首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract– Chondrule compositions suggest either ferroan precursors and evaporation, or magnesian precursors and condensation. Type I chondrule precursors include granoblastic olivine aggregates (planetary or nebular) and fine‐grained (dustball) precursors. In carbonaceous chondrites, type I chondrule precursors were S‐free, while type II chondrules have higher Fe/Mn than in ordinary chondrites. Many type II chondrules contain diverse forsteritic relicts, consistent with polymict dustball precursors. The relationship between finer and coarser grained type I chondrules in ordinary chondrites suggests more evaporation from more highly melted chondrules. Fe metal in type I, and Na and S in type II chondrules indicate high partial pressures in ambient gas, as they are rapidly evaporated at canonical conditions. The occurrence of metal, sulfide, or low‐Ca pyroxene on chondrule rims suggests (re)condensation. In Semarkona type II chondrules, Na‐rich olivine cores, Na‐poor melt inclusions, and Na‐rich mesostases suggest evaporation followed by recondensation. Type II chondrules have correlated FeO and MnO, consistent with condensation onto forsteritic precursors, but with different ratios in carbonaceous chondrites and ordinary chondrites, indicating different redox history. The high partial pressures of lithophile elements require large dense clouds, either clumps in the protoplanetary disk, impact plumes, or bow shocks around protoplanets. In ordinary chondrites, clusters of type I and type II chondrules indicate high number densities and their similar oxygen isotopic compositions suggest recycling together. In carbonaceous chondrites, the much less abundant type II chondrules were probably added late to batches of type I chondrules from different O isotopic reservoirs.  相似文献   

2.
Abstract— In a search for evidence of evaporation during chondrule formation, the mesostases of 11 Bishunpur chondrules and melt inclusions in olivine phenocrysts in 7 of them have been analyzed for their alkali element abundances and K‐isotopic compositions. Except for six points, all areas of the chondrules that were analyzed had δ41K compositions that were normal within error (typically ±3%, 2s?). The six “anomalous” points are probably all artifacts. Experiments have shown that free evaporation of K leads to large 41K enrichments in the evaporation residues, consistent with Rayleigh fractionation. Under Rayleigh conditions, a 3% enrichment in δ41K is produced by ~12% loss of K. The range of L‐chondrite‐normalized K/Al ratios (a measure of the K‐elemental fractionation) in the areas analyzed vary by almost three orders of magnitude. If all chondrules started out with L‐chondrite‐like K abundances and the K loss occurred via Rayleigh fractionation, the most K‐depleted chondrules would have had compositions of up to δ41K ? 200%. Clearly, K fractionation did not occur by evaporation under Rayleigh conditions. Yet experiments and modeling indicate that K should have been lost during chondrule formation under currently accepted formation conditions (peak temperature, cooling rate, etc.). Invoking precursors with variable alkali abundances to produce the range of K/Al fractionation in chondrules does not explain the K‐isotopic data because any K that was present should still have experienced sufficient loss during melting for there to have been a measurable isotopic fractionation. If K loss and isotopic fractionation was inevitable during chondrule formation, the absence of K‐isotopic fractionation in Bishunpur chondrules requires that they exchanged K with an isotopically normal reservoir during or after formation. There is evidence for alkali exchange between chondrules and rim‐matrix in all unequilibrated ordinary chondrites. However, melt inclusions can have alkali abundances that are much lower than the mesostases of the host chondrules, which suggests that they at least remained closed since formation. If it is correct that some or all melt inclusions remained closed since formation, the absence of K‐isotopic fractionation in them requires that the K‐isotopic exchange took place during chondrule formation, which would probably require gas‐chondrule exchange. Potassium evaporated from fine‐grained dust and chondrules during chondrule formation may have produced sufficient K‐vapor pressure for gas‐chondrule isotopic exchange to be complete on the timescales of chondrule formation. Alternatively, our understanding of chondrule formation conditions based on synthesis experiments needs some reevaluation.  相似文献   

