首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
作为地震灾害评估的理论基础,地震动力学主要研究与地震活动有关的断裂机制、破裂过程、震源辐射和由此而引起的地震波的传播及地面运动规律。对地震力学、震源辐射和能量释放等经典理论问题进行了系统研究。在此基础上,应用最新的定量地震学研究方法,以逻辑树的形式综合地震、地质和大地测量资料,提供了不同构造环境和断裂机制条件下地震灾害评估的概率分析和确定性分析实例。用于震源分析的典型构造类型包括板内地壳震源层、地壳活动断层及其速率、板块俯冲界面和俯冲板片。由于输入模型中不确定因素的存在,如输入参数的随机性和科学分析方法本身的不确定性,对分析结果的不确定性需审慎对待。通常对不同的模型或参量,包括地面衰减模型,进行加权平均可较为合理地减小结果的偏差:概率分析和确定性分析方法的结合亦为可取之有效途径。  相似文献   

2.
Northeast India is one of the most highly seismically active regions in the world with more than seven earthquakes on an average per year of magnitude 5.0 and above. Reliable seismic hazard assessment could provide the necessary design inputs for earthquake resistant design of structures in this region. In this study, deterministic as well as probabilistic methods have been attempted for seismic hazard assessment of Tripura and Mizoram states at bedrock level condition. An updated earthquake catalogue was collected from various national and international seismological agencies for the period from 1731 to 2011. The homogenization, declustering and data completeness analysis of events have been carried out before hazard evaluation. Seismicity parameters have been estimated using G–R relationship for each source zone. Based on the seismicity, tectonic features and fault rupture mechanism, this region was divided into six major subzones. Region specific correlations were used for magnitude conversion for homogenization of earthquake size. Ground motion equations (Atkinson and Boore 2003; Gupta 2010) were validated with the observed PGA (peak ground acceleration) values before use in the hazard evaluation. In this study, the hazard is estimated using linear sources, identified in and around the study area. Results are presented in the form of PGA using both DSHA (deterministic seismic hazard analysis) and PSHA (probabilistic seismic hazard analysis) with 2 and 10% probability of exceedance in 50 years, and spectral acceleration (T = 0. 2 s, 1.0 s) for both the states (2% probability of exceedance in 50 years). The results are important to provide inputs for planning risk reduction strategies, for developing risk acceptance criteria and financial analysis for possible damages in the study area with a comprehensive analysis and higher resolution hazard mapping.  相似文献   

3.
This article presents the results of deterministic and probabilistic seismic hazard analyses (DSHA and PSHA) of the city of Hamedan and its neighboring regions. This historical city is one of the developing cities located in the west of Iran. For this reason, the DSHA and PSHA approaches have been used for the assessment of seismic hazards and earthquake risk evaluation. To this purpose, analyses have been carried out considering the historic and instrumented earthquakes, geologic and seismotectonic parameters of the region covering a radius of 100?km, keeping Hamedan as the center. Therefore, in this research, we studied the main faults and fault zones in the study area and calculated the length and distance of faults from the center of Hamedan. In the next step, we measured the maximum credible earthquake (MCE) and peak ground acceleration (PGA) using both DSHA and PSHA approaches and utilized the various equations introduced by different researchers for this purpose. The results of DSHA approach show that the MCE-evaluated value is 7.2 Richter, which might be created by Nahavand fault activities in this region. The PGA value of 0.56?g will be obtained from Keshin fault. The results of PSHA approach show that the MCE-evaluated value is 7.6 Richter for a 0.64 probability in a 50-year period. The PGA value of 0.45?g will be obtained from Keshin fault. Seismic hazard parameters have been evaluated considering the available earthquake data using Gutenberg?CRichter relationship method. The ??a?? and ??b?? parameters were estimated 5.53 and 0.68, respectively.  相似文献   

4.
Rigorous and objective testing of seismic hazard assessments against the real seismic activity must become the necessary precondition for any responsible seismic risk estimation. Because seismic hazard maps seek to predict the shaking that would actually occur, the reference hazard maps for the Italian seismic code, obtained by probabilistic seismic hazard assessment (PSHA), and the alternative ground shaking maps based on the neo-deterministic approach (NDSHA), are cross-compared and tested against the real seismicity for the territory of Italy. The comparison between predicted intensities and those reported for past earthquakes shows that models generally provide rather conservative estimates, except for PGA with 10 % probability of being exceeded in 50 years, which underestimates the largest earthquakes. In terms of efficiency in predicting ground shaking, measured accounting for the rate of underestimated events and for the territorial extent of areas characterized by high seismic hazard, the NDSHA maps appear to outscore the PSHA ones.  相似文献   

