首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 463 毫秒
1.
As the core block of the East Gondwana Land, the East Antarctic Shield was traditionally thought, before 1992, as an amalgamation of a number of Archaean-Paleoproterozoic nuclei, be-ing welded by Grenville aged mobile belts during 1400—900 Ma, while the …  相似文献   

2.
Granulites in the Dabie Mountains are mainly ob-served in northern Dabie complex zone. Huangtuling intermediate-acid granulites and Huilanshan mafic granulites in the Luotian dome are two famous out-crops (Fig. 1)[1]. It is important to know the genesis and metamorphic age of these granulites for under-standing tectonic evolution and exhumation history of the Dabie Mountains. Previous geochemical and geo-chronological work[2―8]1) on the Huangtuling granu-lites indicates that their protoli…  相似文献   

3.
Geology of the Grove Mountains in East Antarctica   总被引:2,自引:0,他引:2  
Grove Mountains consists mainly of a series of high-grade (upper amphibolite to granulite facies) metamorphic rocks, including felsic granulite, granitic gneiss, mafic granulite lenses and charnockite, intruded by late tectonic gneissic granite and post-tectonic granodioritic veins. Geochemical analysis demonstrates that the charnockite, granitic gneiss and granite belonged to aluminous A type plutonic rocks, whereas the felsic and mafic granulite were from supracrustal materials as island-arc, oceanic island and middle oceanic ridge basalt. A few high-strained shear zones disperse in regional stable sub-horizontal foliated metamorphic rocks. Three generations of ductile deformation were identified, in which D1 is related to the event before Pan-African age, D2 corresponds to the regional granulite peak metamorphism, whereas D3 reflects ductile extension in late Pan-African orogenic period. The metamorphic reactions from granitic gneiss indicate a single granulite facies event, but 3 steps from mafic granulite, with P-T condition of M1 800°C, 9.3×105 Pa; M2 800–810°C, 6.4 × 105 Pa; and M3 650°C have been recognized. The U-Pb age data from representative granitic gneiss indicate (529±14) Ma of peak metamorphism, (534±5) Ma of granite emplacement, and (501±7) Ma of post-tectonic granodioritic veins. All these evidences suggest that a huge Pan-African aged mobile belt exists in the East Antarctic Shield extending from Prydz Bay via Grove Mountains to the southern Prince Charles Mountains. This orogenic belt could be the final suture during the Gondwana Land assemblage.  相似文献   

4.
Whole-rock samples of metamorphic and granitic cobbles and boulders from the Kamiaso conglomerate in central Japan yield well-defined RbSr isochron ages of 1985 ± 25 my and 1820 ± 40 my. These ages are the oldest yet obtained for rocks in the Japanese Islands, and provide key evidence for the middle Precambrian metamorphic and igneous events in the provenance of these rocks. The age of 1985 my defined by six samples of quartzo-feldspathic gneiss may be the time of emplacement of the original granitic rocks. The 1820 my age indicates the time of extensive regional metamorphism and igneous activity. Precambrian episodes in the provenance of the Kamiaso conglomerate are summarized as follows: (1) 2000 my — formation of granitic rocks, (2) 1800–1600 my — high grade metamorphism accompanied by igneous activity, (3) 1200–1000 my — some significant thermal event.Judging from rock types and geochronological data, it can be said that metamorphic rocks in the Kamiaso conglomerate are remarkably similar to those of the Matenrei and Nangnim systems in North Korea. The Precambrian complex from which the metamorphic and granitic rocks were derived, was exposed to the north not far from the present site of the Kamiaso conglomerate in the late Paleozoic time, and it was probably a part of the large Precambrian continent in East Asia.  相似文献   