3.
Abstract– Evaporation rates of K2O, Na2O, and FeO from chondrule‐like liquids and the associated potassium isotopic fractionation of the evaporation residues were measured to help understand the processes and conditions that affected the chemical and isotopic compositions of olivine‐rich type IA and type IIA chondrules from Semarkona. Both types of chondrules show evidence of having been significantly or totally molten. However, these chondrules do not have large or systematic potassium isotopic fractionation of the sort found in the laboratory evaporation experiments. The experimental results reported here provide new data regarding the evaporation kinetics of sodium and potassium from a chondrule‐like melt and the potassium isotopic fractionation of evaporation residues run under various conditions ranging from high vacuum to pressures of one bar of H2+CO2, or H2, or helium. The lack of systematic isotopic fractionation of potassium in the type IIA and type IA chondrules compared with what is found in the vacuum and one‐bar evaporation residues is interpreted as indicating that they evolved in a partially closed system where the residence time of the surrounding gas was sufficiently long for it to have become saturated in the evaporating species and for isotopic equilibration between the gas and the melt. A diffusion couple experiment juxtaposing chondrule‐like melts with different potassium concentrations showed that the diffusivity of potassium is sufficiently fast at liquidus temperatures (DK > 2 × 10?4cm2 s?1 at 1650 °C) that diffusion‐limited evaporation cannot explain why, despite their having been molten, the type IIA and type IA chondrules show no systematic potassium isotopic fractionation.  相似文献   

4.
Abstract— The outer portions of many type I chondrules (Fa and Fs <5 mol%) in CR chondrites (except Renazzo and Al Rais) consist of silica‐rich igneous rims (SIRs). The host chondrules are often layered and have a porphyritic core surrounded by a coarse‐grained igneous rim rich in low‐Ca pyroxene. The SIRs are sulfide‐free and consist of igneously‐zoned low‐Ca and high‐Ca pyroxenes, glassy mesostasis, Fe, Ni‐metal nodules, and a nearly pure SiO2 phase. The high‐Ca pyroxenes in these rims are enriched in Cr (up to 3.5 wt% Cr2O3) and Mn (up to 4.4 wt% MnO) and depleted in Al and Ti relative to those in the host chondrules, and contain detectable Na (up to 0.2 wt% Na2O). Mesostases show systematic compositional variations: Si, Na, K, and Mn contents increase, whereas Ca, Mg, Al, and Cr contents decrease from chondrule core, through pyroxene‐rich igneous rim (PIR), and to SIR; FeO content remains nearly constant. Glass melt inclusions in olivine phenocrysts in the chondrule cores have high Ca and Al, and low Si, with Na, K, and Mn contents that are below electron microprobe detection limits. Fe, Ni‐metal grains in SIRs are depleted in Ni and Co relative to those in the host chondrules. The presence of sulfide‐free, SIRs around sulfide‐free type I chondrules in CR chondrites may indicate that these chondrules formed at high (>800 K) ambient nebular temperatures and escaped remelting at lower ambient temperatures. We suggest that these rims formed either by gas‐solid condensation of silica‐normative materials onto chondrule surfaces and subsequent incomplete melting, or by direct SiO(gas) condensation into chondrule melts. In either case, the condensation occurred from a fractionated, nebular gas enriched in Si, Na, K, Mn, and Cr relative to Mg. The fractionation of these lithophile elements could be due to isolation (in the chondrules) of the higher temperature condensates from reaction with the nebular gas or to evaporation‐recondensation of these elements during chondrule formation. These mechanisms and the observed increase in pyroxene/olivine ratio toward the peripheries of most type I chondrules in CR, CV, and ordinary chondrites may explain the origin of olivine‐rich and pyroxene‐rich chondrules in general.  相似文献   

