首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Xolapa Complex (XC) is the largest plutonic and metamorphic mid‐crustal basement unit in Mexico and represents an ancient continental magmatic‐arc. A complete range from metatexite to diatexite migmatitic structures has been produced during a single high‐grade metamorphic event. However, structural relics reveal the existence of early Cpx + Pl + Qtz ± Opx and Grt + Opx + Pl + Qtz ± Cpx pre‐migmatitic metamorphic assemblages. Field relationships and microstructural observations allow us to constrain five pre‐, syn‐ and post‐migmatitic deformational phases. It is argued that migmatitic structures and minor anatectic granites were developed during ductile recumbent folding and shear structures related to the D2–D3 phases. Late post‐migmatitic ductile‐brittle deformation is evidenced by the development of NNE trending transpressional thrusting (D4), and E–W left‐lateral mylonitic shear zones (D5). Biotite‐breakdown melting in felsic rocks and amphibole‐breakdown melting in mafic rocks, as well as geothermobarometric results, indicate that metamorphism took place at temperatures from 830 to 900 °C and pressures ranging from ≥6.3 to 9.5 kbar. Late migmatitic assemblages equilibrated in the highest temperature range along a clockwise P–T path. The relationships between the large diversity of migmatitic structures and the progressive production of melt suggest that feedback relations prevailed as a time‐marker during a contractional regime. Deformation, metamorphism, and plutonism of the XC show that this terrane evolved as a north‐east‐verging thrust system with synkinematic metamorphism and partial melting, during the Late Cretaceous – Palaeogene. The tectonothermal history of XC is analogous to a Cordilleran metamorphic magmatic‐arc formed in an accretionary tectonic framework. This new model provides constraints on the exhumation mechanism and thermal evolution of southern Mexico.  相似文献   

2.
A high‐P granulite facies gneiss complex occurs in north‐west Payer Land (74°28′?74°47′N) in the central part of the East Greenland Caledonian (Ordovician–Devonian) orogen. High‐P metamorphism of the Payer Land gneiss complex resulted in formation of the assemblages Grt + Cpx + Amp + Qtz + Ru ± Pl in mafic rocks, and Grt + Ol + Cpx + Opx + Spl in rare ultramafic pods. Associated metapelites experienced anatexis in the kyanite stability field. Peak metamorphic assemblages formed around 800–850 °C at pressures of c. 1.4–1.7 GPa, corresponding to crustal depths of c. 50 km. Mafic granulites contain abundant reaction textures, including the replacement of garnet by symplectites of Opx + Spl + Pl, indicating that the high‐P event was followed by decompression while the granulites remained at elevated temperatures. Charnockitic gneisses from Payer Land show evidence of late Archean (c. 2.8–2.4 Ga) crustal growth and subsequent Palaeoproterozoic (c. 1.85 Ga) metamorphism. The gneiss complex experienced intense reworking during the Caledonian continental collision. On the basis of Caledonian monazite ages recorded from the high‐P anatectic metapelites, the clockwise P–T evolution and formation of the high‐P granulite facies assemblages is related to Caledonian crustal thickening, which resulted in formation of eclogites approximately 300 km north of Payer Land. The Payer Land granulites comprise a metamorphic core complex, which is separated from the overlying low‐grade supracrustal rocks (the Neoproterozoic Eleonore Bay Supergroup) by a late Caledonian extensional fault zone, the Payer Land Detachment. The steep, nearly isothermal, unloading P–T path recorded by the granulites can be explained by erosional and tectonic unroofing along the Payer Land Detachment.  相似文献   

3.
Mafic rocks in the Chipman domain of the Athabasca granulite terrane, western Canadian Shield, provide the first well‐documented record of two distinct high‐P granulite facies events in the same domain in this region. Textural relations and the results of petrological modelling (NCFMASHT system) of mafic granulites are interpreted in terms of a three‐stage tectonometamorphic history. Stage 1 involved development of the assemblage Grt + Cpx + Qtz ± Pl (M1) from a primary Opx‐bearing igneous precursor at conditions of 1.3 GPa, 850–900 °C. Field and microstructural observations suggest that M1 developed synchronously with an early S1 gneissic fabric. Stage 2 is characterized by heterogeneous deformation (D2) and synkinematic partial retrogression of the peak assemblage to an amphibole‐bearing assemblage (M2). Stage 3 involved a third phase of deformation and a return to granulite facies conditions marked by the prograde breakdown of amphibole (Amph2) to produce matrix garnet (Grt3a) and the coronitic assemblage Cpx3b + Opx3b + Ilm3b + Pl3b (M3b) at 1.0 GPa, 800–900 °C. M1 and M3b are correlated with 2.55 and 1.9 Ga metamorphic generations of zircon, respectively, which were dated in a separate study. Heterogeneous strain played a crucial role in both the development and preservation of these rare examples of multiple granulite facies events within single samples. Without this fortuitous set of circumstances, the apparent reaction history could have incorrectly led to an interpretation involving a single‐cycle high‐grade event. The detailed PTtD history constructed for these rocks provides the best evidence to date that much of the east Lake Athabasca region experienced long‐term lower crustal residence from 2.55 to 1.9 Ga, and thus the region represents a rare window into the reactivation and ultimate stabilization processes of cratonic lithosphere.  相似文献   

