首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 337 毫秒
1.
9810号台风过程厦门近岸海域POC的变化特征   总被引:2,自引:1,他引:2  
本文研究了9810号台风影响下九龙江口及厦门西港表层海水颗粒有机碳(POC)的变化特征及其与某些环境因子的关系,除厦门西港低潮水外,台风期间POC含量的迅速增大,此“冲击期”共维持3d后POC值迅速回落,进入“恢复期”。台风期间,九龙江口高低潮,厦门西港高潮表层水POC含量分别为0.739、1.319和0.848mg/dm^3,是非台风状况下的1.1、1.9和1.4倍,陆源有机物的输入和底质再悬浮作用是控制表层水POC含量的主要因素,而厦门西港低潮水POC含量受台风作用影响较小,碎屑POC为厦门近岸海域表层海水POC的主要组成部分。POC与溶解态N、P营养盐有一定正相关性,暗示其可能来自颗粒物有机N、P的生物降解。  相似文献   

2.
Transitional ecosystems,estuaries and the coastal seas,are distinctively affected by natural and anthropogenic factors.Organic matter(OM)originating from terrestrial sources is exported by rivers and forms a key component of the global biogeochemical cycles.Most previous studies focused on the bulk biochemical and anthropogenic aspects affecting these ecosystems.In the present study,we examined the sources and fate of OM entrained within suspended particulate matter(SPM)of the Zuari River and its estuary,west coast of India.Besides using amino acid(AA)enantiomers(L-and D-forms)as biomarkers,other bulk biochemical parameters viz.particulate organic carbon(POC),δ13C,particulate nitrogen(PN),δ15N and chlorophyll a were analyzed.Surprisingly no significant temporal variations were observed in the parameters analyzed;nonetheless,salinity,POC,δ13C,PN,δ15N,glutamic acid,serine,alanine,tyrosine,leucine and D-aspartic acid exhibited significant spatial variability suggesting source differentiation.The POC content displayed weak temporal variability with low values observed during the post-monsoon season attributed to inputs from mixed sources.Estuarine samples were less depleted than the riverine samples suggesting contributions from marine plankton in addition to contributions from river plankton and terrestrial C3 plants detritus.Labile OM was observed during the monsoon and post-monsoon seasons in the estuarine region.More degraded OM was noticed during the pre-monsoon season.Principal component analysis was used to ascertain the sources and factors influencing OM.Principally five factors were extracted explaining 84.52%of the total variance.The first component accounted for 27.10%of the variance suggesting the dominance of tidal influence whereas,the second component accounted for heterotrophic bacteria and their remnants associated with the particulate matter,contributing primarily to the AA pool.Based on this study we ascertained the role of the estuarine turbidity maximum(ETM)controlling the sources of POM and its implications to small tropical rivers.Thus,changes in temporal and regional settings are more likely to affect the natural biogeochemical cycles of small tropical rivers.  相似文献   

3.
The biogeochemistry of organic matter in a macrotidal estuary, the Loire, France, has been studied for two years during different seasons. Both particulate matter and sediment have been sampled in the riverine zone, in the maximum turbidity zone and in the ocean near the river mouth. Two techniques have been used: carbon isotopic ratio determination and analysis of lipid-marker signatures in the n-alkane, n-alkene and fatty acid series. For the period corresponding to the output of the maximum turbidity zone in the ocean, the complete change of organic matter, continental in nature in the inner estuary, pure marine in the outer estuary is well illustrated by the decrease of δ13C values and of carbon preference index of n-alkanes. Input sources of organic matter by continental plants, plankton and micro-organisms are discussed from biogeochemical-marker analyses data along with the processes of accumulation of particles and their evolution with the season. Some criteria for evidencing the nature of various organic-matter pools are assessed and compared in different chemical-marker series as follows: high molecular weight n-alkanes and fatty acids, perylene for continental imprints, polyunsaturated 18-, 20- and 22-carbon fatty acids, n-C17, n-alkenes and squalene for algae imprints, branched iso and anteiso fatty acids, Δ11-C18:1 for microbial imprints.  相似文献   

4.
利用2005年"大洋一号"科学考察船电视抓斗采样器采集的表层沉积物样品,对大西洋洋中脊Logatchev热液场附近7个站位表层沉积物样品中的烷烃组分进行了定量分析,并结合总有机碳(TOC)及C稳定同位素(δ13C值)分析,探讨了表层沉积物中有机质的组成及可能的来源和影响因素.结果表明:表层沉积物中正构烷烃组分以低碳数化...  相似文献   