5.
Kijko  A.  Retief  S. J. P.  Graham  G. 《Natural Hazards》2002,26(2):175-201
In this part of our study the probabilistic seismic hazard analysis (PSHA) for Tulbagh was performed. The applied procedure is parametric and consists essentially of two steps. The first step is applicable to the area in the vicinity of Tulbagh and requires an estimation of the area-specific parameters, which, in this case, is the mean seismic activity rate, , the Gutenberg-Richter parameter, b, and the maximum regional magnitude, mmax. The second step is applicable to the Tulbagh site, and consists of parameters of distribution of amplitude of the selected ground motion parameter. The current application of the procedure provides an assessment of the PSHA in terms of peak ground acceleration (PGA) and spectral acceleration (SA). The procedure permits the combination of both historical and instrumental data. The historical part of the catalogue only contains the strongest events, whereas the complete part can be divided into several subcatalogues, each assumed complete above a specified threshold of magnitude. In the analysis, the uncertainty in the determination of the earthquake was taken into account by incorporation of the concept of `apparent magnitude'. The PSHA technique has been developed specifically for the estimation of seismic hazard at individual sites without the subjective judgement involved in the definition of seismic source zones, when the specific active faults have not been mapped or identified, and where the causes of seismicity are not well understood. The results of the hazard assessment are expressed as probabilities that specified values of PGA will be exceeded during the chosen time intervals, and similarly for the spectral accelerations. A worst case scenario sketches the possibility of a maximum PGA of 0.30g. The results of the hazard assessment can be used as input to a seismic risk assessment.  相似文献   

6.
A seismic hazard analysis was conducted in Laoag City, Northern Philippines to determine the design ground motion for liquefaction potential assessment of the area. Because the hazard analysis was done within the framework of liquefaction potential assessment, only those earthquakes with magnitude–distance combinations that are capable of generating liquefaction were considered in the study. Both probabilistic and deterministic approaches were used in the analysis. From the results of the probabilistic analysis, seismic hazard curves were generated from which the ground motion with a 10% probability of exceedance in 50years was obtained. This was then modified in consideration of the soft soil condition in the study area. Deaggregation was performed to determine the most likely earthquake to generate the said level of ground shaking.  相似文献   

7.
Seismic hazard assessment is the key tool for rational planning, safety and design of infrastructures in seismically vulnerable regions. Gujarat is the only state in peninsular India with the maximum seismic hazard of large shallow earthquakes originating from intra-plate seismicity. Probabilistic seismic hazard assessment (PSHA) of Gujarat is carried out in this paper. Three seismogenic sources, namely Kutch, Saurashtra and Mainland Gujarat, are considered, and seismicity parameters are estimated separately for each region taking into account the completeness of the available earthquake data. Peak ground acceleration (PGA) of the horizontal component and spectral acceleration at specific periods are considered as the intensity measures. Ground motion predictive equation chosen was reported to be based on simulated ground motions and verified against the strong motion records in the study region. Results are reported for the 17 major cities at the bedrock and also for the soil sites. Apart from hazard curves, 2475 and 475 years of return periods are considered for the PGA and uniform hazard spectra (UHS). The results are compared with the present recommendations of Indian Standards. Key observations include (1) Indian Standards underpredict PGA in the entire Gujarat when the soil sites are considered and in a few cities even at the bedrock; (2) amplification of PGA (or short period hazard) on account of soil sites should be included in the Indian Standard, which is currently absent; (3) shape of the UHS indicates that a separate amplification is required at the hyperbolic portion; and (4) ratio of 2475–475 years of PGA, which is considered 2.0 in Indian Standard, should be reduced to 1.5. Time-dependent recurrence model is also included in this paper and compared with conventional PSHA. General observations include that (1) hazard may increase significantly on account of time dependency; (2) this also influences the disaggregation and in turn the selection of ground motions; and (3) time since last earthquake significantly influences the extent of the effect of time dependency.  相似文献   