4.
Eclogites in the Tromsø area, northern Norway, are intimately associated with meta-supracrustals within the Uppermost Allochthon of the Scandinavian Caledonides (the Tromsø Nappe Complex). The whole sequence, which includes pelitic to semipelitic schists and gneisses, marbles and calc-silicate rocks, quartzofeldspathic gneisses, metabasites and ultramafites, has undergone three main deformational/metamorphic events (D1/M1, D2/M2 and D3/M3). Detailed structural, microtextural and mineral chemical studies have made it possible to construct separate P–T paths for these three events. Chemically zoned late syn- to post-D1 garnets with inclusions of Bt, Pl and Qtz in Ky-bearing metapelites indicate a prograde evolution from 636°C, 12.48 kbar to c. 720°C, 14–15 kbar. This latter result is in agreement with Grt–Cpx geothermometry and Grt–Cpx–Pl–Qtz geobarometry on eclogites and trondhjemitic to dioritic gneisses. Maximum pressures at c. 675°C probably reached 17–18 kbar based on Cpx–Pl–Qtz inclusions in eclogitic garnets, and Grt–Ky–Pl–Qtz and Jd–Ab–Qtz in trondhjemitic gneisses. Post-D1/pre-D2 decompressional breakdown of the high-P assemblages indicates a substantial drop in pressure at this stage. Inclusions and chemical zoning in syn- to post-D2 garnets from metapelites record a second episode of prograde metamorphism, from 552°C, 7.95 kbar, passing through a maximum pressure of 10.64 kbar at 644°C, with final equilibration at c. 665°C, 9–10 kbar. The corresponding apparently co-facial paragenesis Grt + Cpx + Pl + Qtz in metabasites yields c. 635°C, 8–10 kbar. In the metapelites post-D3, Grt in apparent equilibrium with Bt, Phe and Pl yield c. 630°C, 9 kbar. The D1/M1 and D2/M2 episodes are exclusively recorded in the Tromsø Nappe Complex and must thus pre-date the emplacement of this allochthonous unit on top of the underlying Lyngen Nappe, while the D3/M3 episode is common for the two units. A previously published Sm–Nd mineral isochron (Grt–Cpx–Am) on a partly retrograded and recrystallized ecologite of 598 ± 107 Ma represents either the timing of formation of the eclogites or the post-eclogite/pre-D2 decompression stage, while a Rb–Sr whole rock isochron of an apparently post-D1/pre-D2 granite of 433 ± 11 Ma is consistent with a K–Ar age of post-D1/pre-D2 amphiboles from a retrograded eclogite of 437 ± 16 Ma which most likely record cooling below the 475–500°C isotherm after the M3 metamorphism.  相似文献   

5.
Abstract Dehydration-melting reactions, in which water from a hydrous phase enters the melt, leaving an anhydrous solid assemblage, are the dominant mechanism of partial melting of high-grade rocks in the absence of externally derived vapour. Equilibria involving melt and solid phases are effective buffers of aH2,o. The element-partitioning observed in natural rocks suggests that dehydration melting occurs over a temperature interval during which, for most cases, aH2o is driven to lower values. The mass balance of dehydration melting in typical biotite gneiss and metapelite shows that the proportion of melt in the product assemblage at T± 850°C is relatively small (10–20%), and probably insufficient to mobilize a partially melted rock body. Granulite facies metapelite, biotite gneiss and metabasic gneiss in Namaqualand contain coarse-grained, discordant, unfoliated, anhydrous segregations, surrounded by a finer grained, foliated matrix that commonly includes hydrous minerals. The segregations have modes consistent with the hypothesis that they are the solid and liquid products of the dehydration-melting reactions: Bt + Sil + Qtz + PI = Grt ° Crd + Kfs + L (metapelite), Bt + Qtz + Pl = Opx + Kfs + L (biotite gneiss), and Hbl + Qtz = Opx + Cpx + Pl + L (metabasic gneiss). The size, shape, distribution and modes of segregations suggest only limited migration and extraction of melt. Growth of anhydrous poikiloblasts in matrix regions, development of anhydrous haloes around segregations and formation of dehydrated margins on metabasic layers enclosed in migmatitic metapelites all imply local gradients in water activity. Also, they suggest that individual segregations and bodies of partially melted rock acted as sinks for soluble volatiles. The preservation of anhydrous assemblages and the restricted distribution of late hydrous minerals suggest that retrograde reaction between hydrous melt and solids did not occur and that H2O in the melt was released as vapour on crystallization. This model, combined with the natural observations, suggests that it is possible to form granulite facies assemblages without participation of external fluid and without major extraction of silicate melt.  相似文献   