5.
黄、渤海沉积物中陆源脂类有机质的组成分布与转化特征   总被引:2,自引:0,他引:2  
本文对黄、渤海表层沉积物中脂类化合物的组成进行了分析研究。结果表明,黄、渤海表层沉积物有机碳的含量为0.03%~1.02%,以黄河口含量最低,黄河口外和双台子河口外,以及北黄海和南黄海中部含量较高。有机质碳稳定同位素δ13C的分布为-21.55‰~-24.28‰,表征其陆海双重来源特征,并且海源特征由河口向海、由近岸向离岸逐渐增强。陆源脂类化合物以河口处略高,河道处略低,由河口向渤海中部和靠近渤海海峡方向迅速降低,表现出显著的河流输入特征;其形态组成由河道的游离态接近100%的绝对优势,迅速转变为渤海中部的以皂化结合态为主(大于50%),仅在渤海中部和渤海海峡附近存在小于5%的矿物结合态,转化程度较低。北黄海中部和南黄海中部泥质区的有机碳和陆源脂类化合物显著富集,但其对总有机碳的相对贡献较小;其中皂化结合态超过50%,矿物结合态小于10%,说明其具有中等偏高的转化程度。  相似文献   

6.
Data is presented for the concentrations of organic carbon and nitrogen, and C:N ratios, in marine particulate matter, and for POC and PN, from surface waters collected in the northeastern Atlantic, South Atlantic, Indian Ocean and China Sea.The organic carbon content of this particulate matter varies between 4.6% and 29.9%, and has an average of 17.8%. The average organic carbon content of particulate matter from the various oceans decreases in the order: Northeastern Atlantic > South Atlantic > Indian Ocean > China Sea.The nitrogen content of the particulate matter varies between 1.0% and 3.9%, with an average of 2.2%, and in general follows the same trend as that of organic carbon.C:N ratios vary between 5.1 and 10.6, and have an average of 7.9.The POC contents of the oceanic waters vary between 6.6 and 211 μg/l, with an average of 52 μg/l. The concentrations in the surface waters decrease in the following order: Northeastern Atlantic τ China Sea > South Atlantic > Indian Ocean.The concentrations, and compositions, of particulate matter from various coastal localities are given for comparison with the oceanic values.  相似文献   

7.
Carbon and nitrogen stable isotope ratios (13C and 15N) of surface sediments were measured within Osaka Bay, in the Seto Inland Sea in Japan, in order to better understand the sedimentation processes operating on both terrestrial and marine organic matter in the Bay. The 13C and 15N of surface sediments in the estuary of the Yodo River were less than –23 and 5 respectively, but increased in the area up to about 10 km from the river mouth. At greater distances they became constant (giving 13C of about –20 and 15N about 6). It can be concluded that large amounts of terrestrial organic matter exist near the mouth of the Yodo River. Stable isotope ratios in the estuary of the Yodo River within 10 km of the river mouth were useful indicators allowing study of the movement of terrestrial organic matter. Deposition rates for total organic carbon (TOC) and total nitrogen (TN) over the whole of the Bay were estimated to be 63,100 ton C/year and 7,590 ton N/year, respectively. The deposition rate of terrestrial organic carbon was estimated to be 13,200 (range 2,000–21,500) ton C/year for the whole of Osaka Bay, and terrestrial organic carbon was estimated to be about 21% (range 3–34) of the TOC deposition rate. The ratio of the deposition rate of terrestrial organic carbon to the rate inflow of riverine TOC and particulate organic carbon (POC) were estimated to be 19% (range 3–31) and 76% (range 12–100), respectively.  相似文献   

8.
The concentration of 15 amino acids in hydrolyzed particulate matter from different regions and depths of the Pacific Ocean has been measured by gas—liquid chromatography. The relative composition was similar for all samples in the euphotic zone, where the particulate amino acid (PAA) concentration ranged from 370 to 2260 nmoles/1 in coastal waters and from 90 to 260 nmoles/1 in the open ocean. Total PAA concentration dropped rapidly with depth, levelling off at 10–40 nmoles/1 below 200 m. Glycine, serine, glutamic acid and aspartic acid were the most abundant PAA in deep equatorial water and in deep off-shore California water. The nitrogen content of PAA could often account for 100% of the total particulate organic nitrogen present, while PAA carbon contributed up to 50% of the total particulate organic carbon in euphotic waters and down to 20% in deep waters. The protein equivalent to the total PAA content of particulate matter in near-surface waters amounted to 11–32 μg/1 at oceanic stations and up to 270 μg/1 at coastal stations.  相似文献   