5.
Abstract— Ordinary and carbonaceous chondrites of the lowest petrologic types were surveyed by X‐ray mapping techniques. A variety of metamorphic effects were noted and subjected to detailed analysis using electron microprobe, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and cathodoluminescence (CL) methods. The distribution of Cr in FeO‐rich olivine systematically changes as metamorphism increases between type 3.0 and type 3.2. Igneous zoning patterns are replaced by complex ones and Cr‐rich coatings develop on all grains. Cr distributions in olivine are controlled by the exsolution of a Cr‐rich phase, probably chromite. Cr in olivine may have been partly present as tetrahedrally coordinated Cr3+. Separation of chromite is nearly complete by petrologic type 3.2. The abundance of chondrules showing an inhomogeneous distribution of alkalis in mesostasis also increases with petrologic type. TEM shows this to be the result of crystallization of albite. Residual glass compositions systematically change during metamorphism, becoming increasingly rich in K. Glass in type I chondrules also gains alkalis during metamorphism. Both types of chondrules were open to an exchange of alkalis with opaque matrix and other chondrules. The matrix in the least metamorphosed chondrites is rich in S and Na. The S is lost from the matrix at the earliest stages of metamorphism due to coalescence of minute grains. Progressive heating also results in the loss of sulfides from chondrule rims and increases sulfide abundances in coarse matrix assemblages as well as inside chondrules. Alkalis initially leave the matrix and enter chondrules during early metamorphism. Feldspar subsequently nucleates in the matrix and Na re‐enters from chondrules. These metamorphic trends can be used to refine classification schemes for chondrites. Cr distributions in olivine are a highly effective tool for assigning petrologic types to the most primitive meteorites and can be used to subdivide types 3.0 and 3.1 into types 3.00 through 3.15. On this basis, the most primitive ordinary chondrite known is Semarkona, although even this meteorite has experienced a small amount of metamorphism. Allan Hills (ALH) A77307 is the least metamorphosed CO chondrite and shares many properties with the ungrouped carbonaceous chondrite Acfer 094. Analytical problems are significant for glasses in type II chondrules, as Na is easily lost during microprobe analysis. As a result, existing schemes for chondrule classification that are based on the alkali content of glasses need to be revised.  相似文献   

6.
Feldspar in ordinary chondrites (OCs) is often associated with thermal metamorphism, as a secondary mineral that forms from the crystallization of matrix and chondrule mesostasis. However, studies of feldspar in equilibrated OCs show that there is a range of plagioclase compositions within chondrules, some of which may be primary products of chondrule crystallization. It is important to recognize primary feldspar within chondrules because it can be used to help understand the secondary effects of thermal metamorphism and aqueous alteration. The presence of primary feldspar also provides important petrologic constraints on chondrule formation time scales. We undertook a careful study of Semarkona (LL3.00) and observed feldspar in 18% of chondrules. The feldspar is plagioclase covering a wide range of compositions (An2–An99) with little K‐feldspar component (<Or3). We show that plagioclase is a primary igneous phase, based on grain morphology and compositions consistent with growth from a melt having the bulk compositions of the host chondrules. Based on experimental studies, the presence of plagioclase suggests chondrules cooled slowly at temperatures close to the solidus. We also observed several secondary features consistent with the aqueous alteration. These features include zoning of Na and Ca in plagioclase, heterogeneity in plagioclase compositions in altered chondrules, development of porosity from the dissolution of chondrule glass, and alteration of glass to phyllosilicates. Alteration of major Al‐bearing phases, like plagioclase and glass, has important implications for interpretations of ages derived from Al‐Mg dating of chondrules, if they have been affected by secondary processes.  相似文献   

7.
Chondrule K7p from LL3.0 Semarkona consists of four nested barred‐olivine (BO) chondrules. The innermost BO chondrule (chondrule 1) formed by complete melting of an olivine‐rich dustball. After formation, the chondrule was incorporated into another olivine‐rich dustball. A second heating event caused this second dustball to melt; the mesostasis and some of the olivine in chondrule 1 were probably also melted at this time, but the chondrule 1 structure remained largely intact. At this stage, the object was an enveloping compound BO chondrule. This two‐step process of melting and dustball enshrouding repeated two more times. The different proportions of olivine and glass in chondrules 1–4 suggest that the individual precursor dustballs differed in the amounts of chondrule fragments they contained and the mineral proportions in those fragments. The final dustball (which ultimately formed chondrule 4) was somewhat more ferroan; after melting, crystallizing, and quenching, chondrule 4 contained olivine and glass with higher FeO and MnO contents than those of the earlier formed chondrules. Subsequent aqueous alteration on the LL parent body transformed the abundant metal blebs and stringers at the chondrule surface into carbide, iron oxide, and minor Ni‐rich metal. Portions of the mesostasis underwent dissolution, producing holes and adjacent blades of more resistant material. Much of the glass in the chondrule remained isotropic, even after minor hydration and leaching. The sharp, moderately lobate boundary between the extensively altered mesostasis and the isotropic glass represents the reaction front beyond which there was little or no glass dissolution.  相似文献   