6.
Mafic garnet-bearing granulites from Sostrene Island, 150 km southwest of Davis Station on the coast of Prydz Bay, East Antarctica, exhibit two-stage symplectic coronas on garnet, formed after peak metamorphic conditions (M1). An outer corona of Opx (Mg66) + Pl (An94–97) + minor Hbl mantles a finer-grained inner corona of Opx (Mg67) + Pl (An95–96) + Spl (Mg36). Both symplectites contain minor ilmenite–magnetite intergrowths. The finer-grained symplectite also occurs along a fracture cleavage in the garnet. The outer corona originated during a second metamorphic event (M2) via the reaction Grt + Cpx (Hbl) + SiO2= Opx + Pl (1), whereas the inner corona formed later in response to decompression and minor deformation, resulting in the fracture cleavage in the garnet, according to the reaction Grt = Opx + Pl + Spl (2). The grossular content of the garent (XGrs= 0.168) is almost exactly that which is required for the stoichiometric breakdown by reaction (2) (calculated XGrs= 0.167). The mafic rocks are silica undersaturated, and the SiO2 for reaction (1) was most probably derived externally from the surrounding felsic gneisses. Preferred P–T estimates for M1 based on garnet core (Prp40Alm42Grs17Sps1)–matrix Opx–Cpx–Hbl pairs are c. 10 kbar at 980°C. The fine-grained symplectite formed post-peak M2 at c. 7 kbar and 850°C. The enclosing felsic gneisses yield pressure estimates of between 5 and 7 kbar, which compare with conditions of c. 6 kbar and 775°C in the nearby Bolingen Islands. These lower P–T estimates are considered to be representative of the widespread 1100-Ma metamorphic event recognized in outcrops along the Prydz Bay coast. The high-P, high-T estimates derived from the garnet relics provide evidence for an earlier, possibly Archaean, high-grade metamorphic event.  相似文献   

7.
胶北莱西古元古代的高压基性麻粒岩和钙硅酸盐岩的基本矿物组合分别为以铁铝榴石为主的石榴石-普通辉石-铁紫苏辉石和钙铝榴石-黝帘石-葡萄石-钠长石.矿物岩石学研究表明钙硅酸盐岩是由含石榴石高压基性麻粒岩经退变质和钙质交代作用形成.南山口高压基性麻粒岩记录了麻粒岩相变质作用前、麻粒岩相变质作用、退变质和钙硅酸盐岩化共同作用以及完全钙硅酸盐岩化的四个阶段的地质作用,其矿物组合分别为Cpx+ Pl+ Qtz(M1),Grt+ Cpx+ Rt+ Qtz(M2),Cpx+Pl+ Opx+ Ilm+ Mgt+ Ep(M3)和Grs+ Zo+ Prh+ Ab+ Cal(M4).微量元素研究表明,高压基性麻粒岩中大离子亲石元素Ba、Rb、K、Rb、Th富集,而高场强元素Nb、Zr、Ti、Y亏损,具有轻稀土富集的右倾型稀土配分曲线.稀土元素和微量元素配分图解显示了岛孤拉斑玄武岩的特征.主元素、微量元素的构造判别图解进一步分析表明高压基性麻粒岩及其钙硅酸盐岩的原岩形成于大陆边缘的岛弧环境.综合高压基性麻粒岩岩石学、元素地球化学特征认为,莱西高压基性麻粒岩的原岩是拉斑玄武岩质岩石,可能是形成于孤后扩张背景下基性的侵入岩或喷出岩.岩石形成以后,在胶-辽-吉带碰撞闭合过程中,经历了麻粒岩相变质作用,又在后来的抬升过程中经历退变质和钙硅酸盐岩化作用.  相似文献   

8.
Abstract Granulite in eastern Shandong is mainly exposed in Laixi, Pingdu, Changyi and Anqiu, and the diagnostic mineral assemblage is Opx+Cpx+Hb+Pl ± Q ± Sea. The appearance of orthopyroxene and its coexistence with hornblende indicate that the reaction Hb+Q = Opx+Cpx+Pl+H2O did not proceed completely and therefore these rocks belong to the amphibolite- granulite transition facies, i.e., belonging to hornblende-granulite subfacies. According to the data obtained from such geothermometers and geobarometers as Opx- Cpx, Opx- Hb, Cpx- Hb, Hb- PI, Sca- Pl and Fe- Ti oxides, it has been determined that the temperature of the main metamorphic stage was 720° – 810°C, the pressure 0.5 GPa and fo210?15.5, showing a geothermal gradient of 41–46°C / km, and thus the rocks belong to “low-temperature” and low-pressure granulite facies.  相似文献   

