首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low δ2H and δ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7?×?10?4 cm3 (STP) g–1?±?2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ~107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying  that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids.  相似文献   

2.
A study was conducted to understand the hydrogeological processes dominating in the North 24 Parganas and South 24 Parganas based on representative 39 groundwater samples collected from selected area. The abundance of major ions was in the order of Ca2+ > Na+ > Mg2+ > K+ > Fe2+ for cations and HCO3 ? > PO4 3? > Cl? > SO4 2? > NO3 ? for anions. Piper trilinear diagram was plotted to understand the hydrochemical facies. Most of the samples are of Ca-HCO3 type. Based on conventional graphical plots for (Ca + Mg) vs. (SO4 + HCO3) and (Na + K) vs. Cl, it is interpreted that silicate weathering and ion exchange are the dominant processes within the study area. Previous studies have reported quartz, feldspar, illite, and chlorite clay minerals as the major mineral components obtained by the XRD analysis of sediments. Mineralogical investigations by SEM and EDX of aquifer materials have shown the occurrence of arsenic as coating on mineral grains in the silty clay as well as in the sandy layers. Excessive withdrawal of groundwater for irrigation and drinking purposes is responsible for fluctuation of the water table in the West Bengal. Aeration beneath the ground surface caused by fluctuation of the water table may lead to the formation of carbonic acid. Carbonic acid is responsible for the weathering of silicate minerals, and due to the formation of clay as a product of weathering, ion exchange also dominates in the area. These hydrogeological processes may be responsible for the release of arsenic into the groundwater of the study area, which is a part of North 24 Parganas and South 24 Parganas.  相似文献   

3.
Over a large area of the Bengal delta in West Bengal, India, arsenic distribution patterns in groundwater were studied. One hundred and ten boreholes at different target locations were made, subsurface sediments were logged and analysed, and arsenic values in sediments vis-à-vis groundwater were compared. The study elucidates the subsurface geology of the western part of Bengal delta and characterises the sediments that were intersected in different boreholes with contrasting values of arsenic in groundwater. It reveals an existence of multiple aquifers stacked over each other. Depending on the color and nature of aquifer-sands and their overlying clay beds six aquifer types (Type-1 to Type-6) are classified and described. Sediment-arsenic for all the varieties of aquifer sands are near similar but the groundwater-arsenic of these six aquifers varies widely. Type-2 and Type-5 aquifers host arsenic-contaminated groundwater whereas the other four aquifers are arsenic-free. Type-2 and Type-5 aquifers are capped by a grey to dark grey soft organic matter-rich clay unit which makes these aquifers semi-confined to leaky-confined. These contribute in releasing arsenic from the sediments. The results of this study are employed in a proposed georemedial measure against this hazardous toxic element.  相似文献   

4.
A regional scale hydrogeochemical study of a ∼21,000-km2 area in the western Bengal basin shows the presence of hydrochemically distinct water bodies in the main semiconfined aquifer and deeper isolated aquifers. Spatial trends of solutes and geochemical modeling indicate that carbonate dissolution, silicate weathering, and cation exchange control the major-ion chemistry of groundwater and river water. The main aquifer water has also evolved by mixing with seawater from the Bay of Bengal and connate water. The isolated aquifers contain diagenetically altered water of probable marine origin. The postoxic main aquifer water exhibits overlapping redox zones (metal-reducing, sulfidic and methanogenic), indicative of partial redox equilibrium, with the possibility of oxidation in micro-scale environments. The redox processes are depth-dependent and hydrostratigraphically variable. Elevated dissolved As in the groundwater is possibly related to Fe(III) reduction, but is strongly influenced by coupled Fe–S–C redox cycles. Arsenic does not show good correlations with most solutes, suggesting involvement of multiple processes in As mobilization. The main river in the area, the Bhagirathi–Hoogly, is chemically distinctive from other streams in the vicinity and probably has little or no influence on deep groundwater chemistry. Arsenic in water of smaller streams (Jalangi and Ichamati) is probably introduced by groundwater discharge during the dry season.  相似文献   