5.
Abstract : The Hidaka metamorphic belt consists of an island-arc assembly of lower to upper crustal rocks formed during early to middle Paleogene time and exhumed during middle Paleogene to Miocene time. The tectonic evolution of the belt is divided into four stages, D0rs, D1, D2rs, and D3, based on their characteristic deformation, metamorphism, and igneous activity. The premetamorphic and igneous stage (D0) involves tectonic thickening of an uppermost Cretaceous and earliest Tertiary accretionary complex, including oceanic materials in the lower part of the complex. D1 is the stage of prograde metamorphism with increasing temperatures at a constant pressure during an early phase, and with a slight decrease of pressure at the peak metamorphic phase, accompanying flattening of metamorphic rocks and intrusions of mafic to intermediate igneous rocks. At the peak, incipient partial melting of pelitic and psammitic gneisses took place in the amphibolite–granulite facies transition zone, the melt and residuals cutting the foliations formed by flattening. In the deep crust, large amounts of S-type tonalite magma formed by crustal anatexis, intruded into the granulite facies gneiss zone and also into the upper levels of the metamorphic sequence during the subsequent stage. During D1 stage, mafic and intermediate magmas supplied and transported heat to form the arc-type crust and at the same time, the magmatic underplating caused extensional doming of the crust, giving rise to flattening and vertical uplifting of the crustal rocks. D2 stage is characterized by subhorizontal top-to-the-south displacement and thrusting of lower to upper crustal rocks, forming a basal detachment surface (décollement) and duplex structures associated with intrusions of S-type tonalite. Deformation structures and textures of high-temperature mylonites formed along the décollement, as well as the duplex structures, show that the D2 stage movement occurred under a N-S trending compressional tectonic regime. The depth of intra-crustal décollement in the Hidaka belt was defined by the effect of multiplication of two factors, the fraction of partial melt which increases downward, and the fluid flux which decreases downward. The crustal décollement, however, might have extended to the crust-mantle boundary and/or to the lithosphere and asthenosphere boundary. The subhorizontal movement was transitional to a dextral-reverse-slip (dextral transpression) movement accompanied by low-temperature mylonitization with retrograde metamorphism, the stage defined as D3. The crustal rocks from the basal décollement to the upper were tilted eastward on the N–S axis and exhumed during the D3 stage. During D2 and D3 stages, the intrusion of crustal acidic magmas enhanced the crustal deformation and exhumation in the compressional and subsequent transpressional tectonic regime.  相似文献   

6.
A garnet-pyroxene bearing amphibolite as a xenolith hosted by the Mesozoic igneous rocks from Xuzhou-Suzhou area was dated by zircon SHRIMP U-Pb method, which yields a metamorphic age of 1918 ± 56 Ma. In addition, the zircons from a garnet amphibolite as a lens interbedded with marble in the Archean metamorphic complex named Wuhe group in the Bengbu uplift give a metamorphic U-Pb age of 1857 ± 19 Ma, and the zircons from Shimenshan deformed granite in the eastern margin of the Bengbu uplift give a magma crystallization U-Pb age of 2054 ± 22 Ma. Both the Xuzhou-Suzhou area and Bengbu uplift are located in the southeastern margin of the North China Craton. Therefore, these ages indicate that there is a Paleoproterozoic tectonic zone in the southeastern margin of the North China Craton, and its metamorphic and magmatic ages are consistent with those of the other three Paleoproterozoic tectonic zones in the North China Craton. In view of the large scale sinistral strike-slip movement occurred at the Mesozoic along the Tan-Lu fault zone, the position of the eastern Shandong area, which is a south section of the Paleoproterozoic Jiao-Liao-Ji Belt, was correlated to Xuzhou-Suzhou-Bengbu area prior to movement of the Tan-Lu fault zone. This suggests that the Xuzhou-Suzhou-Bengbu Paleoproterozoic tectonic zone might be a southwest extension of the Paleoproterozoic Jiao-Liao-Ji Belt. Supported by National Natural Science Foundation of China (Grant No. 40634023)  相似文献   

7.
The Central Tianshan Tectonic Zone (CTTZ) is anarrow domain between an early Paleozoic southernTianshan passive continental margin and a late Paleo-zoic northern Tianshan arc zone, which is character-ized by the presence of numerous Precambrian meta-morphic basement blocks. Proterozoic granitoidgneisses and metamorphic sedimentary rocks,namely Xingxingxia and Kawabulag and Tianhugroups, are the most important lithological assem-blages in these metamorphic basement blocks, and alittle of …  相似文献   