9.
To investigate organic matter source and reactivity in the Zhujiang River (Pearl River)Estuary and its adjacent areas, particulate organic carbon (POC), particulate hydrolysable amino acids (PHAA), and Chl a during two cruises in July 1999 and July 2000 were measured. The highest POC and PHAA concentration was observed in the waters with maximum Chl a. The spectra distribution,relative content (dry weight in milligram per gram), PHAA-C% POC and other indicators such as the ratios of amino acids vs. amino sugars (AA/AS) and glucosamine vs. galactosamine (Glum/Gal) suggested that particulate amino acids in the water column and sediments in the Zhujiang River Estuary were mainly derived from biogenic processes rather than transported from terrestrial erosion. In inner estuary where high turbidity was often observable, organic matter was mainly contributed by re-suspension of bottom sediments with revealed zooplankton, microbial reworked characteristics, which suggest that these organic matters were relatively “old“. In the estuarine brackish region, organic matter in water column is mainly contributed by relatively fresh, easily degradable phytoplankton derived organic matter.During physical - biological processes within the eastuary, organic matter derived from phytoplankton was subjected to alteration by zooplankton grazing and bacterial reworking.  相似文献   

10.
A variety of measures of organic matter concentration and quality were made on samples collected from the top few mm of intertidal mudflat sediment over the course of a year, in order to assess the relative importance of biological and sedimentological influences on sedimentary organic matter. Winter and summer were times of relatively fine-grained sediment accumulation, caused by biological deposition or stabilization processes and resulting in higher organic matter concentrations. Stable carbon isotope and Br:C ratios indicated a planktonic source of bulk organic matter. Ratios of organic carbon to specific surface area of the sediments were consistent with an organic monolayer coverage of sediment grains. Correction for changing grain size during the year showed no change in the organic concentration per unit surface area, in spite of organic matter inputs by in situ primary production, buildup of heterotroph biomass and mucus coatings, and biodeposition of organic-rich seston. There were also no indications of changes in bulk organic quality, measured as hydrolyzable carbohydrates and amino acids, in response to these biological processes. It is concluded that biological processes on a seasonal time scale affect the bulk organic matter of these sediments via a modulation of grain size rather than creation or decay of organic matter.  相似文献   

11.
对南海北部神狐海域表层沉积物中脂肪酸组分进行了分析,检测到的总正构脂肪酸含量为1.80~10.16μg/g(μg脂肪酸/g干沉积物),碳数分布为C12—C32,呈偶奇优势分布,以C16和C18为主峰碳。将90cm以上层位样品进行归一化,建立加权平均碳同位素讨论正构脂肪酸来源,结果表明,短链脂肪酸(n-C14~18)具有较正的碳同位素组成(加权平均为-26.7‰^-28.2‰),反映了化学自养细菌来源;大部分长链脂肪酸(n-C21~23,nC25,n-C29~32)具有偏负的碳同位素组成(加权平均为-29.6‰^-34.1‰),反映了陆源C3高等植物来源;而另外的长链脂肪酸(n-C24&n-C26~28)和n-C19~20中链脂肪酸(加权平均碳同位素为-26.1‰^-29.3‰)则可能反映了混合来源输入。沉积物75~80cm层位陆源输入和海洋输入含量达到最低,可能和Younger Dryas冷期旋回事件有关。  相似文献   

12.
The temporal and spatial distribution of total and organic particulate matter is investigated in the Bideford River estuary. Particulate matter is homogenously distributed in both the water column and the surface sediment, due to high rates of resuspension and lateral transport. The measured mean sedimentation rate for the estuary is 183·5 g of particulate matter m?2 day?1, of which more than half is due to resuspension.The surface sediment of the estuary is quantitatively the dominant reservoir of organic matter, with an average of 902·5 g of particulate organic carbon (POC) m?2 and 119·5 g of particulate organic nitrogen (PON) m?2. Per unit surface area, the sediment contains 450 times more POC and 400 times more PON than the water column. Terrestrial erosion contributes high levels of particulate matter, both organic and inorganic, to the estuary from the surrounding watershed. Low rates of sediment export from the estuary result in the accumulation of the terrigenous material. The allochthonous input of terrigenous organic matter masks any relationship between the indigenous plant biomass and the organic matter.In the water column, a direct correlation exists between the organic matter, i.e. POC and PON, concentration and the phytoplankton biomass as measured by the plant pigments. Resuspension is responsible for the residual organic matter in the water column unaccounted for by the phytoplankton biomass.The particulate content of the water column and the surface sediment of the estuary is compared to that of the adjacent bay. Water-borne particulate matter is exported from the estuary to the bay, so that no significant differences in concentration are noted. The estuarine sediment, however, is five to six times richer in organic and silt-clay content than the bay sediment. Since sediment flux out of the estuary is restricted, the allochthonous contribution of terrigenous particulate matter to the bay sediment is minor, and the organic content of the bay sediment is directly correlated to the autochthonous plant biomass.  相似文献   

