首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
A 1/8° global version of the Navy Coastal Ocean Model (NCOM) is used for simulation of upper-ocean quantities on interannual time scales. The model spans the global ocean from 80°S to a complete Arctic cap, and includes 19 terrain-following σ- and 21 fixed z-levels. The global NCOM assimilates three-dimensional (3D) temperature and salinity fields produced by the Modular Ocean Data Assimilation System (MODAS) which generates synthetic temperature and salinity profiles based on ocean surface observations. Model-data intercomparisons are performed to measure the effectiveness of NCOM in predicting upper-ocean quantities such as sea surface temperature (SST), sea surface salinity (SSS) and mixed layer depth (MLD). Subsurface temperature and salinity are evaluated as well. An extensive set of buoy observations is used for this validation. Where possible, the model validation is performed between year-long time series obtained from the model and time series from the buoys. The statistical analyses include the calculation of dimensionless skill scores (SS), which are positive if statistical skill is shown and equal to one for perfect SST simulations. Model SST comparisons with year-long SST time series from all 83 buoys give a median SS value of 0.82. Model subsurface temperature comparisons with the year-long subsurface temperature time series from 24 buoys showed that the model is able to predict temperatures down to 500 m reasonably well, with positive SS values ranging from 0.18 to 0.97. Intercomparisons of MLD reveal that the model MLD is usually shallower than the buoy MLD by an average of about 15 m. Annual mean SSS and subsurface salinity biases between the model and buoy values are small. A comparison of SST between NCOM and a satellite-based Pathfinder data set demonstrates that the model has a root-mean-square (RMS) SST difference of 0.61 °C over the global ocean. Spatial variations of kinetic energy fields from NCOM show agree with historical observations. Based on these results, it is concluded that the global NCOM presented in this paper is able to predict upper-ocean quantities with reasonable accuracy for both coastal and open ocean locations.  相似文献   

2.
To explore the causes of the winter shallow mixed layer and high sea surface temperature (SST) along the strong Kuroshio jet from the East China Sea to the upstream Kuroshio extension (25.5°N–150°E) during 1988–1994 when the Japanese sardine stocks collapsed, high-resolution ocean general circulation model (OGCM) hindcast data are analyzed with a bulk mixed layer model which traces particles at the mixed layer base. The shallow mixed layer and high SST along the Kuroshio jet are mainly caused by the acceleration of the Kuroshio current velocity and the reduction of the surface cooling. Because the acceleration reduces the time during which the mixed layer is exposed to wintertime cooling, deepening and cooling of the winter mixed layer are restricted. The weaker surface cooling due to less severe meteorological forcing also causes the shallow mixed layer and the high SST. The impact of the strong heat transport along the Kuroshio extends to the southern recirculation gyre of the Kuroshio/Kuroshio extension regions; previous indications that the Japanese sardine recruitment is correlated with the winter SST and the mixed layer depth (MLD) in the Kuroshio extension recirculation region could be related to the velocity, SST, and MLD near the Kuroshio axis which also could affect the variability of North Pacific subtropical water.  相似文献   

3.
Better forecast of tropical cyclone(TC) can help to reduce risk and enhance management. The TC forecast depends on the scientific understanding of oceanic processes, air-sea interaction and finally, the atmospheric process. The TC Viyaru is taken as an example, which is formed at the end of 11 May 2013 and sustains up to 17 May 2013 during pre-monsoon season. Argo data are used to investigate ocean response processes by comparing pre-and post-conditions of the TC. Eight oceanic parameters including the sea surface temperature(SST), the sea surface salinity(SSS), and the barrier layer thickness(BLT), the 26°C isotherm depth in the ocean(D26), the isothermal layer depth(ILD), the mixed layer depth(MLD), the tropical cyclone heat potential(TCHP) and the effective oceanic layer for cyclogenesis(EOLC) are chosen to evaluate the pre-and post-conditions of the TC along the track of Viyaru. The values of the SST, D26, BLT, TCHP and EOLC in the pre-cyclonic condition are higher than the post-cyclonic condition, while the SSS, ILD and MLD in the post-cyclonic condition are higher than the pre-cyclonic condition of the ocean due to strong cyclonic winds and subsurface upwelling. It is interesting that the strong intensity of the TC reduces less SST and vice versa. The satisfied real time Argo data is not available in the northern Bay of Bengal especially in the coastal region. A weather research and forecasting model is employed to hindcast the track of Viyaru, and the satellite data from the National Center Environmental Prediction are used to assess the hindcast.  相似文献   