8.
Hofmann[1] found that the depleted mantle (DM) and bulk continental crust (BCC) are simply compen-satory in terms of many elements and elemental ratios. High-field-strength elements (HFSE) (e.g., Zr, Hf, Nb, Ta and Ti) are immobile and thus useful to track the primary features of the ancient mafic volcanics. It has been long considered that Nb-Ta behave as identical twins during magmatic processes, based on their matching atomic radii and valence state and hence coherent geochemical affi…  相似文献   

9.
Microscopic shear zones have been found in the groundmass of glassy rocks of a Miocene submarine dacite dome in southwest Japan. Similar textures have been reported previously but only in dykes. These textures give a valuable insight into the deformation of the dome during its emplacement by recording the orientations of the principal strains. Detailed textural analysis indicates that the microshear zones formed as a result of flattening and stretching of the magma simultaneously with quenching. Measured stretching directions are near-parallel suggesting the magma flowed in one dominant direction rather than in a radial pattern. The strain is believed to also be influenced by high magma pressure inside the dome being imposed on the high viscosity outer part of the dome. Present address: Faculty of Resource Science and Management, University of New England-Northern Rivers. P. O.Box 157 Lismore NSW 2480 Australia  相似文献   

10.
The Har?it granitoid in northeastern Turkey, comprises four separate granite units that are apparently unfoliated. The Har?it granitoid was investigated here by using microstructural, petrofabric and anisotropy of magnetic susceptibility (AMS) data. The structural data of the granitoid were found to be highly compatible with the zonation recognized from AMS measurements. The orientation of magnetic fabrics within the granite units indicates that tectonic deformation might have occurred coevally with the magmatic emplacement of the intrusion. When we evaluated the manners on the scale of the pluton that the disruption took place in the form of uplifting, probably related to a rapid migration of the volcanic front and the documented change from deep sea sedimentation predominant until late Cretaceous to shallower environments during the Paleocene. The possible tectonic control of fault systems on the ascent and emplacement of the granitic magma in the study area, however, cannot be completely ruled out because the Har?it granitoid is situated at or very near the NAF systems in northern Anatolia. In any case, the intrusion is clearly discordant to the regional deformational features formed during the collisional events between the Eurasia and Anatolia plates in northern Turkey.  相似文献   

11.
The structural mapping and section study indicate that the "greenstone belts" in the southern to central parts of Hengshan were intensively sheared and transposed mafic dyke swarm,which originally intruded into the Neoarchean grey gneiss and high-pressure granulite terrain(HPGT).The HPGT is characterized by flat-dipping structures,to the south it became steep and was cut by the Dianmen mafic dyke swarm.After high-pressure granulite-facies metamorphic event,the mafic dyke swarm occurred,and was associated with the extensional setting and reworked by the late strike-slip shearing.The zircon age dating proves that the Dianmen mafic dyke swarm was emplaced during the period between 2499±4 Ma and 2512±3 Ma,followed by late tectonothermal reworking.The Dianmen mafic dyke swarm further documents the extensional episode in the central to northern parts of North China Craton(NCC),providing the important constraint for the limit between Archean and Proterozoic and correlation between NCC and other cratonic blocks of the world.  相似文献   

12.
冀东陆壳结构的岩石学模型   总被引:7,自引:4,他引:7       下载免费PDF全文
吴宗絮  郭才华 《地震地质》1991,13(4):369-376
冀东地区的古老变质岩系是一个出露的大陆地壳断面。根据变质岩系的变质相、亚相的研究和地质温压计计算的结果推定的深度,并结合地球物理测深资料,以及笔者测定和前人的岩石高压下波速实验资料提出了本区大陆地壳结构的岩石学模型。下地壳由麻粒岩相岩石组成,上部为角闪石麻粒岩亚相的中性成分的麻粒岩,下部为辉石麻粒岩亚相的基性成分的麻粒岩构成,底部夹有透镜状蛇纹石化橄榄岩以及紫苏花岗岩。中地壳主要由高角闪岩相的中性-中酸性成分的片麻岩、片岩构成,顶部为低角闪岩相的片麻岩、片岩,广泛发育英云闪长岩和花岗闪长岩岩体,含隙间高温流体相(fluid phase),形成高导-低速层。上地壳主要为绿片岩相(部分低角闪岩相)的板岩、千枚岩、片岩、变粒岩以及花岗岩组成,顶部为沉积盖层  相似文献   