13.
Within the framework of the European project EROS 21, a biogeochemical study of particles transported from the Danube Delta to the Northwestern Black Sea whose carbon cycle is dominated by riverine inputs was carried out in spring off the Sulina branch of the Danube Delta. The distribution of particulate organic carbon (POC), chlorophyll a (Chl a), C/N, and δ13C evidenced an omnipresent contribution of terrestrial organic matter throughout the study area together with a dilution of these inputs by freshwater and marine organisms. Four lipid series, n-alkanoic acids, n-alkanes, n-alkanols, and sterols were analyzed by gas chromatography and gas chromatography/mass spectrometry. Several signature compounds were selected to delineate dispersion of terrestrial organic carbon: (1) long-chain n-alkanoic acids in the range C24–C34, long-chain n-alkanes in the range C25–C35, long-chain n-alkanols in the range C22–C30, 24-ethylcholesta-5,22-dien-3β-ol (29Δ5,22) and 24-ethylcholesterol (29Δ5) for vascular plant-derived material and (2) coprostanol (27Δ0,5β) for faecal contamination associated with sewage effluents. A marked decrease was observed between the concentrations of different vascular plant markers characterizing the two end members: riverine at salinity 0.3 and marine at salinity 15.5. The decrease observed for marine/riverine end members (expressed as a function of organic carbon) varied in a large range, from 4% for n-alkanes to 18.6%, 20.4% and 24% for n-fatty acids, n-alkanols and sterols, respectively. These values reflect a combination of various processes: size-selective particle sedimentation, resuspension of different particle pools of different sizes and ages, and/or selective biological utilization. The multi-marker approach also suggested the liberation in the mixing zone of terrestrial moieties, tightly trapped in macromolecular structures of the riverine material. The greatest decrease for marine/riverine end members was observed for coprostanol (0.9%), underlining the efficiency of the mixing zone as a sink for sewage-derived carbon.  相似文献   

14.
通过对西太平洋雅浦海沟不同水深沉积物中总有机碳(TOC)、总氮(TN)、碳稳定同位素(δ13C)、粒度组成和比表面积(SSA)等参数的分析,探讨了雅浦海沟不同水深沉积颗粒物来源、分布及其影响因素的异同。结果表明,雅浦海沟沉积物TOC含量和δ13C平均值分别为(0.34%±0.14%)和(-20.8‰±0.7‰),其中海洋浮游植物、陆源土壤和维管植物来源有机碳(OC)的贡献分别为(70%±3%)、(22%±3%)和(8%±2%),且不同水深差异不大,海沟内沉积物的横向输运可能是深部沉积OC的重要输入途径。由于水深更深站位沉积颗粒物中具有更强的微生物活动和在水柱中更长的保留时间,导致其TOC和TN含量较低,但δ13C无明显差异。水深较浅站位TN含量、SSA、粒径组成和中值粒径等参数垂向变化波动较更深站位更为显著,表明海沟沟壁水深较浅处物源输入和沉积环境的不稳定。同时,由于低OC含量、低SSA以及高密度的海底火山喷出岩在海沟水深较浅的沟壁坡折处的广泛分布,导致该区域粒径组成与TOC含量无显著相关性,而较深站位中TOC含量与粉砂呈正相关,与砂和黏土含量呈负相关。整体而言,雅浦海沟沉积物中粉砂粒级颗粒物是OC的主要载体,而SSA是影响海沟沉积OC剖面分布的最重要因素。  相似文献   