4.
通过海气耦合模式CCSM3(The Community Climate System Model version 3),研究在北大西洋高纬度淡水强迫下,北太平洋冬季的海表温度SST、风场及流场的响应及其区域性差异。结果表明:淡水的注入使北太平洋整体变冷,但有部分区域异常增暖;在太平洋东部赤道两侧,SST的变化出现北负南正的偶极子型分布。阿留申低压北移的同时中纬度西风减弱,热带附近东北信风增强。黑潮和南赤道流减弱,北太平洋副热带逆流和北赤道流增强,日本海被南向流控制。风场及流场的改变共同导致了北太平洋SST异常出现复杂的空间差异:北太平洋中高纬度SST的降温主要由大气过程决定,海洋动力过程主要影响黑潮、日本海及副热带逆流区域的SST,太平洋热带地区SST异常由大气与海洋共同主导。  相似文献   

5.
Temperature and salinity data from 2001 through 2005 from Argo profiling floats have been analyzed to examine the time evolution of the mixed layer depth (MLD) and density in the late fall to early spring in mid to high latitudes of the North Pacific. To examine MLD variations on various time scales from several days to seasonal, relatively small criteria (0.03 kg m−3 in density and 0.2°C in temperature) are used to determine MLD. Our analysis emphasizes that maximum MLD in some regions occurs much earlier than expected. We also observe systematic differences in timing between maximum mixed layer depth and density. Specifically, in the formation regions of the Subtropical and Central Mode Waters and in the Bering Sea, where the winter mixed layer is deep, MLD reaches its maximum in late winter (February and March), as expected. In the eastern subarctic North Pacific, however, the shallow, strong, permanent halocline prevents the mixed layer from deepening after early January, resulting in a range of timings of maximum MLD between January and April. In the southern subtropics from 20° to 30°N, where the winter mixed layer is relatively shallow, MLD reaches a maximum even earlier in December–January. In each region, MLD fluctuates on short time scales as it increases from late fall through early winter. Corresponding to this short-term variation, maximum MLD almost always occurs 0 to 100 days earlier than maximum mixed layer density in all regions.  相似文献   

6.
北太平洋柔鱼不同群体耳石日增量对海洋环境的响应研究   总被引:1,自引:0,他引:1  
韩霈武  王岩  方舟  陈新军 《海洋学报》2022,44(1):101-112
为了研究北太平洋柔鱼(Ommastrephes bartramii)索饵场不同群体耳石日增量与环境之间的关系,采用梯度森林法和广义加性模型对2010-2016年在北太平洋采集的柔鱼进行了耳石日增量与海洋环境间的关系的分析.结果表明,柔鱼生命周期大约为1 a,秋生群体柔鱼个体的日龄范围为165~345 d,冬春生群体柔鱼...  相似文献   