8.
Abstract— In order to explore the origin of chondrules and the chondrites, the O isotopic compositions of nine olivine grains in seven chondrules from the primitive Semarkona LL3.0 chondrite have been determined by ion microprobe. The data plot in the same general region of the three-isotope plot as whole-chondrule samples from ordinary chondrites previously measured by other techniques. There are no significant differences between the O isotopic properties of olivine in the various chondrule groups in the present study, but there is a slight indication that the data plot at the 16O-rich end of the ordinary chondrite field. This might suggest that the mesostasis contains isotopically heavy O. The olivines in the present study have O isotopic compositions unlike the 16O-rich olivine grains from the Julesburg ordinary chondrite. Even though olivines in group A chondrules have several properties in common with them, the 16O-rich Julesburg olivines previously reported are not simply olivines from group A chondrules.  相似文献   

9.
Abstract— We have studied the relationship between bulk chemical compositions and relative formation ages inferred from the initial 26Al/27Al ratios for sixteen ferromagnesian chondrules in least equilibrated ordinary chondrites, Semarkona (LL3.0) and Bishunpur (LL3.1). The initial 26Al/27Al ratios of these chondrules were obtained by Kita et al. (2000) and Mostefaoui et al. (2002), corresponding to relative ages from 0.7 ± 0.2 to 2.4 ?0.4/+0.7 Myr after calcium‐aluminum‐rich inclusions (CAIs), by assuming a homogeneous distribution of 26Al in the early solar system. The measured bulk compositions of the chondrules cover the compositional range of ferromagnesian chondrules reported in the literature and, thus, the chondrules in this study are regarded as representatives of ferromagnesian chondrules. The relative ages of the chondrules appear to correlate with bulk abundances of Si and the volatile elements (Na, K, Mn, and Cr), but there seems to exist no correlation of relative ages neither with Fe nor with refractory elements. Younger chondrules tend to be richer in Si and volatile elements. Our result supports the result of Mostefaoui et al. (2002) who suggested that pyroxene‐rich chondrules are younger than olivine‐rich ones. The correlation provides an important constraint on chondrule formation in the early solar system. It is explained by chondrule formation in an open system, where silicon and volatile elements evaporated from chondrule melts during chondrule formation and recondensed as chondrule precursors of the next generation.  相似文献   

10.
Phosphorus zoning is observed in olivines in high‐FeO (type IIA) chondrules in H chondrites over the entire range of petrologic grades: H3.1–H6. Features in P concentrations such as oscillatory and sector zoning, and high P cores are present in olivines that are otherwise unzoned in the divalent cations. Aluminum concentrations are low and not significantly associated with P zoning in chondrule olivines. In highly unequilibrated H chondrites, phosphorus zoning is generally positively correlated with Cr. Atomic Cr:P in olivine is roughly 1:1 (3:1 for one zone in one olivine in RC 075), consistent with Cr3+ charge‐balancing P5+ substituting for Si4+. Normal igneous zonation involving the dominant chrome species Cr2+ was observed only in the LL3.0 chondrite Semarkona. In more equilibrated chondrites (H3.5–H3.8), Cr spatially correlated with P is occasionally observed but it is diffuse relative to the P zones. In H4–H6 chondrites, P‐correlated Cr is absent. One signature of higher metamorphic grades (≥H3.8) is the presence of near matrix olivines that are devoid of P oscillatory zoning. The restriction to relatively high metamorphic grade and to grains near the chondrule–matrix interface suggests that this is a response to metasomatic processes. We also observed P‐enriched halos near the chondrule–matrix interface in H3.3–H3.8 chondrites, likely reflecting the loss of P and Ca from mesostasis and precipitation of Ca phosphate near the chondrule surface. These halos are absent in equilibrated chondrites due to coarsening of the phosphate and in unequilibrated chondrites due to low degrees of metasomatism. Olivines in type IA chondrules show none of the P‐zoning ubiquitous in type IIA chondrules or terrestrial igneous olivines, likely reflecting sequestration of P in reduced form within metallic alloys and sulfides during melting of type IA chondrules.  相似文献   