8.
In this paper, we present a probabilistic seismic hazard analysis (PSHA) for mainland Spain that takes into account recent new results in seismicity, seismic zoning, and strong ground attenuation not considered in the latest PSHA of the Spanish Building Code. Those new input data have been obtained as a three-step project carried out in order to improve the existing hazard map for mainland Spain. We have produced a new earthquake catalogue for the area, in which the earthquakes are given in moment magnitude through specific deduced relationships for our territory based on intensity data (Mezcua et al. in Seismol Res Lett 75:75–81, 2004). In addition, we included a new seismogenetic zoning based on the recent partial zoning studies performed by different authors. Finally, as we have developed a new strong ground motion model for the area García Blanco (2009), it was considered in the hazard calculation together with other attenuations gathered from different authors using data compatible with our region. With this new data, a logic tree process is defined to quantify the epistemic uncertainty related to those parts of the process. A sensitivity test has been included in order to analyze the different models of ground motion and seismotectonic zonation used in this work. Finally, after applying a weighting scheme, a mean hazard map for PGA, based on rock type condition for 10% exceedance probability in 50 years, is presented, including 15th and 85th percentile hazard maps. The main differences with the present official building code hazard map are analyzed.  相似文献   

9.
We investigated the Coulomb stress changes in the active faults surrounding a moderate‐magnitude normal‐faulting earthquake (2009 L'Aquila, Mw 6.3) and the associated variations in the expected ground motion on regional probabilistic seismic hazard maps. We show that the static stress variations can locally increase the seismic hazard by modifying the expected mean recurrence time on neighbouring faults by up to ~290 years, with associated variations in the probability of occurrence of the maximum expected earthquake of up to ~2%. Our findings suggest that the increase in seismic hazard on neighbouring faults following moderate‐magnitude earthquakes is probably not sufficient to necessitate systematic upgrades of regional probabilistic seismic hazard maps, but must be considered to better address and schedule strategies for local‐scale mitigation of seismic risk.  相似文献   

10.
Probabilistic seismic hazard analysis (PSHA) is carried out for the archaeological site of Vijayapura in south India in order to obtain hazard consistent seismic input ground-motions for seismic risk assessment and design of seismic protection measures for monuments, where warranted. For this purpose the standard Cornell-McGuire approach, based on seismogenic zones with uniformly distributed seismicity is employed. The main features of this study are the usage of an updated and unified seismic catalogue based on moment magnitude, new seismogenic source models and recent ground motion prediction equations (GMPEs) in logic tree framework. Seismic hazard at the site is evaluated for level and rock site condition with 10% and 2% probabilities of exceedance in 50 years, and the corresponding peak ground accelerations (PGAs) are 0.074 and 0.142 g, respectively. In addition, the uniform hazard spectra (UHS) of the site are compared to the Indian code-defined spectrum. Comparisons are also made with results from National Disaster Management Authority (NDMA 2010), in terms of PGA and pseudo spectral accelerations (PSAs) at T = 0.2, 0.5, 1.0 and 1.25 s for 475- and 2475-yr return periods. Results of the present study are in good agreement with the PGA calculated from isoseismal map of the Killari earthquake, \({\hbox {M}}_{\mathrm{w}} = 6.4\) (1993). Disaggregation of PSHA results for the PGA and spectral acceleration (\({\hbox {S}}_{\mathrm{a}}\)) at 0.5 s, displays the controlling scenario earthquake for the study region as low to moderate magnitude with the source being at a short distance from the study site. Deterministic seismic hazard (DSHA) is also carried out by taking into account three scenario earthquakes. The UHS corresponding to 475-yr return period (RP) is used to define the target spectrum and accordingly, the spectrum-compatible natural accelerograms are selected from the suite of recorded accelerograms.  相似文献   

11.
张宝一  龚平  王丽芳 《地球科学》2006,31(5):709-714
对工程场地的地震危险性分析是地震安全性评价的主要方法, 并且为工程师提供抗震参数.在分析国内概率性地震危险性分析(PSHA) 方法基础上, 提出了基于GIS的概率性地震危险性分析的可行性方案.通过MAPGIS二次开发编写了地震危险性分析程序, 并以三峡坝区某工程场地为例对程序进行了测试.基于MAPGIS的概率性地震危险性分析程序提供友好的人机交互界面, 提高了地震危险性分析的可操作性, 更重要的是帮助用户从空间数据中挖掘更多的信息.   相似文献   