7.
海洋盐度在水循环、海洋环流、海洋生态系统、全球天气和气候变化等方面起着至关重要的作用。然而, 受观测的限制, 以往对海洋盐度的研究相对匮乏, 对其进行预报的工作更为少见。本文采用线性马尔可夫模型对印度洋海表面盐度(sea surface salinity, SSS)开展初步的预报工作。根据混合层盐度收支方程, 选择海表面高度(sea surface height, SSH)、海表面温度 (sea surface temperature, SST)、SSS等物理量的异常值作为模型的组成部分, 对印度洋SSS开展预报工作。结果表明, 马尔可夫模型可提前9个月对印度洋SSS进行较好的预报。此外, 南太平洋海表面温度异常(sea surface temperature anomaly, SSTA), 海表面高度异常(sea surface height anomaly, SSHA)和印度洋偶极子(Indian Ocean dipole, IOD)系数等遥相关因素的加入可将线性马尔可夫预报对印度洋SSS的预报效果(相关系数)平均提高10%。利用改进的模型对印度洋SSS进行提前1~11个月的“实时”预测, 得出预报的SSS时空变化特征与观测场相吻合。综上所述, 改进的线性马尔可夫模型对印度洋SSS具有一定的预测能力, 未来可进一步完善。  相似文献   

8.
盐度对变化2014年东北太平洋“暖泡”的作用   总被引:1,自引:0,他引:1  
A significant strong, warm "Blob"(a large circular water body with a positive ocean temperature anomaly)appeared in the Northeast Pacific(NEP) in the boreal winter of 2013–2014, which induced many extreme climate events in the US and Canada. In this study, analyses of the temperature and salinity anomaly variations from the Array for Real-time Geostrophic Oceanography(Argo) data provided insights into the formation of the warm"Blob" over the NEP. The early negative salinity anomaly dominantly contributed to the shallower mixed layer depth(MLD) in the NEP during the period of 2012–2013. Then, the shallower mixed layer trapped more heat in the upper water column and resulted in a warmer sea surface temperature(SST), which enhanced the warm"Blob". The salinity variability contributed to approximately 60% of the shallowing MLD related to the warm"Blob". The salinity anomaly in the warm "Blob" region resulted from a combination of both local and nonlocal effects. The freshened water at the surface played a local role in the MLD anomaly. Interestingly, the MLD anomaly was more dependent on the local subsurface salinity anomaly in the 100–150 m depth range in the NEP.The salinity anomaly in the 50–100 m depth range may be linked to the anomaly in the 100–150 m depth range by vertical advection or mixing. The salinity anomaly in the 100–150 m depth range resulted from the eastward transportation of a subducted water mass that was freshened west of the dateline, which played a nonlocal role.The results suggest that the early salinity anomaly in the NEP related to the warm "Blob" may be a precursor signal of interannual and interdecadal variabilities.  相似文献   

9.
The effects of biological heating on the upper-ocean temperature of the global ocean are investigated using two ocean-only experiments forced by prescribed atmospheric fields during 1990–2007, on with fixed constant chlorophyll concentration, and the other with seasonally varying chlorophyll concentration. Although the existence of high chlorophyll concentrations can trap solar radiation in the upper layer and warm the surface, cooling sea surface temperature (SST) can be seen in some regions and seasons. Seventeen regions are selected and classified according to their dynamic processes, and the cooling mechanisms are investigated through heat budget analysis. The chlorophyll-induced SST variation is dependent on the variation in chlorophyll concentration and net surface heat flux and on such dynamic ocean processes as mixing, upwelling and advection. The mixed layer depth is also an important factor determining the effect. The chlorophyll-induced SST warming appears in most regions during the local spring to autumn when the mixed layer is shallow, e.g., low latitudes without upwelling and the mid-latitudes. Chlorophyll-induced SST cooling appears in regions experiencing strong upwelling, e.g., the western Arabian Sea, west coast of North Africa, South Africa and South America, the eastern tropical Pacific Ocean and the Atlantic Ocean, and strong mixing (with deep mixed layer depth), e.g., the mid-latitudes in winter.  相似文献   