11.
Abstract— Cooling rates of chondrules provide important constraints on the formation process of chondrite components at high temperatures. Although many dynamic crystallization experiments have been performed to obtain the cooling rate of chondrules, these only provide a possible range of cooling rates, rather than providing actual measured values from natural chondrules. We have developed a new model to calculate chondrule cooling rates by using the Fe‐Mg chemical zoning profile of olivine, considering diffusional modification of zoning profiles as crystals grow by fractional crystallization from a chondrule melt. The model was successfully verified by reproducing the Fe‐Mg zoning profiles obtained in dynamic crystallization experiments on analogs for type II chondrules in Semarkona. We applied the model to calculating cooling rates for olivine grains of type II porphyritic olivine chondrules in the Semarkona (LL3.00) ordinary chondrite. Calculated cooling rates show a wide range from 0.7 °C/h to 2400 °C/h and are broadly consistent with those obtained by dynamic crystallization experiments (10–1000 °C/h). Variations in cooling rates in individual chondrules can be attributed to the fact that we modeled grains with different core Fa compositions that are more Fe‐rich either because of sectioning effects or because of delayed nucleation. Variations in cooling rates among chondrules suggest that each chondrule formed in different conditions, for example in regions with varying gas density, and assembled in the Semarkona parent body after chondrule formation.  相似文献   

12.
Abstract— We carried out a petrologic and instrumental neutron activation analysis (INAA) whole chondrite compositional study of Grosvenor Mountains (GRO) 95577. GRO 95577 has many petrological similarities to the CR chondrites. Although the INAA data show patterns indicative of terrestrial weathering, some of the elemental abundances are consistent with a relationship to CR chondrites. The oxygen isotopic composition of GRO 95577 plots close to the Renazzo CR chondrite on the three‐isotope diagram. However, GRO 95577 is remarkable in that the chondrules are completely hydrated, consisting almost entirely of phyllosilicates, magnetite, and sulfides. Although GRO 95577 is completely hydrated, the initial chondrule textures are perfectly preserved. The chondrules are in sharp contact with the matrix, their fine‐grained rims are clearly visible, and the boundaries of the dark inclusions can be easily discerned. Many chondrules in GRO 95577 have textures suggestive of type I chondrules, but the phenocrysts have undergone perfect pseudomorphic replacement by yellow to brownish serpentine‐rich phyllosilicate, with sharp original crystal outlines preserved. The chondrule mesostasis is a green aluminous chlorite‐rich material, most likely a hydration product of the feldspathic mesostasis commonly found in anhydrous type I chondrules. Some chondrules contain magnetite spheres, most likely formed by oxidation of metal. We propose that GRO 95577 be classified as a CR1 chondrite, making it the first known CR1 chondrite and expanding the range of alteration conditions on the CR parent body.  相似文献   