9.
Archaean banded iron formation (BIF) of the Voronezh Crystalline Massif (VCM) contains coexisting clino‐ and orthopyroxenes with exsolution textures. The pyroxene in the VCM BIF is found in two generations, with only the first generation containing such textures. Clinopyroxene contains large (up to 5–10 μm) (0 0 1) orthopyroxene (Opx1L) lamellae in a host clinopyroxene (Cpx1H). This host Cpx, in turn, exsolves into thin (~1 μm) (1 0 0) lamellae of orthopyroxene (Opx2L) and clinopyroxene (Cpx2H). Orthopyroxene exhibits similar exsolution textures with large (up to 50 μm) (0 0 1) clinopyroxene (Cpx1L) lamellae developed in a host orthopyroxene (Opx1H). This clinopyroxene Cpx1L shows further exsolution of thin (1 0 0) Opx2LL lamellae and clinopyroxene (Cpx2LH). Point microprobe analysis, raster‐mode microprobe analysis, and microprobe element mapping of mineral grains with a large number of point analysis were used to determine the composition of the exsolution products and the primary chemistry of the coexisting clinopyroxene (CaO = 14.86–17.26 wt%) and pigeonite (CaO = 4.45–6.23 wt%). These pyroxenes crystallized during the peak of metamorphism, and application of the Lindsley geothermometer suggested that they formed at extremely high temperatures of about 1000 °C. Primary very dense CO2‐rich fluid inclusions (ρ = 1.152 g cm?3, Th = ?49.2 °C) were discovered for the first time in these BIF. With these data, the metamorphic pressure was estimated as 10–11 kbar (depth 36–40 km). Such ultrahigh temperature–high pressure (UHT–HP) conditions for the regional metamorphism of the Precambrian BIF have previously been reported only for Archaean meta‐ironstone from the Napier Complex (Enderby Land, Antarctica). They give an insight into the peak metamorphic conditions of the BIF of the VCM, their burial under thickened continental crust during this period of Earth evolution and suggest a more complicated multistage metamorphic and tectono‐thermal history for the region than has previously been postulated.  相似文献   

10.
Sapphirine granulites from a new locality in the Palni Hill Ranges, southern India, occur in a small enclave of migmatitic, highly magnesian metapelites (mg=85–72) within massive enderbitic orthogneiss. They show a variety of multiphase reaction textures that partially overprint a coarse-grained high-pressure assemblage of Bt+Opx+Ky+Grt+Pl+Qtz. The sequence of reactions as deduced from the corona and symplectite assemblages, together with petrogenetic grid considerations, records a clockwise P–T evolution with four distinct stages. (1) Equilibration of the initial high-P assemblage in deep overthickened crust (12 kbar/800–900 °C) was followed by a stage of near-isobaric heating, presumably as a consequence of input of extra heat provided by the voluminous enderbitic intrusives. During heating, kyanite was converted to sillimanite, and biotite was involved in a series of vapour-phase-absent melting reactions, which resulted in the ultra-high-temperature assemblage Opx+Crd+Kfs+Spr±Sil, Grt, Qtz, Bt, coexisting with melt (equilibration at c. 950–1000° C/11–10 kbar). (2) Subsequently, as a result of decompression of the order of 4 kbar at ultra-high temperature, a sequence of symplectite assemblages (Opx+Sil+Spr/Spr+Crd→Opx+Spr+Crd→Opx+Crd→Opx+Crd+Spl/Crd+Spl) developed at the expense of garnet, orthopyroxene and sillimanite. This stage of near-isothermal decompression implies rapid ascent of the granulites into mid-crustal levels, possibly due to extensional collapse and erosion of the overthickened crust. (3) Development of late biotite through back-reaction of melt with residual garnet indicates a stage of near-isobaric cooling to c. 875 °C at 7–8 kbar, i.e. relaxation of the rapidly ascended crust to the stable geotherm. (4) A second period of near-isothermal exhumation up to c. 6–5 kbar/850 °C is indicated by the partial breakdown of late biotite through volatile phase-absent melting reactions. Available isotope data suggest that the early part of the evolutionary history (stages 1–3) is presumably coeval with the early Proterozoic metamorphism in the extended granulite terrane of the Nilgiri, Biligirirangan and Shevaroy Hills to the north, while the exhumation of the granulites from mid-crustal levels (stage 4) occurred only during the Pan-African thermotectonic event, which led to the accretion of the Kerala Khondalite Belt to the south.  相似文献   