5.
As groundwater becomes an increasingly important water resource worldwide, it is essential to understand how local geology affects groundwater quality, flowpaths and residence times. This study utilized multiple tracers to improve conceptual and numerical models of groundwater flow in the Middle San Pedro Basin in southeastern Arizona (USA) by determining recharge areas, compartmentalization of water sources, flowpaths and residence times. Ninety-five groundwater and surface-water samples were analyzed for major ion chemistry (water type and Ca/Sr ratios) and stable (18O, 2H, 13C) and radiogenic (3H, 14C) isotopes, and resulting data were used in conjunction with hydrogeologic information (e.g. hydraulic head and hydrostratigraphy). Results show that recent recharge (<60 years) has occurred within mountain systems along the basin margins and in shallow floodplain aquifers adjacent to the San Pedro River. Groundwater in the lower basin fill aquifer (semi confined) was recharged at high elevation in the fractured bedrock and has been extensively modified by water-rock reactions (increasing F and Sr, decreasing 14C) over long timescales (up to 35,000 years BP). Distinct solute and isotope geochemistries between the lower and upper basin fill aquifers show the importance of a clay confining unit on groundwater flow in the basin, which minimizes vertical groundwater movement.  相似文献   

6.

Fluvio-deltaic aquifers are the primary source of drinking water for the people of Bangladesh. Such aquifers, which comprise the Ganges-Brahmaputra-Meghna Delta, are hydrogeologically heterogeneous. Because of widespread groundwater quality issues in Bangladesh, it is crucial to know the hydrostratigraphic architecture and hydrochemistry, as some aquifer units are contaminated, whereas others are safe. Geophysical methods provide a potentially effective and noninvasive method for extensive characterization of these aquifers. This study applies and investigates the limitations of using electrical resistivity imaging (ERI) for mapping the hydrostratigraphy and salinity of an aquifer-aquitard system adjacent to the Meghna River. Some electrical resistivity (ER) sections showed excellent correlation between resistivity and grain size. These suggest that ERI is a powerful tool for mapping internal aquifer architecture and their boundaries with finer-grained aquitards which clearly appear as low-ER zones. However, in parts of some ER sections, variations in electrical properties were determined by porewater resistivity. In these cases, low ER was indicative of brine and did not indicate the presence of finer-grained materials such as silt or clay. Accordingly, the following hydrostratigraphic zones with different resistivities were detected: (1) aquifers saturated with fresh groundwater, (2) a regional silt/clay aquitard, and (3) a deeper brine-saturated formation. In addition, shallow silt/clay pockets were detected close to the river and below the vadose zone. ERI is thus a promising technique for mapping aquifers versus aquitards; however, the observations are easily confounded by porewater salinity. In such cases, borehole information and groundwater salinity measurements are necessary for ground-truthing.

  相似文献   

7.
Detailed geochemical analysis of groundwater beneath 1223 km2 area in southern Bengal Basin along with statistical analysis on the chemical data was attempted, to develop a better understanding of the geochemical processes that control the groundwater evolution in the deltaic aquifer of the region. Groundwater is categorized into three types: ‘excellent’, ‘good’ and ‘poor’ and seven hydrochemical facies are assigned to three broad types: ‘fresh’, ‘mixed’ and ‘brackish’ waters. The ‘fresh’ water type dominated with sodium indicates active flushing of the aquifer, whereas chloride-rich ‘brackish’ groundwater represents freshening of modified connate water. The ‘mixed’ type groundwater has possibly evolved due to hydraulic mixing of ‘fresh’ and ‘brackish’ waters. Enrichment of major ions in groundwater is due to weathering of feldspathic and ferro-magnesian minerals by percolating water. The groundwater of Rajarhat New Town (RNT) and adjacent areas in the north and southeast is contaminated with arsenic. Current-pumping may induce more arsenic to flow into the aquifers of RNT and Kolkata cities. Future large-scale pumping of groundwater beneath RNT can modify the hydrological system, which may transport arsenic and low quality water from adjacent aquifers to presently unpolluted aquifer.  相似文献   

8.
大陆岛地下水动力学特征—以湛江东海岛为例   总被引:2,自引:0,他引:2       下载免费PDF全文
东海岛是一具有独特水文地质条件的大陆岛,浅层含水层与大陆以浅海湾相隔,中深层承压水含水层与大陆地下水系统紧密相连。为了深入地认识大陆岛地下水水动力学特征,以湛江东海岛为例,阐述了其水文地质条件,并分析了东海岛浅、中、深层地下水的流场和动态特征。分析结果表明,东海岛为一个典型且独特的大陆岛,岛内和大陆的部分浅层含水层由湛江湾相隔,岛内中、深层含水层和大陆中、深层含水层通过湛江湾相连,且具有统一的水位分布,并保持着密切的水力联系,岛内中、深层地下水由南向北径流补给湛江市区的降落漏斗中心;滨海及海水区域浅层含水层及其下伏的粘土层构成了防止海水入侵中、深层地下水的保护层;浅层地下水流场基本保持天然状态,水位动态特征主要为入渗径流型,水位变化与降雨量相关;中、深层地下水流场以人工流场为主,地下水由南向北径流,水位动态类型主要为开采动态型,水位变化主要受到开采量变化的影响;在近海岸地区,地下水动态表现为潮汐效应型,在潮汐作用下,地下水位动态具有周期性。  相似文献   