12.
China is prone to highly frequent earthquakes due to specific geographical location, which could cause significant losses to society and economy. The task of seismic hazard analysis is to estimate the potential level of ground motion parameters that would be produced by future earthquakes. In this paper, a novel method based on fuzzy logic techniques and probabilistic approach is proposed for seismic hazard analysis (FPSHA). In FPSHA, we employ fuzzy sets for quantification of earthquake magnitude and source-to-site distance, and fuzzy inference rules for ground motion attenuation relationships. The membership functions for earthquake magnitude and source-to-site distance are provided based on expert judgments, and the construction of fuzzy rules for peak ground acceleration relationships is also based on expert judgment. This methodology enables to include aleatory and epistemic uncertainty in the process of seismic hazard analysis. The advantage of the proposed method is in its efficiency, reliability, practicability, and precision. A case study is investigated for seismic hazard analysis of Kunming city in Yunnan Province, People’s Republic of China. The results of the proposed fuzzy logic-based model are compared to other models, which confirms the accuracy in predicting the probability of exceeding a certain level of the peak ground acceleration. Further, the results can provide a sound basis for decision making of disaster reduction and prevention in Yunnan province.  相似文献   

13.
The objective of this study is to evaluate the seismic hazard at the Esfarayen-Bojnurd railway using the probabilistic seismic hazard assessment (PSHA) method. This method was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. Attenuation equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 1.2 × 1.2 km covering the study area, ground acceleration for every node was calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to return periods of 74, 475 and 2475 years.  相似文献   

14.
Within the framework of the performance based earthquake engineering, site specific earthquake spectra for Van province has been obtained. It is noteworthy that, in probabilistic seismic hazard assessment, as a first stage data from geological studies and records from the instrumental period were compiled to make a seismic source characterization for the study region. The probabilistic seismic hazard curves were developed based on selected appropriate attenuation relationships, at rock sites, with a probability of exceedance 2, 10 and 50% in 50 yrs period. The obtained results are compared with the spectral responses proposed for seismic evaluation and retrofit of building structure in Turkish Earthquake Code (2007), section 7. The acceleration response spectrums obtained from probabilistic seismic hazard analysis are matched to adjust earthquake accelerograms recorded during the 2011 Van earthquakes by using SeismoMatch v2.0 software. The aim of this procedure is to obtain a set of reasonable earthquake input motions for the seismic evaluation of existing buildings.  相似文献   

15.
A probabilistic seismic hazard assessment at Kancheepuram in Southern India was carried out with the scope of defining the seismic input for the vulnerability assessment of historical and monumental structures at the site, in terms of horizontal Uniform Hazard Spectra and a suite of spectrum-compatible natural accelerograms to perform time-history analysis. The standard Cornell?CMcGuire and a zone-free approach have been used for hazard computations after the compilation of a composite earthquake catalogue for Kancheepuram. Epistemic uncertainty in the seismic hazard was addressed within a logic-tree framework. Deaggregation of the seismic hazard for the peak ground acceleration shows low seismicity at Kancheepuram controlled by weak-to-moderate earthquakes with sources located at short distances from the archaeological site. Suites of natural accelerograms recorded on rock have been selected by imposing a custom-defined compatibility criterion with the probabilistic spectra. The site of Kancheepuram is characterized by a seismicity controlled by weak-to-moderate earthquakes with sources at short distances from the site, the PGA expected for 475- and 2,475-year return period are, respectively, 0.075 and 0.132?g. The Indian code-defined spectra (DBE and MCE) tend to underestimate spectral ordinates at low periods. On the other hand, the PGA are comparable and the spectral ordinates for longer periods from the probabilistic study are significantly lower.  相似文献   

16.
A first generation of probabilistic seismic hazard maps of the Italian country are presented. They are based on seismogenic zoning deriving from a kinematic model of the structural tectonic units and on an earthquake catalogue with the foreshock and aftershock events filtered out. The following ground motion parameters have been investigated and mapped using attenuation equations based on strong-motion recordings of Italian earthquakes: peak ground acceleration and velocity; Arias intensity; strong motion duration; and the pseudovelocity and pseudoacceleration spectral values at 14 fixed frequencies both for the vertical and the largest horizontal component. A Poissonian model of earthquake occurrence is assumed as a default and the hazard maps are presented in terms of ground motion values expected to be exceeded at a 10% probability level in 50 years (return period 475 years) according to the requirement of Eurocode 8 for the seismic classification of national territories, as well as in terms of exceedance probabilities of selected ground motion values. Finally, as a tentative study, the use of hybrid methods (implementing both seismogenic zones and structures), renewal processes (including earthquake forecasting) and the influence of site effects (as the basis for the planning of earthquake scenarios) were explored.  相似文献   