11.
Garnet growth in high‐pressure, mafic garnet granulites formed by dehydration melting of hornblende‐gabbronorite protoliths in the Jijal complex (Kohistan palaeo‐island arc complex, north Pakistan) was investigated through a microstructural EBSD‐SEM and HRTEM study. Composite samples preserve a sharp transition in which the low‐pressure precursor is replaced by garnet through a millimetre‐sized reaction front. A magmatic foliation in the gabbronorite is defined by mafic‐rich layering, with an associated magmatic lineation defined by the shape‐preferred orientation (SPO) of mafic clusters composed of orthopyroxene (Opx), clinopyroxene (Cpx), amphibole (Amp) and oxides. The shape of the reaction front is convoluted and oblique to the magmatic layering. Opx, Amp and, to a lesser extent, Cpx show a strong lattice‐preferred orientation (LPO) characterized by an alignment of [001] axes parallel to the magmatic lineation in the precursor hornblende‐gabbronorite. Product garnet (Grt) also displays a strong LPO. Two of the four 〈111〉 axes are within the magmatic foliation plane and the density maximum is subparallel to the precursor magmatic lineation. The crystallographic relationship 〈111〉Grt // [001]Opx,Cpx,Amp deduced from the LPO was confirmed by TEM observations. The sharp and discontinuous modal and compositional variations observed at the reaction front attest to the kinetic inhibition of prograde solid‐state reactions predicted by equilibrium‐phase diagrams. The PT field for the equilibration of Jijal garnet granulites shows that the reaction affinities are 5–10 kJ mol.?1 for the Grt‐in reaction and 0–5 kJ mol.?1 for the Opx‐out reaction. Petrographic and textural observations indicate that garnet first nucleated on amphibole at the rims of mafic clusters; this topotactic replacement resulted in a strong LPO of garnet. Once the amphibole was consumed in the reaction, the parallelism of [001] axes of the mafic‐phase reactants favoured the growth of garnet crystals with similar orientations over a pyroxene substrate. These aggregates eventually sintered into single‐crystal garnet. In the absence of deformation, the orientation of mafic precursor phases conditioned the nucleation site and the crystallographic orientation of garnet because of topotaxial transformation reactions and homoepitaxial growth of garnet during the formation of high‐pressure, mafic garnet‐granulite after low‐pressure mafic protoliths.  相似文献   

12.
The upper deck of the East Athabasca mylonite triangle (EAmt), northern Saskatchewan, Canada, contains mafic granulites that have undergone high P–T metamorphism at conditions ranging from 1.3 to 1.9 GPa, 890–960 °C. Coronitic textures in these mafic granulites indicate a near‐isothermal decompression path to 0.9 GPa, 800 °C. The Godfrey granite occurs to the north adjacent to the upper deck high P–T domain. Well‐preserved corona textures in the Godfrey granite constrain igneous crystallization and early metamorphism in the intermediate‐pressure granulite field (Opx + Pl) at 1.0 GPa, 775 °C followed by metamorphism in the high pressure granulite field (Grt + Cpx + Pl) at 1.2 GPa, 860 °C. U–Pb geochronology of zircon in upper deck mafic granulite yields evidence for events at both c. 2.5 Ga and c. 1.9 Ga. The oldest zircon dates are interpreted to constrain a minimum age for crystallization or early metamorphism of the protolith. A population of 1.9 Ga zircon in one mafic granulite is interpreted to constrain the timing of high P–T metamorphism. Titanite from the mafic granulites yields dates ranging from 1900 to 1894 Ma, and is interpreted to have grown along the decompression path, but still above its closure temperature, indicating cooling following the high P–T metamorphism from c. 960–650 °C in 4–10 Myr. Zircon dates from the Godfrey granite indicate a minimum crystallization age of 2.61 Ga, without any evidence for 1.9 Ga overgrowths. The data indicate that an early granulite facies event occurred at c. 2.55–2.52 Ga in the lower crust (c. 1.0 GPa), but at 1.9 Ga the upper deck underwent high P–T metamorphism, then decompressed to 0.9–1.0 GPa. Juxtaposition of the upper deck and Godfrey granite would have occurred after or been related to this decompression. In this model, the high P–T rocks are exhumed quickly following the high pressure metamorphism. This type of metamorphism is typically associated with collisional orogenesis, which has important implications for the Snowbird tectonic zone as a fundamental boundary in the Canadian Shield.  相似文献   

13.
ABSTRACT The northern Dabie terrane consists of a variety of metamorphic rocks with minor mafic-ultramafic blocks, and abundant Jurassic-Cretaceous granitic plutons. The metamorphic rocks include orthogneisses, amphibolite, migmatitic gneiss with minor granulite and metasediments; no eclogite or other high-pressure metamorphic rocks have been found. Granulites of various compositions occur either as lenses, blocks or layers within clinopyroxene-bearing amphibolite or gneiss. The palaeosomes of most migmatitic gneisses contain clinopyroxene; melanosomes and leucosomes are intimately intermingled, tightly folded and may have formed in situ. The granulites formed at about 800–830 °C and 10–14 kbar and display near-isothermal decompression P–T paths that may have resulted from crust thickened by collision. Plagioclase-amphibole coronae around garnets and matrix PI + Hbl assemblages from mafic and ultramafic granulites formed at about 750–800 °C. Partial replacement of clinopyroxene by amphibole in gneiss marks amphibolite facies retrograde metamorphism. Amphibolite facies orthogneisses and interlayered amphibolites formed at 680–750 °C and c. 6 kbar. Formation of oligoclase + orthoclase antiperthite after plagioclase took place in migmatitic gneisses at T ≤ 490°C in response to a final stage of retrograde recrystallization. These P–T estimates indicate that the northern Dabie metamorphic granulite-amphibolite facies terrane formed in a metamorphic field gradient of 20–35 °C km-1 at intermediate to low pressures, and may represent the Sino-Korean hangingwall during Triassic subduction for formation of the ultrahigh- and high-P units to the south. Post-collisional intrusion of a mafic-ultramafic cumulate complex occurred due to breakoff of the subducting slab.  相似文献   