13.
Abstract— We measured the sizes and textural types of 719 intact chondrules and 1322 chondrule fragments in thin sections of Semarkona (LL3.0), Bishunpur (LL3.1), Krymka (LL3.1), Piancaldoli (LL3.4) and Lewis Cliff 88175 (LL3.8). The mean apparent diameter of chondrules in these LL3 chondrites is 0.80 φ units or 570 μm, much smaller than the previous rough estimate of ~900 μm. Chondrule fragments in the five LL3 chondrites have a mean apparent cross‐section of 1.60 φ units or 330 μm. The smallest fragments are isolated olivine and pyroxene grains; these are probably phenocrysts liberated from disrupted porphyritic chondrules. All five LL3 chondrites have fragment/ chondrule number ratios exceeding unity, suggesting that substantial numbers of the chondrules in these rocks were shattered. Most fragmentation probably occurred on the parent asteroid. Porphyritic chondrules (porphyritic olivine + porphyritic pyroxene + porphyritic olivine‐pyroxene) are more readily broken than droplet chondrules (barred olivine + radial pyroxene + cryptocrystalline). The porphyritic fragment/chondrule number ratio (2.0) appreciably exceeds that of droplet‐textured objects (0.9). Intact droplet chondrules have a larger mean size than intact porphyritic chondrules, implying that large porphyritic chondrules are fragmented preferentially. This is consistent with the relatively low percentage of porphyritic chondrules within the set of the largest chondrules (57%) compared to that within the set of the smallest chondrules (81%). Differences in mean size among chondrule textural types may be due mainly to parent‐body chondrule‐fragmentation events and not to chondrule‐formation processes in the solar nebula.  相似文献   

14.
Abstract— At least 15% of the low‐FeO chondrules in Semarkona (LL3.0) have mesostases that are concentrically zoned in Na, with enrichments near the outer margins. We have studied zoned chondrules using electron microprobe methods (x‐ray mapping plus quantitative analysis), ion microprobe analysis for trace elements and hydrogen isotopes, cathodoluminescence imaging, and transmission electron microscopy in order to determine what these objects can tell us about the environment in which chondrules formed and evolved. Mesostases in these chondrules are strongly zoned in all moderately volatile elements and H (interpreted as water). Calcium is depleted in areas of volatile enrichment. Titanium and Cr generally decrease toward the chondrule surfaces, whereas Al and Si may either increase or decrease, generally in opposite directions to one another; Mn follows Na in some chondrules but not in others; Fe and Mg are unzoned. D/H ratios increase in the water‐rich areas of zoned chondrules. Mesostasis shows cathodoluminescence zoning in most zoned chondrules, with the brightest yellow color near the outside. Mesostasis in zoned chondrules appears to be glassy, with no evidence for devitrification. Systematic variations in zoning patterns among pyroxene‐ and olivine‐rich chondrules may indicate that fractionation of low‐ and high‐Ca pyroxene played some role in Ti, Cr, Mn, Si, Al, and some Ca zoning. But direct condensation of elements into hot chondrules, secondary melting of late condensates into the outer portions of chondrules, and subsolidus diffusion of elements into warm chondrules cannot account for the sub‐parallel zoning profiles of many elements, the presence of H2O, or elemental abundance patterns. Zoning of moderately volatile elements and Ca may have been produced by hydration of chondrule glass without devitrification during aqueous alteration on the parent asteroid. This could have induced structural changes in the glass allowing rapid diffusion and exchange of elements between altered glass and surrounding matrix and rim material. Calcium was mainly lost during this process, and other nonvolatile elements may have been mobile as well. Some unzoned, low‐FeO chondrules appear to have fully altered mesostasis.  相似文献   

15.
We present high‐precision measurements of the Mg isotopic compositions of a suite of types I and II chondrules separated from the Murchison and Murray CM2 carbonaceous chondrites. These chondrules are olivine‐ and pyroxene‐rich and have low 27Al/24Mg ratios (0.012–0.316). The Mg isotopic compositions of Murray chondrules are on average lighter (δ26Mg ranging from ?0.95‰ to ?0.15‰ relative to the DSM‐3 standard) than those of Murchison (δ26Mg ranging from ?1.27‰ to +0.77‰). Taken together, the CM2 chondrules exhibit a narrower range of Mg isotopic compositions than those from CV and CB chondrites studied previously. The least‐altered CM2 chondrules are on average lighter (average δ26Mg = ?0.39 ± 0.30‰, 2SE) than the moderately to heavily altered CM2 chondrules (average δ26Mg = ?0.11 ± 0.21‰, 2SE). The compositions of CM2 chondrules are consistent with isotopic fractionation toward heavy Mg being associated with the formation of secondary silicate phases on the CM2 parent body, but were also probably affected by volatilization and recondensation processes involved in their original formation. The low‐Al CM2 chondrules analyzed here do not exhibit any mass‐independent variations in 26Mg from the decay of 26Al, with the exception of two chondrules that show only small variations just outside of the analytical error. In the case of the chondrule with the highest Al/Mg ratio (a type IAB chondrule from Murchison), the lack of resolvable 26Mg excess suggests that it either formed >1 Ma after calcium‐aluminum‐rich inclusions, or that its Al‐Mg isotope systematics were reset by secondary alteration processes on the CM2 chondrite parent body after the decay of 26Al.  相似文献   