17.
We present a method for estimating the seismic intensity in terms of MMI or MSK scale using Fourier amplitude spectra of ground acceleration. The method implies that severity of earthquake ground motion is determined by spectral amplitudes in relatively narrow frequency band: so-called “representative frequencies”, at decreasing frequencies (from 7–8 Hz for small intensities to 0.7 – 1.0 Hz for MMI(MSK) = VIII–IX) with increasing intensity level. It is examined through estimation of probable intensity at a site using recordings of recent earthquakes in several seismic regions and prediction of intensity distribution patterns for some earthquakes. Seismic hazard maps, in terms of intensity levels based upon the proposed approach, should describe regional features of seismic waves excitation and propagation, as well as local ground conditions.  相似文献   

18.
This work briefly discusses the main features of probabilistic seismic hazard analysis (PSHA). Special attention is paid to the identification and quantification of uncertainties related to seismic source characteristics and seismic engineering models for prediction of strong ground motions. The principal seismic models and the results of PSHA application for detailed seismic zoning of urban territories in Sakhalin Island are presented.  相似文献   

19.
沙牌坝址基岩场地地震动输入参数研究   总被引:2,自引:0,他引:2  
钟菊芳  温世亿  胡晓 《岩土力学》2011,32(2):387-392
重大水利水电工程地震动输入参数必须根据专门的地震危险性分析结果来确定。目前由地震危险性分析得到的一致概率反应谱具有包络的意义,不能反映实际地震的频谱特性,输入“一致概率反应谱”可能导致地震作用偏大;拟合设计反应谱人工生成地震动加速度时程的频率非平稳性也没有得到很好解决。为了解决这些问题,得到与坝址地震危险性一致、具体地震的输入参数,结合沙牌大坝提出了一套适用于重大水利水电工程基岩场地地震动输入参数确定方法:通过以有效峰值加速度为参数的概率地震危险性计算分析,确定坝址不同超越概率下的有效峰值加速度及对坝址贡献最大的潜在震源区;在最大贡献潜在震源内利用震级空间联合分布概率最大法确定坝址设定地震,依据加速度反应谱衰减关系确定与坝址设定地震对应的设计反应谱;根据设定地震结果和时变功率谱模型参数衰减关系确定时变功率谱,将时变功率谱和最小相位谱按三角级数叠加法进行强度和频率非平稳地震加速度时程合成。在对沙牌坝址区域的地震活动性及地震构造环境分析评价的基础上,采用上述方法,得到了坝址基岩场地不同超越概率下的有效峰值加速度、设计反应谱、强度和频率非平稳地震加速度时程等地震动输入参数。  相似文献   

20.
This article presents probabilistic seismic hazard analyses of northern Pakistan region carried out to produce macro-seismic hazard maps for the region that define new regional ground motion design parameters for 95-, 475-, 975- and 2475-year return period earthquakes as regional contour maps and horizontal uniform hazard at important cities. The Cornell–McGuire approach (Cornell in Bull Seismol Soc Am 58(05):1583–1606, 1968; McGuire in FORTRAN computer program for seismic risk analysis. US Geological Survey, Open file Report, 76-6768, 1976) is used to carry out the analyses at 0.1° rectangular grid. The seismotectonic model of the region used in analysis consists of shallow and deep area zones differentiated based on the focal depths of the earthquakes. Earthquake catalogue compiled and used in the analysis is a composite catalogue composed of 19,373 events. Ground motion prediction equations (GMPEs) used are calibrated using goodness-of-fitness measures and visual inspection with local strong motion data. Epistemic uncertainty in the GMPEs is taken into account through the logic tree approach. Comparison of ground motions due to deep earthquakes is made for the first time for the region. The comparison between ground motion due to shallow and deep earthquakes indicates that the seismic hazard would be underestimated if the deep earthquakes are excluded. Ground motion values obtained in this study considering all the earthquakes suggest ground motions are dominant towards the north east of the region. The proposed study indicates that the ground motion hazard values suggested by the current Building Code of Pakistan underestimate the seismic hazard. Final results of this study are in close agreement with the recent studies on the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号