14.
Interpretations based on quantitative phase diagrams in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2O indicate that mineral assemblages, zonations and microstructures observed in migmatitic rocks from the Beit Bridge Complex (Messina area, Limpopo Belt) formed along a clockwise P–T path. That path displays a prograde P–T increase from 600 °C/7.0 kbar to 780 °C/9–10 kbar (pressure peak) and 820 °C/8 kbar (thermal peak), followed by a P–T decrease to 600 °C/4 kbar. The data used to construct the P–T path were derived from three samples of migmatitic gneiss from a restricted area, each of which has a distinct bulk composition: (1) a K, Al‐rich garnet–biotite–cordierite–sillimanite–K‐feldspar–plagioclase–quartz–graphite gneiss (2) a K‐poor, Al‐rich garnet–biotite–staurolite–cordierite–kyanite–sillimanite–plagioclase–quartz–rutile gneiss, and (3) a K, Al‐poor, Fe‐rich garnet–orthopyroxene–biotite–chlorite–plagioclase–quartz–rutile–ilmenite gneiss. Preservation of continuous prograde garnet growth zonation demonstrates that the pro‐ and retrograde P–T evolution of the gneisses must have been rapid, occurring during a single orogenic cycle. These petrological findings in combination with existing geochronological and structural data show that granulite facies metamorphism of the Beit Bridge metasedimentary rocks resulted from an orogenic event during the Palaeoproterozoic (c. 2.0 Ga), caused by oblique collision between the Kaapvaal and Zimbabwe Cratons. Abbreviations follow Kretz (1983 ).  相似文献   

15.
The Seiland Igneous Province of the North Norwegian Caledonides consists of a suite of deep-seated rift-related magmatic rocks emplaced into paragneisses during late Precambrian to Ordovician time. In the south-eastern part of the province, contact metamorphism of the paragneisses and later reworking of intrusives and associated contact aureoles have resulted in the development of three successive metamorphic stages. The contact metamorphic assemblage (M1) Opx + Grt + Qtz + Pl + Kfs + Hc + Ilm ± Crd is preserved in xenolithic rafts of paragneiss within metagabbro. Geothermobarometric calculations yield 930-960d? C and 5-6.5 kbar for the contact metamorphism. M1 was followed by cooling, accompanied by strong shearing, formation of the gneiss foliation and recrystallization at intermediate-P granulite facies conditions (M2). Stable M2 phases are Cpx + Opx + Pl +Ilm ± Hbl in metagabbro and Grt ± Sil ± Opx + Kfs + Qtz + Pl ± Bt + Ilm in host paragneiss. The M2 conditions are estimated to 700-750d? C and 5-7 kbar. A subsequent pressure increase is recorded in the M3 episode, which is associated with recrystallization in narrow ductile shear zones and secondary growth on M2 minerals. M3 is defined by the assemblages Grt + Cpx ± Opx + Pl + Ru + Qtz in metagabbro, and Grt ± Ky + Qtz + Pl ± Kfs + Bt + Ru in host paragneiss. M3 conditions are estimated to 650-700d? C and 8-10 kbar. The substantial pressure increase related to the M2 → M3 transition is interpreted to be a result of (early?) Caledonian overthrusting. Chemical zoning in cordierite and biotite suggest rapid cooling following the M3 event. The proposed P-T-t evolution implies that the tectonic evolution of the Seiland Igneous Province was long (at least 330 Ma) and complex and involved initial rifting and extension followed by crustal thickening and compression.  相似文献   

16.
The Montagne Noire in the southernmost French Massif Central is made of an ENE‐elongated gneiss dome flanked by Palaeozoic sedimentary rocks. The tectonic evolution of the gneiss dome has generated controversy for more than half a century. As a result, a multitude of models have been proposed that invoke various tectonic regimes and exhumation mechanisms. Most of these models are based on data from the gneiss dome itself. Here, new constraints on the dome evolution are provided based on a combination of very low‐grade petrology, K–Ar geochronology, field mapping and structural analysis of the Palaeozoic western Mont Peyroux and Faugères units, which constitute part of the southern hangingwall of the dome. It is shown that southward‐directed Variscan nappe‐thrusting (D1) and a related medium‐P metamorphism (M1) are only preserved in the area furthest away from the gneiss dome. The regionally dominant pervasive tectono‐metamorphic event D2/M2 largely transposes D1 structures, comprises a higher metamorphic thermal gradient than M1 (transition low‐P and medium‐P metamorphic facies series) and affected the rocks between c. 309 and 300 Ma, post‐dating D1/M1 by more than 20 Ma. D2‐related fabrics are refolded by D3, which in its turn, is followed by dextral‐normal shearing along the basal shear zone of both units at c. 297 Ma. In the western Mont Peyroux and Faugères units, D2/M2 is largely synchronous with shearing along the southern dome margin between c. 311 and 303 Ma, facilitating the emplacement of the gneiss dome into the upper crust. D2/M2 also overlaps in time with granitic magmatism and migmatization in the Zone Axiale between c. 314 and 306 Ma, and a related low‐P/high‐T metamorphism at c. 308 Ma. The shearing that accompanied the exhumation of the dome therefore was synchronous with a peak in temperature expressed by migmatization and intrusion of melts within the dome, and also with the peak of metamorphism in the hangingwall. Both, the intensity of D2 fabrics and the M2 metamorphic grade within the hangingwall, decrease away from the gneiss dome, with grades ranging from the anchizone–epizone boundary to the diagenetic zone. The related zonation of the pre‐D3 metamorphic field gradients paralleled the dome. These observations indicate that D2/M2 is controlled by the exhumation of the Zone Axiale, and suggest a coherent kinematic between the different crustal levels at some time during D2/M2. Based on integration of these findings with regional geological constraints, a two‐stage exhumation of the gneiss dome is proposed: during a first stage between c. 316 and 300 Ma dome emplacement into the upper crust was controlled by dextral shear zones arranged in a pull‐apart‐like geometry. The second stage from 300 Ma onwards was characterized by northeast to northward extension, with exhumation accommodated by north‐dipping detachments and hangingwall basin formation along the northeastern dome margin.  相似文献   