16.
Petrographic and chemical features of Allende ferromagnesian chondrules previously analyzed for oxygen and silicon isotopes by Clayton et al. (1983a) provide additional information on chondrule origin. Allende, like other carbonaceous chondrites, contains two chondrule populations, but one of these is represented by only one chondrule in this isotopically characterized set. All Allende chondrules fall along an isotopic mixing line, probably defined by an 16O-rich solid component and an isotopically heavier oxygen gaseous exchange component. Differences in the amounts of isotopic exchange for porphyritic and barred chondrules presumably resulted from varying degrees of melting. Those porphyritic chondrules containing abundant relict grains experienced the least isotopic exchange. Chondrules with high bulk FeO/(FeO + MgO) ratios apparently persisted longer as liquids and contain more of the exchange component. The distinct directions of oxygen isotopic exchange in chondrules from carbonaceous, ordinary, and enstatite chondrites indicate that each formed from different solid precursor materials. Silicon isotopic variations in Allende chondrules probably reflect evaporative loss of lighter isotopes; however, silicon loss is also controlled by chondrule sizes, which are unknown. Observed correlations point to the importance of kinetic factors in a gaseous nebula for chondrule genesis, and are not consistent with models that explain chondrules as mixtures of several solids with distinct oxygen and silicon isotopic compositions.  相似文献   

17.
We performed in situ oxygen three‐isotope measurements of chondrule olivine, pyroxenes, and plagioclase from the newly described CVRed chondrite NWA 8613. Additionally, oxygen isotope ratios of plagioclase in chondrules from the Kaba CV3OxB chondrite were determined to enable comparisons of isotope ratios and degree of alteration of chondrules in both CV lithologies. NWA 8613 was affected by only mild thermal metamorphism. The majority of oxygen isotope ratios of olivine and pyroxenes plot along a slope‐1 line in the oxygen three‐isotope diagram, except for a type II and a remolten barred olivine chondrule. When isotopic relict olivine is excluded, olivine, and low‐ and high‐Ca pyroxenes are indistinguishable regarding Δ17O values. Conversely, plagioclase in chondrules from NWA 8613 and Kaba plot along mass‐dependent fractionation lines. Oxygen isotopic disequilibrium between phenocrysts and plagioclase was caused probably by exchange of plagioclase with 16O‐poor fluids on the CV parent body. Based on an existing oxygen isotope mass balance model, possible dust enrichment and ice enhancement factors were estimated. Type I chondrules from NWA 8613 possibly formed at moderately high dust enrichment factors (50× to 150× CI dust relative to solar abundances); estimates for water ice in the chondrule precursors range from 0.2× to 0.6× the nominal amount of ice in dust of CI composition. Findings agree with results from an earlier study on oxygen isotopes in chondrules of the Kaba CV chondrite, providing further evidence for a relatively dry and only moderately high dust‐enriched disk in the CV chondrule‐forming region.  相似文献   

