and characteristics. In the present study, a new establishment scheme for introducing soil water as a function rather than a threshold was developed and validated, using version 1.0 of the IAP-DGVM as a test bed. The results showed that soil water in the establishment scheme had a remarkable influence on forest transition zones. Compared with the original scheme, the new scheme significantly improved simulations of tree population density, especially in the peripheral areas of forests and transition zones. Consequently, biases in forest fractional coverage were reduced in approximately 78.8% of the global grid cells. The global simulated areas of tree, shrub, grass and bare soil performed better, where the relative biases were reduced from 34.3% to 4.8%, from 27.6% to 13.1%, from 55.2% to 9.2%, and from 37.6% to 3.6%, respectively. Furthermore, the new scheme had more reasonable dependencies of plant functional types (PFTs) on mean annual precipitation, and described the correct dominant PFTs in the tropical rainforest peripheral areas of the Amazon and central Africa.  相似文献   

20.
为揭示造成火山强迫气候响应模拟不确定性的原因,第六次国际耦合模式比较计划(CMIP6)设立了火山强迫的气候响应模拟比较计划(VolMIP)。该计划由基于历史火山爆发的理想火山扰动试验组成,包括三组主要的试验:第一组关注短期(季节至年际)大气动力响应;第二组关注海气耦合系统的长期(年际至年代际)响应;第三组关注气候系统对火山群的响应。VolMIP旨在通过给定相同的辐射强迫并进行多成员集合模拟,揭示模式对外强迫响应的不确定性,通过设定不同的背景气候态,阐明内部变率和外强迫对气候响应的相对贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号