17.
Highly anhydrous granulites from Río Santa Rosa in the eastern Sierras Pampeanas of Argentina occur as a thick lens surrounded by melt-depleted migmatites. Grt–Crd granulite composed of Qtz+Pl+Grt+Crd+Ilm±Spl±Ath±Phl is the dominant rock, whereas Opx–Grt granulite appears as discontinuous lenses in the center of the granulite body. Grt–Crd granulite includes blocks of metabasite that are relics of refractory lithologic beds interlayered in the supracrustal sequence. A distinct assemblage composed of Qtz, Pl, Grt, Crd, Opx, Spl, Crn, Sil, Bt, Phl, Ath, and Fe–Ti oxides in different combinations was generated in a reaction zone between Grt–Crd granulites and metabasites at peak metamorphism (850–900 °C and 7.6±0.5 kbar). The PT trajectory of Grt–Crd granulites suggests an early prograde garnet-forming stage followed by nearly isothermal decompression that caused garnet breakdown. Melting and melt draining accompanying garnet growth was active during heating (to 900 °C) at intermediate pressures (∼7.6 kbar). Peak PT estimates for Opx–Grt granulites are similar to those obtained with Grt–Crd granulites, which indicates that both granulites passed through the highest thermal stage. These results constrain the late evolution of Opx–Grt granulite to a garnet-consuming stage. Furthermore, they imply that garnet formation in Opx–Grt granulite happened at an early prograde PT trajectory. Garnet growth in Opx–Grt granulite cannot result from heating at high pressure, which would lead to an apparent contradiction in the prograde PT paths of the two granulites. This discrepancy may be solved by demonstrating that Opx–Grt granulite is the product of synmetamorphic mafic magmatism that was contaminated while cooling. The Río Santa Rosa granulites are inferred to have formed in a thickened crust in which mafic magmatic activity providing a local heat input.  相似文献   

18.
SHRIMP U–Pb zircon isotopic data have been obtained for four samples collected from granitoids and paragneisses in the Fraser Complex, a large composite metagabbroic body cropping out in the Mesoproterozoic Albany‐Fraser Orogen of Western Australia. The data are combined with the results of field mapping and petrographic analysis to revise a model for the geological evolution of the Fraser Complex. Three main phases of deformation are recognised in the Fraser Complex (D1–3) associated with two metamorphic events (M1–2), which involve four distinguishable episodes of recrystallisation. The first metamorphic event recognised (M1a/D1) reached granulite facies and is characterised by peak T ≥800°C and P = 600–700 MPa. A syn‐M1a/D1 charnockite has a U–Pb SHRIMP zircon age of 1301 ± 6 Ma, which also provides an estimate for the age of intrusion of Fraser Complex gabbroic rocks. Disequilibrium textures comprising randomly oriented minerals (M1b), consistent with approximately isobaric cooling, formed in various lithologies in the interval between D1 and D2. Post‐D1, pre‐D2 granites intruded at 1293 ± 8 Ma and were foliated during the D2 event, which culminated in the burial of the Fraser Complex to depths equivalent to 800–1000 MPa. Following burial, pyroxene granulites on the western boundary of the complex were pervasively retrogressed to garnet amphibolite (M2a). An igneous crystallisation age of 1288 ± 12 Ma from a syn‐M2a aplite dyke suggests that retrogression may have occurred only a few millions of years after the peak of granulite facies metamorphism. Exhumation to depths of less than ~400 MPa occurred within ~20–30 million years of the M2a pressure peak. Associated deformation (D3) is characterised by the development of mylonite and transitional greenschist/amphibolite facies disequilibrium textures (M2b).  相似文献   