10.
The results of the tropical Pacific response to the sudden onset of the equatorial wind stress anomalies are discussed. The ocean model is a barotropic, non-linearized one that includes reduced-gravity and an equation for the temperature of the ocean mixed-layer. The experiments are based on a state of equilibrium reached through a long running under the action of annual mean wind stress. There are two kinds of westward wind intensity regions: the whole tropical Pacific and the western tropical Pacific, which are all between latitude 6. 8癗 and 6. 8癝.In these cases, the results show that the positive sea surface temperature (SST) anomalies in the Eastern Pacific and the negative SST anomalies in the Western Pacific are produced, and the positive SST anomalies propagate eastward, just as those observed during the actual El Nino phenomena. The propagations of the Kelvin waves and Rossby waves in the ocean are discussed.Another experiment is also carried out in simulating the process of the decay of El Ni  相似文献   

11.
Response of the North Pacific subtropical countercurrent (STCC) and its variability to global warming is examined in a state-of-the-art coupled model that is forced by increasing greenhouse gas concentrations. Compared with the present climate, the upper ocean is more stratified, and the mixed layer depth (MLD) shoals in warmer climate. The maximum change of winter MLD appears in the Kuroshio–Oyashio extension (KOE) region, where the mean MLD is the deepest in the North Pacific. This weakens the MLD front and reduces lateral induction. As a result of the reduced subduction rate and a decrease in sea surface density in KOE, mode waters form on lighter isopycnals with reduced thickness. Advected southward, the weakened mode waters decelerate the STCC. On decadal timescales, the dominant mode of sea surface height in the central subtropical gyre represents STCC variability. This STCC mode decays as CO2 concentrations double in the twenty-first century, owing both to weakened mode waters in the mean state and to reduced variability in mode waters. The reduced mode-water variability can be traced upstream to reduced variations in winter MLD front and subduction in the KOE region where mode water forms.  相似文献   

12.
利用Argo剖面浮标分析上层海洋对台风“布拉万”的响应   总被引:9,自引:2,他引:7  
In situ observations from Argo profiling floats combined with satellite retrieved SST and rain rate are used to investigate an upper ocean response to Typhoon Bolaven from 20 through 29 August 2012. After the passage of Typhoon Bolaven, the deepening of mixed layer depth(MLD), and the cooling of mixed layer temperature(MLT) were observed. The changes in mixed layer salinity(MLS) showed an equivalent number of increasing and decreasing because the typhoon-induced salinity changes in the mixed layer were influenced by precipitation, evaporation, turbulent mixing and upwelling of thermocline water. The deepening of the MLD and the cooling of the MLT indicated a significant rightward bias, whereas the MLS was freshened to the left side of the typhoon track and increased on the other side. Intensive temperature and salinity profiles observed by Iridium floats make it possible to view response processes in the upper ocean after the passage of a typhoon. The cooling in the near-surface and the warming in the subsurface were observed by two Iridium floats located to the left side of the cyclonic track during the development stage of the storm, beyond the radius of maximum winds relative to the typhoon center. Water salinity increases at the base of the mixed layer and the top of the thermocline were the most obvious change observed by those two floats. On the right side of the track and near the typhoon center when the typhoon was intensified, the significant cooling from sea surface to a depth of 200×104 Pa, with the exception of the water at the top of the thermocline, was observed by the other Iridium float. Owing to the enhanced upwelling near the typhoon center, the water salinity in the near-surface increased noticeably. The heat pumping from the mixed layer into the thermocline induced by downwelling and the upwelling induced by the positive wind stress curl are the main causes for the different temperature and salinity variations on the different sides of the track. It seems that more time is required for the anomalies in the subsurface to be restored to pretyphoon conditions than for the anomalies in the mixed layer.  相似文献   