18.
We report on a suite of microchondrules from three unequilibrated ordinary chondrites (UOCs). Microchondrules, a subset of chondrules that are ubiquitous components of UOCs, commonly occur in fine‐grained chondrule rims, although may also occur within matrix. Microchondrules have a variety of textures: cryptocrystalline, microporphyritic, radial, glassy. In some cases, their textures, and in many cases, their compositions, are similar to their larger host chondrules. Bulk compositions for both chondrule populations frequently overlap. The primary material that composes many of the microchondrules has compositions that are pyroxene‐normative and is similar to low‐Ca‐pyroxene phenocrysts from host chondrules; primary material rarely resembles olivine or plagioclase. Some microchondrules are composed of FeO‐rich material that has compositions similar to the bulk submicron fine‐grained rim material. These microchondrules, however, are not a common compositional type and probably represent secondary FeO‐enrichment. Microchondrules may also be porous, suggestive of degasing to form vesicles. Our work shows that the occurrence of microchondrules in chondrule rims is an important constraint that needs to be considered when evaluating chondrule‐forming mechanisms. We propose that microchondrules represent melted portions of the chondrule surfaces and/or the melt products of coagulated dust in the immediate vicinity of the larger chondrules. We suggest that, through recycling events, the outer surfaces of chondrules were heated enough to allow microchondrules to bud off as protuberances and become entrained in the surrounding dusty environment as chondrules were accreting fine‐grained rims. Microchondrules are thus byproducts of cyclic processing of chondrules in localized environments. Their occurrence in fine‐grained rims represents a snapshot of the chondrule‐forming environment. We evaluate mechanisms for microchondrule formation and hypothesize a potential link between the emergence of type II chondrules in the early solar system and the microchondrule‐bearing fine‐grained rims surrounding type I chondrules.  相似文献   

19.
Abstract— Chondrules are generally believed to have lost most or all of their trapped noble gases during their formation. We tested this assumption by measuring He, Ne, and Ar in chondrules of the carbonaceous chondrites Allende (CV3), Leoville (CV3), Renazzo (CR2), and the ordinary chondrites Semarkona (LL3.0), Bishunpur (LL3.1), and Krymka (LL3.1). Additionally, metalsulfide‐rich chondrule coatings were measured that probably formed from chondrule metal. Low primordial 20Ne concentrations are present in some chondrules, while even most of them contain small amounts of primordial 36Ar. Our preferred interpretation is that‐in contrast to CAIs‐the heating of the chondrule precursor during chondrule formation was not intense enough to expel primordial noble gases quantitatively. Those chondrules containing both primordial 20Ne and 36Ar show low presolar‐diamond‐like 36Ar/20Ne ratios. In contrast, the metal‐sulfide‐rich coatings generally show higher gas concentrations and Q‐like 36Ar/20Ne ratios. We propose that during metalsilicate fractionation in the course of chondrule formation, the Ar‐carrying phase Q became enriched in the metal‐sulfide‐rich chondrule coatings. In the silicate chondrule interior, only the most stable Ne‐carrying presolar diamonds survived the melting event leading to the low observed 36Ar/20Ne ratios. The chondrules studied here do not show evidence for substantial amounts of fractionated solar‐type noble gases from a strong solar wind irradiation of the chondrule precursor material as postulated by others for the chondrules of an enstatite chondrite.  相似文献   

20.
Abstract— We have measured the δ57Fe of olivines in nine Chainpur chondrules. All are within error of normal (typically 2σ ≤ 1–2%0). Most of the chondules could not have lost more than ~20% of their FeO by Rayleigh evaporation and none can have lost more than ~61%. Yet, the range of Fo contents in these chondrules is Fo78–99.9. The isotopic compositions of the chondrules clearly demonstrate that, for instance, type I chondrules cannot form from type II chondrules by evaporation of FeO under Rayleigh conditions. The isotopic compositions also place constraints on the minimum cooling rates these chondrules could have experienced. These cooling rates must also be equal to or slower than those required to produce the chondrule textures. Assuming flash heating and evaporation rates like those measured in vacuum, the minimum cooling rates necessary to prevent detectable Fe isotopic fractionation via Rayleigh evaporation approach those needed to produce barred and porphyritic textures. The presence of hydrogen in the nebula, non‐linear cooling and other effects will all tend to increase the cooling rates required to prevent δ57Fe > 1–2%0, perhaps by as much as 1–2 orders of magnitude. The two most likely ways that the cooling rates required to prevent δ57Fe >1–2%0 can be kept below those needed to produce barred and porphyritic textures are (1) the pH2 in the nebula was low enough to keep evaporation rates close to those in vacuum, or (2) back reaction of chondrules with Fe in the gas suppressed isotopic fractionation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号