19.
Alpine‐type orogenic garnet‐bearing peridotites, associated with quartzo‐feldspathic gneisses of a 140–115 Ma high‐pressure/ultra‐high‐pressure metamorphic (HP‐UHPM) terrane, occur in two regions of the Indonesian island of Sulawesi. Both exposures are located within NW–SE‐trending strike–slip fault zones. Garnet lherzolite occurs as <10 m wide fault slices juxtaposed against Miocene granite in the left‐lateral Palu‐Koro (P‐K) fault valley, and as 10–30 m wide, fault‐bounded outcrops juxtaposed against gabbros and peridotites of the East Sulawesi ophiolite within the right‐lateral Ampana fault in the Bongka river (BR) valley. Six evolutionary stages of recrystallization can be recognized in the peridotites from both localities. Stage I, the precursor spinel lherzolite assemblage, is characterized by Ol+Cpx+Opx±Prg‐Amp ± Spl±Rt±Phl, as inclusions within garnet cores. Stage II, the main garnet lherzolite assemblage, consists of coarse‐grained Ol+Opx+Cpx+Grt; whereas finer‐grained, neoblastic Ol+Opx+Grt+Cpx±Spl±Prg‐Amp±Phl constitutes stage III. Stages IV and V are manifest as kelyphites of fibrous Opx+Cpx+Spl in inner coronas, and Opx+Spl+Prg‐Amp±Ep in outer coronas around garnet, respectively. The final (greenschist facies) retrogressive stage VI is accompanied by recrystallization of Serp+Chl±Mag±Tr±Ni sulphides±Tlc±Cal. P–T conditions of the hydrated precursor spinel lherzolite stage I were probably about 750 °C at 15–20 kbar. P–T determinations of the peak stage IIc (from core compositions) display considerable variation for samples derived from different outcrops, with clustering at 26–38 kbar, 1025–1210 °C (P‐K & BR); 19–21 kbar, 1070–1090 °C (P‐K), and 40–48 kbar, 1205–1290 °C (BR). Stage IIr (derived from rim compositions) generally records decompression of around 4–12 kbar accompanied by cooling of 50–240 °C from the IIc peak stage. Stage III, which post‐dates a phase of ductile deformation, yielded 22±2 kbar at 750±25 °C (P‐K) and 16±2 kbar at 730±40 °C (BR). The granulite–amphibolite–greenschist decompression sequence reflects uplift to upper crustal levels from conditions of 647–862 °C at P=15 kbar (stage IV), through 580–635 °C at P=10–12 kbar (stage V) to 350–400 °C at P=4–7 kbar (stage VI), respectively, and is identical to the sequence recorded in associated granulite, gneiss and eclogite. Sulawesi garnet peridotites are interpreted to represent minor components of the extensive HP‐UHP (peak P >28 kbar, peak T of c. 760 °C) metamorphic basement terrane, which was recrystallized and uplifted in a N‐dipping continental collision zone at the southern Sundaland margin in the mid‐Cretaceous. The low‐T , low‐P and metasomatized spinel lherzolite precursor to the garnet lherzolite probably represents mantle wedge rocks that were dragged down parallel to the slab–wedge interface in a subduction/collision zone by induced corner flow. Ductile tectonic incorporation into the underthrust continental crust from various depths along the interface probably occurred during the exhumation stage, and the garnet peridotites were subsequently uplifted within the HP‐UHPM nappe, suffering a similar decompression history to that experienced by the regional schists and gneisses. Final exhumation from upper crustal levels was clearly facilitated by entrainment in Neogene granitic plutons, and/or Oligocene trans‐tension in deep‐seated strike–slip fault zones.  相似文献   

20.
《Gondwana Research》2001,4(3):337-357
The Precambrian basement of the Schirmacher Hills, Queen Maud Land, East Antarctica has evolved through multiple episodes of deformation and metamorphism. The rocks have suffered at least five phases of deformation. The imprint of the early deformation, D1, is preserved in some mafic isolated enclaves. The second and the third deformations (D2 and D3) are the dominant deformations of this area and produced isoclinal folds with transposition of earlier cleavages. The later deformations, D4 and D5, produced two sets of open, upright folds. Detailed mineralogical, textural, mineral chemical studies and geothermobarometry on khondalite, leptynite as well as different varieties of enderbite and mafic granulites have revealed that the rocks suffered two phases of metamorphism under granulite facies conditions followed by an amphibolite facies overprint. M1 is broadly coeval with D1 only in mafic granulite enclaves within enderbitic gneiss, and took place at ca. 10 Kbar, 900° C. The mafic magma, parental to the enclaves, probably crystallized at 11.2 Kbar. Following post-peak near isobaric cooling, the mafic granulites were transported to shallower levels by the enderbitic magma. M2, recorded in all the lithologies, occurred at ca. 8 Kbar, 800–850°C and synchronous with D2. Post peak M2 evolution of the rocks was characterized by a pressure — temperature drop of 2 Kbar and 200°C respectively and textures indicative of both cooling and decompression are preserved in different rocks. The relative timing of the two, however, cannot be worked out. M3, synchronous with D3, took place at 6 Kbar, 600–650°C and evolved hydrous fluid flux. Correlation with available structural and geochronological data shows that both M1 and M2 could be of Grenvillian event. M3 could well be Pan-African age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号