15.
Total suspended matter was collected along the Yangtze River (Changjiang) and in the East China Sea in April to May and in September 2003, respectively, to study origin and fate of particulate organic nitrogen. Concentrations of particulate organic carbon (POC), nitrogen (PN) and hydrolyzable particulate amino acids (PAA; d- and l-enantiomers) were higher in the Yangtze Estuary than in the river and decreased offshore towards the shelf edge. In the coastal area, higher values of PAA were observed in the surface layer than in the bottom water. Stable carbon isotope ratios (δ13C) of POC increased from − 24.4‰ in the river to values around − 21‰ on the East China Sea Shelf. Dominant amino acids were aspartic acid + aspartine (Asx), glutamic acid + glutamine (Glx), glycine, alanine and serine. The proportions of Asx, Glx and isoleucine were higher in the marine than in the riverine samples contrary to the distributions of glycine, alanine, threonine and arginine. The proportions of d-amino acids were highest in the riverine suspended organic matter (6% of PAA) decreasing towards the shelf edge (1.5% of PAA). d-arginine, not reported in natural aquatic samples so far, was the most abundant d-amino acid in the river. The amino acid composition of the particulate organic matter (POM) in the Yangtze River indicates an advanced stage of degradation of POM. Highly degraded organic matter from soils is probably a main source of POM in the Yangtze River, but the relatively high δ13C values and low C/N ratios (7.7 ± 1.6) also indicate contribution from anthropogenic sources. The degraded riverine material was a dominant organic matter source in the estuary, where aquatic primary production had only a small overall contribution. In the East China Sea, gradual settling of riverine organic matter and the addition of fresher phytoplankton impacted the amino acid composition and δ13C values, and on the outer shelf relatively fresh phytoplankton-derived organic matter dominated.  相似文献   

16.
Three sediment cores were collected off the Mississippi River delta on the Louisiana Shelf at sites that are variably influenced by recurring, summer-time water-column hypoxia and fluvial loadings. The cores, with established chronology, were analyzed for their respective carbon, nitrogen, and sulfur elemental and isotopic composition to examine variable organic matter inputs, and to assess the sediment record for possible evidence of hypoxic events. Sediment from site MRJ03-3, which is located close to the Mississippi Canyon and generally not influenced by summer-time hypoxia, is typical of marine sediment in that it contains mostly marine algae and fine-grained material from the erosion of terrestrial C4 plants. Sediment from site MRJ03-2, located closer to the mouth of the Mississippi River and at the periphery of the hypoxic zone (annual recurrence of summer-time hypoxia >50%), is similar in composition to core MRJ03-3, but exhibits more isotopic and elemental variability down-core, suggesting that this site is more directly influenced by river discharge. Site MRJ03-5 is located in an area of recurring hypoxia (annual recurrence >75%), and is isotopically and elementally distinct from the other two cores. The carbon and nitrogen isotopic composition of this core prior to 1960 is similar to average particulate organic matter from the lower Mississippi River, and approaches the composition of C3 plants. This site likely receives a greater input of local terrestrial organic matter to the sediment. After 1960 and to the present, a gradual shift to higher values of δ13C and δ15N and lower C:N ratios suggests that algal input to these shelf sediments increased as a result of increased productivity and hypoxia. The values of C:S and δ34S reflect site-specific processes that may be influenced by the higher likelihood of recurring seasonal hypoxia. In particular, the temporal variations in the C:S and δ34S down-core are likely caused by changes in the rate of sulfate reduction, and hence the degree of hypoxia in the overlying water column. Based principally on the down-core C:N and C:S ratios and δ13C and δ34S profiles, sites MRJ03-3 and MRJ03-2 generally reflect more marine organic matter inputs, while site MRJ03-5 appears to be more influenced by terrestrial deposition.  相似文献   