9.
Quantitative evaluation of management strategies for long-term supply of safe groundwater for drinking from the Bengal Basin aquifer (India and Bangladesh) requires estimation of the large-scale hydrogeologic properties that control flow. The Basin consists of a stratified, heterogeneous sequence of sediments with aquitards that may separate aquifers locally, but evidence does not support existence of regional confining units. Considered at a large scale, the Basin may be aptly described as a single aquifer with higher horizontal than vertical hydraulic conductivity. Though data are sparse, estimation of regional-scale aquifer properties is possible from three existing data types: hydraulic heads, 14C concentrations, and driller logs. Estimation is carried out with inverse groundwater modeling using measured heads, by model calibration using estimated water ages based on 14C, and by statistical analysis of driller logs. Similar estimates of hydraulic conductivities result from all three data types; a resulting typical value of vertical anisotropy (ratio of horizontal to vertical conductivity) is 104. The vertical anisotropy estimate is supported by simulation of flow through geostatistical fields consistent with driller log data. The high estimated value of vertical anisotropy in hydraulic conductivity indicates that even disconnected aquitards, if numerous, can strongly control the equivalent hydraulic parameters of an aquifer system.  相似文献   

10.
Aquifers within the Pampa del Tamarugal Basin (Atacama Desert, northern Chile) are the sole source of water for the coastal city of Iquique and the economically important mining industry. Despite this, the regional groundwater system remains poorly understood. Although it is widely accepted that aquifer recharge originates as precipitation in the Altiplano and Andean Cordillera to the east, there remains debate on whether recharge is driven primarily by near-surface groundwater flow in response to periodic flood events or by basal groundwater flux through deep-seated basin fractures. In addressing this debate, the present study quantifies spatial and temporal variability in regional-scale groundwater flow paths at 20.5°S latitude by combining a two-dimensional model of groundwater and heat flow with field observations and δ18O isotope values in surface water and groundwater. Results suggest that both previously proposed aquifer recharge mechanisms are likely influencing aquifers within the Pampa del Tamarugal Basin; however, each mechanism is operating on different spatial and temporal scales. Storm-driven flood events in the Altiplano readily transmit groundwater to the eastern Pampa del Tamarugal Basin through near-surface groundwater flow on short time scales, e.g., 100–101 years, but these effects are likely isolated to aquifers in the eastern third of the basin. In addition, this study illustrates a physical mechanism for groundwater originating in the eastern highlands to recharge aquifers and salars in the western Pampa del Tamarugal Basin over timescales of 104–105 years.  相似文献   

11.
Understanding groundwater-pumpage sources is essential for assessing impacts on water resources and sustainability. The objective of this study was to quantify pumping impacts and sources in dipping, unconfined/confined aquifers in the Gulf Coast (USA) using the Texas Carrizo-Wilcox aquifer. Potentiometric-surface and streamflow data and groundwater modeling were used to evaluate sources and impacts of pumpage. Estimated groundwater storage is much greater in the confined aquifer (2,200?km3) than in the unconfined aquifer (170?km3); however, feasibility of abstraction depends on pumpage impacts on the flow system. Simulated pre-development recharge (0.96?km3/yr) discharged through evapotranspiration (ET, ~37%), baseflow to streams (~57%), and to the confined aquifer (~6%). Transient simulations (1980–1999) show that pumpage changed three out of ten streams from gaining to losing in the semiarid south and reversed regional vertical flow gradients in ~40% of the entire aquifer area. Simulations of predictive pumpage to 2050 indicate continued storage depletion (41% from storage, 32% from local discharge, and 25% from regional discharge capture). It takes ~100?yrs to recover 40% of storage after pumpage ceases in the south. This study underscores the importance of considering capture mechanism and long-term system response in developing water-management strategies.  相似文献   