13.
An ensemble optimal interpolation (EnOI) data assimilation method is applied in the BCC_CSM1.1 to investigate the impact of ocean data assimilations on seasonal forecasts in an idealized twin experiment framework. Pseudo-observations of sea surface temperature (SST), sea surface height (SSH), sea surface salinity (SSS), temperature and salinity (T/S) profiles were first generated in a free model run. Then, a series of sensitivity tests initialized with predefined bias were conducted for a one-year period; this involved a free run (CTR) and seven assimilation runs. These tests allowed us to check the analysis field accuracy against the “truth”. As expected, data assimilation improved all investigated quantities; the joint assimilation of all variables gave more improved results than assimilating them separately. One-year predictions initialized from the seven runs and CTR were then conducted and compared. The forecasts initialized from joint assimilation of surface data produced comparable SST root mean square errors to that from assimilation of T/S profiles, but the assimilation of T/S profiles is crucial to reduce subsurface deficiencies. The ocean surface currents in the tropics were better predicted when initial conditions produced by assimilating T/S profiles, while surface data assimilation became more important at higher latitudes, particularly near the western boundary currents. The predictions of ocean heat content and mixed layer depth are significantly improved initialized from the joint assimilation of all the variables. Finally, a central Pacific El Ni?o was well predicted from the joint assimilation of surface data, indicating the importance of joint assimilation of SST, SSH, and SSS for ENSO predictions.  相似文献   

14.
西太平洋暖池热含量与南海夏季风强度的关系   总被引:2,自引:1,他引:1  
为了进一步明确西太平洋暖池热含量对南海夏季风强度的影响,利用1948~2012年日本气象厅(japan meteorological agency,JMA)逐月的海温资料、Hadley中心的海表面温度(Sea Surface Temperature,SST)资料以及NCEP/NCAR再分析资料,分析比较了南海夏季风强度与热带太平洋上层海洋热含量和SST的关系;探讨了海洋热含量影响南海夏季风强度的机制。结果表明:(1)相比于西太暖池SST,西太暖池上层海洋热含量是南海夏季风强度更好的预测因子;(2)前期冬春季的西太平洋暖池热含量与南海夏季风强度呈现显著的正相关,尤其在3月,二者相关系数最大;当暖池热含量偏高(低)时,西太平洋副热带高压偏弱(强),赤道印度洋出现异常反气旋(气旋),印度洋上空的Walker环流分支偏强(弱),南海越赤道气流增强(减弱),最终使得南海夏季风强度偏强(弱)。  相似文献   

15.
The leading modes of interannual and long-term variations in the stratospheric and tropospheric circulation and total ozone (TOMS data) and their relations to Northern Hemisphere sea surface temperature (SST) anomalies are investigated using the monthly mean NCEP/NCAR reanalysis data for the winter months of 1958–2003. Strong correlations are indicated between the interannual total ozone variations over Labrador and the North Atlantic and changes in the stratospheric polar vortex. The onset of major stratospheric warmings is connected not only with the strengthening of westerlies at the 500-hPa level in the midlatitude Atlantic, but also with the weakening of tropospheric winds over the north of eastern Siberia and strengthening over the Far East. In years with major stratospheric warmings, abnormally cold winters are observed in Eurasia, especially in eastern Siberia and northeastern China. The calculated simultaneous (with no time lags) correlations of the stratospheric circulation changes with El Niño/La Niña events give evidence of low correlations between the tropical Pacific SST anomalies and the stratospheric dynamics in the Arctic. However, there are high correlations of the extratropical Pacific and Atlantic SST anomalies with interannual tropospheric and stratospheric circulation variations, the stratospheric dynamics being more strongly connected with Pacific SST than with Atlantic SST anomalies. The interannual changes in tropospheric circulation are coupled to SST anomalies in both the Pacific and the Atlantic. Mechanisms of long-term changes in the interactive ocean-atmosphere-ozone layer system are discussed.  相似文献   