17.
In this study, we present seasonal changes (monthly samples from September 2001 to August 2003) in the abundance and composition of dissolved and particulate amino acids, at one station in the lower Mississippi and Pearl Rivers (LA, MS: USA). Spatial changes over a 4-day transmit from river km 390 to river mouth (Head of Passes, LA) in the Mississippi River, and a two-day downstream sampling from Jackson (MS) to Stennis Space Center (MS) were also determined. Temporal data in the lower Mississippi River showed significantly lower concentrations of dissolved combined amino acids (DCAA, 0.8 to 2.2 μM) and dissolved amino acids in high molecular weight fraction (HMW DAA, 0.2–0.4 μM) than in the Pearl River (DCAA, 1.4–4.3 μM; HMW DAA, 0.4–1.4 μM). Dissolved free amino acids (DFAA) were significantly lower than DCAA in both rivers, and displayed minimal seasonal variability. DCAA, HMW DAA, and particulate amino acids (PAA) were generally higher during high-flow periods, which may have suggested dominance in terrestrial sources. Carbon-normalized yield of PAA (%C-PAA) was generally higher during low-flow conditions and positively correlated with chlorophyll-a (chl-a), reflective of in situ sources. Downstream variability in the lower Mississippi River showed stable DCAA concentrations, a decline in PAA (from 1.06 to 0.43 μM), and a gradual increase in mole percent of non-protein amino acids (%NPAA). This likely reflected bacterial degradation of phytoplankton biomass during falling discharge. Nitrogen-normalized yield of PAA (%N-PAA) was inversely correlated with PAA (R = − 0.7, n = 48), indicative of short-term sedimentation and resuspension events. Conversely, downstream decreases in DCAA and middle-reach peaks of PAA and %N-PAA in the Pearl River, likely resulted from photochemical degradation of DOM as well as algal production during base-flow conditions. The comparisons in abundance and composition of DAA and PAA in these different river systems provides important information on in situ nitrogen and carbon cycling as related to riverine inputs of organic matter to coastal ocean.  相似文献   

18.
福建罗源湾海水悬浮物的研究   总被引:1,自引:0,他引:1  
于1986年11月-1987年9月对福建罗源湾海水悬浮的含量的观测结果表明,水动力条件引起的再悬浮过程和生物活分别是罗源湾冬季和夏季悬浮物分布及性质变化的主要影响因素。底部沉积物的再悬浮对水体营养盐的再生和补充及有机碎屑的提供起重要的作用,夏季颗粒有机碳的学降能量一般占水柱浮游植物初级生产量的67-85%,大部分初级生产的有机碳沉降海底。  相似文献   

19.
Dissolved organic carbon (DOC), stable carbon isotopic (δ13C) compositions of DOC and particulate organic carbon (POC), and elemental C/N ratios of POC were measured for samples collected from the lower Mississippi and Atchafalaya rivers and adjacent coastal waters in the northern Gulf of Mexico during the low flow season in June 2000 and high flow season in April 2001. These isotopic and C/N results combined with DOC measurements were used to assess the sources and transport of terrestrial organic matter from the Mississippi and Atchafalaya rivers to the coastal region in the northern Gulf of Mexico. δ13C values of both POC (−23.8‰ to −26.8‰) and DOC (−25.0‰ to −29.0‰) carried by the two rivers were more depleted than the values measured for the samples collected in the offshore waters. Strong seasonal variations in δ13C distributions were observed for both POC and DOC in the surface waters of the region. Fresh water discharge and horizontal mixing played important roles in the distribution and transport of terrestrial POC and DOC offshore. Our results indicate that both POC and DOC exhibited non-conservative behavior during the mixing especially in the mid-salinity range. Based on a simple two end-member mixing model, the comparison of the measured DOC-δ13C with the calculated conservative isotopic mixing curve indicated that there was a significant in situ production of marine-derived DOC in the mid- to high-salinity waters consistent with our in situ chlorophyll-a measurements. Our DOC-δ13C data suggest that a removal of terrestrial DOC mainly occurred in the high-salinity (>25) waters during the mixing. Our study indicates that the mid- to high- (10–30) salinity range was the most dynamic zone for organic carbon transport and cycling in the Mississippi River estuary. Variability in isotopic and elemental compositions along with variability in DOC and POC concentrations suggest that autochthonous production, bacterial utilization, and photo-oxidation could all play important roles in regulating and removing terrestrial DOC in the northern Gulf of Mexico and further study of these individual processes is warranted.  相似文献   

20.
Stable carbon and nitrogen isotopic composition of particulate organic matter(POM) were measured for samples collected from the Bering Sea in 2010 summer. Particulate organic carbon(POC) and particulate nitrogen(PN) showed high concentrations in the shelf and slope regions and decreased with depth in the slope and basin, indicating that biological processes play an important role on POM distribution. The low C/N ratio and heavy isotopic composition of POM, compared to those from the Alaska River, suggested a predominant contribution of marine biogenic organic matter in the Bering Sea. The fact that δ13C and δ15N generally increased with depth in the Bering Sea basin demonstrated that organic components with light carbon or nitrogen were decomposed preferentially during their transport to deep water. However, the high δ13C and δ15N observed in shelf bottom water were mostly resulted from sediment resuspension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号