12.
The Thelon Basin, Nunavut, Canada, is host to unconformity-type uranium mineralisation and has the potential to host other economic deposits. The Thelon Formation (ca. 1750 Ma) is composed of thick (meters to tens of meters), poorly sorted, trough cross-bedded conglomerate and coarse-grained lithic arenite beds, and to a lesser extent, well-sorted, medium- to coarse-grained quartz arenite beds. Relatively rare, 1–12 cm thick, clay-rich siltstones to fine-grained sandstone layers punctuate the coarser lithofacies. Based on regional analysis of drill cores and outcrops, multiple unconformity-bounded sequences are defined in this fluvial-dominated sedimentary succession. Stratigraphic correlations are based on detailed lithofacies analysis, distinct changes in fining-upward cycle thickness, and intraformational surfaces (unconformities, transgressive surfaces, and paleosols).Diagenetic and paragenetic relationships vary systematically with sedimentology and stratigraphy of the Thelon and provide a framework for understanding the evolution of fluid-flow systems in the context of basin hydrostratigraphy. Stratigraphic units with well-sorted textures, which lacked clay and unstable framework grains, originally were aquifers (depositional aquifers) during early basin evolution. However, pervasive, early quartz cementation radically reduced the porosity and permeability of these units, occluding pore throats and transforming them into aquitards. Proximal fluvial and alluvial fan lithofacies that contained detrital, mechanically infiltrated, and diagenetic clay minerals and/or unstable detrital grains originally had low permeabilities and only experienced minor quartz cementation. In the deep burial setting (2–7 km), these units retained sufficient permeability to allow diagenetic fluid flow (diagenetic aquifers) as suggested by feldspar dissolution, quartz dissolution, and formation and recrystallization of illite and other diagenetic reactions. Tracing potential diagenetic aquifer and aquitard units across the study area allowed development of a hydrostratigraphic model. In this model, diagenetic aquifers onlap onto, and focused basinal fluids into basement rocks to the east in the Thelon Basin (in the vicinity of the Kiggavik uranium deposit).  相似文献   

13.
The deeper groundwater (depending on definition) of the Bengal basin (Ganges-Brahmaputra delta) has long been considered as an alternate, safe drinking-water source in areas with As-enrichment in near-surface groundwater. The present study provides the first collective discussion on extent and controls of elevated As in deeper groundwater of a regional study area in the western part of the Bengal basin. Deeper groundwater is defined here as non-brackish, potable (Cl ? 250 mg/L) groundwater available at the maximum accessed depth (∼80-300 m). The extent of elevated As in deeper groundwater in the study area seems to be largely controlled by the aquifer-aquitard framework. Arsenic-enriched deeper groundwater is mostly encountered north of 22.75°N latitude, where an unconfined to semi-confined aquifer consisting of Holocene- to early Neogene-age gray sand dominates the hydrostratigraphy to 300 m depth below land surface. Aquifer sediments are not abnormally enriched in As at any depth, but sediment and water chemistry are conducive to As mobilization in both shallow and deeper parts of the aquifer(s). The biogeochemical triggers are influenced by complex redox disequilibria. Results of numerical modeling and profiles of environmental tracers at a local-scale study site suggest that deeper groundwater abstraction can draw As-enriched water to 150 m depth within a few decades, synchronous with the advent of wide-scale irrigational pumping in West Bengal (India).  相似文献   

14.
In the Djerid-Nefzaoua region, southern Tunisia, about 80% of agricultural and domestic water supply is provided by the complex terminal (CT) aquifer. However, 20% of this demand is provided by other hydraulically connected aquifers, namely the continental intercalaire (CI) and the Plio-Quaternary (PQ). Overexploitation of the CT aquifer for agricultural practices has contributed to the loss of the artesian condition and the decline of groundwater level which largely increased the downward leakage from the shallow PQ aquifer. Excess irrigation water concentrates at different rates in the irrigation channels and in the PQ aquifer itself. Then, it returns to the CT aquifer and mixes with water from the regional flow system, which contributes to the salinization of the CT groundwater. A geochemical and isotopic study had been undertaken over a 2-years period in order to investigate the origin of waters pumped from the CT aquifer with an emphasis on its hydraulic relationships with the underlying and the overlying CI and PQ aquifers. Geochemistry indicates that groundwater samples collected from different wells show an evolution of the water types from Na-Cl to Ca-SO4-Cl. Dissolution of halite, gypsum and anhydrite-bearing rocks is the main mechanism that leads to the salinization of the groundwater. Isotopic data indicate the old origin of all groundwater in the aquifer system. Mixing and evaporation effects characterizing the CT and the PQ aquifers were identified using δ2H and δ18O relationship and confirmed by the conjunction of δ2H with chloride concentration.  相似文献   