16.
本文通过理想化的外部强迫以及海洋站点实测数据驱动普林斯顿海洋模式来研究海洋热力学效应和斯托克斯漂流对上混合层数值模拟的影响。在Mellor-Yamada湍流闭合方案中,经常出现夏季海表面温度偏暖和混合层深度偏浅的模拟误差。实验表明,斯托克斯漂流在冬季和夏季均能增强湍流动能,加深混合层深度。这种效应可以改善夏季的模拟结果,但与观测数据相比,将增大冬季混合层深度的模拟误差。斯托克斯漂流可以通过增强湍动能来加深混合层深度。结果表明,将斯托克斯漂流与冷皮层和暖层对上部混合层的热效应相结合,可以正确地模拟混合层深度。在夏季,海洋冷皮层和暖层通过“阻挡结构”和双温跃层结构模拟出更真实的上混合层变化。在冬季,海洋热力学效应通过增强上层海洋层结平衡了斯托克斯漂流的影响,并且由斯托克斯漂流引起的过度混合被校正。  相似文献   

17.
Observational studies of the Pacific basin since the 1950s have demonstrated that a decrease (increase) in tropical Pacific sea surface temperatures (SSTs) is significantly correlated with a spin-up (slow-down) of the Pacific Subtropical Cells (STCs). STCs are shallow wind-driven overturning circulations that provide a pathway by which extratropical atmospheric variability can impact the equatorial Pacific thermocline and, through upwelling in the eastern equatorial Pacific, tropical Pacific SSTs. Recent studies have shown that this observed relationship between SSTs and STCs is absent in coupled climate model simulations of the late 19th–20th centuries. In this paper we investigate what causes this relationship to breakdown and to what extent this limits the models’ ability to simulate observed climate change in the equatorial Pacific since the late 19th century. To provide insight into these questions we first show that the NCAR Community Climate System Model’s simulation of observed climate change since the 1970s has a robust signal in the equatorial Pacific that bears a close resemblance to observations. Strikingly, absent is a robust signal in the equatorial thermocline. Our results suggest that the coupled model may be reproducing the observed local ocean response to changes in forcing but inadequately reproducing the remote STC-forcing of the tropical Pacific due to the underestimate of extratropical winds that force these ocean circulations. These conclusions are found to be valid in five different coupled climate model simulations of the late 19th–20th centuries (CCSM3, GISS EH, GFDL CM2.1, CSIRO-Mk3, and HadCM3).  相似文献   

18.
ENSO variability and the eastern tropical Pacific: A review   总被引:3,自引:0,他引:3  
El Niño-Southern Oscillation (ENSO) encompasses variability in both the eastern and western tropical Pacific. During the warm phase of ENSO, the eastern tropical Pacific is characterized by equatorial positive sea surface temperature (SST) and negative sea level pressure (SLP) anomalies, while the western tropical Pacific is marked by off-equatorial negative SST and positive SLP anomalies. Corresponding to this distribution are equatorial westerly wind anomalies in the central Pacific and equatorial easterly wind anomalies in the far western Pacific. Occurrence of ENSO has been explained as either a self-sustained, naturally oscillatory mode of the coupled ocean–atmosphere system or a stable mode triggered by stochastic forcing. Whatever the case, ENSO involves the positive ocean–atmosphere feedback hypothesized by Bjerknes. After an El Niño reaches its mature phase, negative feedbacks are required to terminate growth of the mature El Niño anomalies in the central and eastern Pacific. Four requisite negative feedbacks have been proposed: reflected Kelvin waves at the ocean western boundary, a discharge process due to Sverdrup transport, western Pacific wind-forced Kelvin waves, and anomalous zonal advections. These negative feedbacks may work together for terminating El Niño, with their relative importance being time-dependent.ENSO variability is most pronounced along the equator and the coast of Ecuador and Peru. However, the eastern tropical Pacific also includes a warm pool north of the equator where important variability occurs. Seasonally, ocean advection seems to play an important role for SST variations of the eastern Pacific warm pool. Interannual variability in the eastern Pacific warm pool may be largely due to a direct oceanic connection with the ENSO variability at the equator. Variations in temperature, stratification, insolation, and productivity associated with ENSO have implications for phytoplankton productivity and for fish, birds, and other organisms in the region. Long-term changes in ENSO variability may be occurring and are briefly discussed. This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific.  相似文献   