15.
The Wadi Watir delta, in the arid Sinai Peninsula, Egypt, contains an alluvial aquifer underlain by impermeable Precambrian basement rock. The scarcity of rainfall during the last decade, combined with high pumping rates, resulted in degradation of water quality in the main supply wells along the mountain front, which has resulted in reduced groundwater pumping. Additionally, seawater intrusion along the coast has increased salinity in some wells. A three-dimensional (3D) groundwater flow model (MODFLOW) was calibrated using groundwater-level changes and pumping rates from 1982 to 2009; the groundwater recharge rate was estimated to be 1.58?×?106 m3/year. A variable-density flow model (SEAWAT) was used to evaluate seawater intrusion for different pumping rates and well-field locations. Water chemistry and stable isotope data were used to calculate seawater mixing with groundwater along the coast. Geochemical modeling (NETPATH) determined the sources and mixing of different groundwaters from the mountainous recharge areas and within the delta aquifers; results showed that the groundwater salinity is controlled by dissolution of minerals and salts in the aquifers along flow paths and mixing of chemically different waters, including upwelling of saline groundwater and seawater intrusion. Future groundwater pumping must be closely monitored to limit these effects.  相似文献   

16.
A regional lithostratigraphic and hydraulic interpretation is presented for the upper 0–300 m of the Benin Formation where groundwater is abstracted in the Rivers State, Nigeria.The aquifers are predominantly sand beds with minor clays, lignite, and conglomerate intercalations. The sands are very fine to coarse grained, subangular to subrounded, poor to fairly well sorted and mostly lithic arenites. A maximum thickness greater than 50 m is developed in places and vertical stacking is common. Most of the conglomerate beds have a matrix support fabric and appear restricted to the east as the lignite beds. An east-west trending belt, about central to the state, seems to contain more clay interbeds.The transmissivity values for the aquifers range from 1.05 × 10–2 to 11.3 × 10–2 m2/sec, while the coefficient of storage varies between 1.07 × 10–4 and 3.53 × 10–4 and specific capacity values lie between 19.01 and 139.8 m3/h/m drawdown. These values suggest that the aquifers have very good capacity to transmit groundwater. The static water level map shows a north-to-south regional groundwater flow pattern except in the northeast (Imo River catchment area) where the flow is northeast to southwest. The groundwater quality is very good and compares favorably with WHO standards for drinking water. However, relatively high iron and chloride values are localized in time and space.Deposition of the aquifer materials is thought to have occurred in alluvial fan, fluvial channel, tidal channel, intertidal flat, beach, and related microenvironments.  相似文献   

17.
The area lies between Hugli river in the northwest and Bidyadhari river in the east and includes the East Kolkata Wetlands. The East Kolkata Wetlands is included in the List of Wetlands of International Importance (“Ramsar List”), as per the Convention on Wetlands signed in Ramsar, Iran, in 1971. This wetland has been declared as a Ramsar site on the 19th August 2002 (Ramsar site no. 1208) and therefore has acquired an international status. The area is a part of the lower deltaic plain of the Bhagirathi–Ganga river system and is generally flat in nature. The sub-surface geology of the area is completely blanketed by the Quaternary fluviatile sediments comprising a succession of clay, silty clay, sand and sand mixed with occasional gravel. The Quaternary aquifer is sandwiched between two clay sequences. The confined aquifer is made up of moderately well sorted sand and reflects fluviatile environment of deposition. The regional groundwater flow direction is from east to west. Detailed geochemical investigations of 40 groundwater samples along with statistical analysis (for example, correlation and principal component analysis) on these chemical data reveal: (i) four types of groundwater quality, for example, good, poor, very poor and water unsuitable for drinking purpose, (ii) four hydrochemical facies which may be assigned to three broad types such as “fresh”, “blended”, and “brackish” waters, (iii) the evolution of the “blended” water is possibly due to hydraulic mixing of “fresh” and “brackish” waters within the aquifer matrix and/or in well mixing, and (iv) absence of Na–Cl facies indicates continuous flushing of the aquifer.  相似文献   