19.
Limitations in sea surface salinity (SSS) observations and timescale separation methods have led to an incomplete picture of the mechanisms of SSS decadal variability in the tropical Pacific Ocean, where the El Niño Southern Oscillation (ENSO) dominates. Little is known regarding the roles of the North Pacific Gyre Oscillation (NPGO) and the Pacific Decadal Oscillation (PDO) in the large-scale SSS variability over the tropical basin. A self-organizing map (SOM) clustering analysis is performed on the intrinsic mode function (IMF) maps, which are decomposed from SSS and other hydrological fields by ensemble empirical mode decomposition (EEMD), to extract their asymmetric features on decadal timescales over the tropical Pacific. For SSS, an anomalous pattern appeared during 1997 to 2004, a period referred to as the anomalous late 1990s, when strong freshening prevailed in large areas over the southwestern basin and moderate salinization occurred in the western equatorial Pacific. During this period, the precipitation and surface currents were simultaneously subjected to anomalous fluctuations: the precipitation dipole and zonal current divergence along the equator coincided with the SSS increase in the far western equatorial Pacific, while the weak zonal current convergence in the southwestern basin and large-scale southward meridional currents tended to induce SSS decreases there. The dominant decadal modes of SSS and sea surface temperature (SST) in the tropical Pacific both resemble the NPGO but occur predominantly during the negative and positive NPGO phases, respectively. The similarities between the NPGO and Central Pacific ENSO (CP-ENSO) in their power spectra and associated spatial patterns in the tropics imply their dynamical links; the correspondence between the NPGO-like patterns during negative (positive) phases and the CP La Niña (CP El Niño) patterns for SSS is also discussed.  相似文献   

20.
Seasonal and interannual variations of the mixed layer properties in the Antarctic Zone (AZ) south of Tasmania are described using 7 WOCE/SR3 CTD sections and 8 years of summertime SURVOSTRAL XBT and thermosalinograph measurements between Tasmania and Antarctica. The AZ, which extends from the Polar Front (PF) to the Southern Antarctic Circumpolar Current Front (SACCF), is characterized by a 150 m deep layer of cold Winter Water (WW) overlayed in summer by warmer, fresher water mass known as Antarctic Surface Water (AASW). South of Tasmania, two branches of the PF divide the AZ into northern and southern zones with distinct water properties and variability. In the northern AZ (between the northern and southern branches of the PF), the mixed layer depth (MLD) is fairly constant in latitude, being 150 m deep in winter and around 40–60 m in summer. In the southern AZ, the winter MLD decreases from 150 m at the S-PF to 80 m at the SACCF and from 60 to 35 m in summer. Shallower mixed layers in the AZ-S are due to the decrease in the wind speed and stronger upwelling near the Antarctic Divergence. The WW MLD oscillates by ±15 m around its mean value and modest interannual changes are driven by winter wind stress anomalies.The mixed layer is on annual average 1.7 °C warmer, 0.06 fresher and 0.2 kg m−3 lighter in the northern AZ than in the southern AZ. The Levitus (1998) climatology is in agreement with the observed mean summer mixed layer temperature and salinity along the SURVOSTRAL line but underestimates the MLD by 10–20 m. The winter MLD in the climatology is also closed to that observed, but is 0.15 saltier than the observations along the AZ-N of the SR3 line. MLD, temperature and density show a strong seasonal cycle through the AZ while the mixed layer salinity is nearly constant throughout the year. During winter, the AZ MLD is associated with a halocline while during summer it coincides with a thermocline.Interannual variability of the AZ summer mixed layer is partly influenced by large scale processes such as the circumpolar wave which produces a warm anomaly during the summer 1996–1997, and partly by local mechanisms such as the retroflection of the S-PF which introduces cold water across the AZ-N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号