18.
Increased groundwater withdrawals for the growing population in the Rio Grande Valley and likely alteration of recharge to local aquifers with climate change necessitates an understanding of the groundwater connection between the Jornada del Muerto Basin and the adjoining and more heavily used aquifer in the Mesilla Basin. Separating the Jornada and Mesilla aquifers is a buried bedrock high from Tertiary intrusions. This bedrock high or divide restricts and/or retards interbasin flow from the Jornada aquifer into the Mesilla aquifer. The potentiometric surface of the southern Jornada aquifer near part of the bedrock high indicates a flow direction away from the divide because of a previously identified damming effect, but a groundwater outlet from the southern Jornada aquifer is necessary to balance inputs from the overall Jornada aquifer. Differences in geochemical constituents (major ions, δD, δ18O, δ34S, and 87Sr/86Sr) indicate a deeper connection between the two aquifers through the Tertiary intrusions where Jornada water is geochemically altered because of a geothermal influence. Jornada groundwater likely is migrating through the bedrock high in deeper pathways formed by faults of the Jornada Fault Zone, in addition to Jornada water that overtops the bedrock high as previously identified as the only connection between the two aquifers. Increased groundwater withdrawals and lowering of the potentiometric surface of the Jornada aquifer may alter this contribution ratio with less overtopping of the bedrock high and a continued deeper flowpath contribution that could potentially increase salinity values in the Mesilla Basin near the divide.  相似文献   

19.
Deep Quaternary groundwater is the main source for industrial, domestic, and agricultural water supply in the North China Plain (NCP). There is currently a regional decline of groundwater levels, deterioration of water quality and environmental geological problems induced by increasing exploitation of the NCP Quaternary aquifer system. To trace sources and transport processes of dissolved Cl in a regional aquifer system and to reveal hydrogeological characteristics of Quaternary complexes, δ37Cl, δ18O and δD, and chemical compositions (including F, Cl, Br) of the deep groundwater sampled from the northern flow system of the NCP were measured along the west–east groundwater flow paths. The measured δ37Cl values decreased from 0.39‰ to −2.22‰ (SMOC) along the groundwater flow direction, with increasing Cl concentrations. Marine aerosol input via rainfall is the main source of Cl in the deep groundwater near the recharge areas, and subsequent evaporation/evapotranspiration appears to be responsible for Cl accumulation. Mixing of recharge water with water of high-Cl and low-δ37Cl accounts for the pattern of δ37Cl and Cl concentration observed in Aquifer-3 along the west–east transect. The water with high-Cl and low-δ37Cl is likely from pore water released from compacted clays induced by over-exploitation of deep groundwater, suggesting that clay is a dominant subsurface source of Cl for groundwater where a regional depression cone is present in the Quaternary aquifers. The groundwater of Aquifer-4 in the Huang-Hua depression is potentially mixed with an upward flux of Cl from the Neogene aquifer through subvertical faults. Diffusion and ion filtration are two mechanisms invoked to explain the highly negative δ37Cl data for groundwater of Aquifer-4 in the Yanshan–Haixing areas, which provides new insight into solute migration and the hydraulic relationship in the strongly exploited groundwater system. This study using the conservative solute Cl provides additional important information for further investigations of the geochemistry of a wide range of reactive solutes in the Quaternary aquifer system, so guiding water resource management.  相似文献   

20.
A total number of 328 groundwater samples are analysed to evaluate the groundwater flow systems in Bengal Delta aquifers, Bangladesh using environmental isotope (2H, 18O, 13C, 3H, and 14C) techniques. A well-defined Local Meteoric Water Line (LMWL) δ2H = 7.7 δ18O + 10.7 ‰ is constructed applying linear correlation analyses to the monthly weighted rainfall isotopic compositions (δ18O and δ2H). The δ18O and δ2H concentrations of all groundwater samples in the study area are plotted more or less over the LMWL, which provides compelling evidence that all groundwaters are derived from rainfall and floodwater with a minor localized evaporation effects for the shallow groundwaters. Tritium concentration is observed in 40 samples out of 41 with values varying between 0.3 and 5.0 TU, which represents an evidence of young water recharge to the shallow and intermediate aquifers. A decreasing trend of 14C activity is associated with the heavier δ13C values, which indicates the presence of geochemical reactions affecting the 14C concentration along the groundwater flow system. Both vertical and lateral decrease of 14C activity toward down gradient show the presence of regional groundwater flow commencing from the unconfined aquifers, which discharges along the coastal regions. Finally, shallow, intermediate, and deep groundwater flow dynamics has revealed in the Bengal Delta aquifers, Bangladesh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号