13.
The structural mapping and section study indicate that the “greenstone belts” in the southern to central parts of Hengshan were intensively sheared and transposed mafic dyke swarm, which originally intruded into the Neoarchean grey gneiss and high-pressure granulite terrain (HPGT). The HPGT is characterized by flat-dipping structures, to the south it became steep and was cut by the Dianmen mafic dyke swarm. After high-pressure granulite-facies metamorphic event, the mafic dyke swarm occurred, and was associated with the extensional setting and reworked by the late strike-slip shearing. The zircon age dating proves that the Dianmen mafic dyke swarm was emplaced during the period between 2499±4 Ma and 2512±3 Ma, followed by late tectonothermal reworking. The Dianmen mafic dyke swarm further documents the extensional episode in the central to northern parts of North China Craton (NCC), providing the important constraint for the limit between Archean and Proterozoic and correlation between NCC and other cratonic blocks of the world.  相似文献   

14.
Fu-Yuan  Wu  Jin-Hui  Yang  Ching-Hua  Lo  Simon A.  Wilde  De-You  Sun  Bor-Ming  Jahn 《Island Arc》2007,16(1):156-172
Abstract The tectonic setting of the Eastern Asian continental margin in the Jurassic is highly controversial. In the current study, we have selected the Heilongjiang complex located at the western margin of the Jiamusi Massif in northeastern China for geochronological investigation to address this issue. Field and petrographic investigations indicate that the Heilongjiang complex is composed predominately of granitic gneiss, marble, mafic‐ultramafic rocks, blueschist, greenschist, quartzite, muscovite‐albite schist and two‐mica schist that were tectonically interleaved, indicating they represent a mélange. The marble, two‐mica schist and granitic gneiss were most probably derived from the Mashan complex, a high‐grade gneiss complex in the Jiamusi Massif with which the Heilongjiang Group is intimately associated. The ultramafic rocks, blueschist, greenschist and quartzite (chert) are similar to components in ophiolite. The sensitive high mass‐resolution ion microprobe U‐Pb zircon age of 265 ± 4 Ma for the granitic gneiss indicates that the protolith granite was emplaced coevally with Permian batholiths in the Jiamusi Massif. 40Ar/39Ar dating of biotite and phengite from the granitic gneiss and mica schist yields a late Early Jurassic metamorphic age between 184 and 174 Ma. Early components of the Jiamusi Massif, including the Mashan complex, probably formed part of an exotic block from Gondwana, affected by late Pan‐African orogenesis, and collided with the Asian continental margin during the Early Jurassic. Subduction of oceanic crust between the Jiamusi block and the eastern part of the Central Asian Orogenic Belt resulted in the formation of a huge volume of Jurassic granites in the Zhangguangcai Range. Consequently, the collision of the Jiamusi Massif with the Central Asian Orogenic Belt to the west can be considered as the result of circum‐Pacific accretion, unrelated to the Central Asian Orogenic Belt. The widespread development of Jurassic accretionary complexes along the Asian continental margin supports such an interpretation.  相似文献   

15.
The structures and microstructures of the Takanuki and Hitachi areas in the Abukuma massif, Northeast Japan are described. In the Takanuki area, the basic Gosaisho series thrusts the pelitic Takanuki ones in a HP metamorphic context. The nappe structure is afterwards refolded by a migmatitic dome: the Samegawa dome, in a HT metamorphic context. Microtectonic analysis shows that the nappe was transported from south to north along the stretching lineation. Geometric features suggest that the Samegawa dome was emplaced by diapirism. The role of the thrust surface as an instable interface promoting the doming is emphasized. The Hitachi metamorphic rocks composed of basic schist, limestone and sandstone shist thrust the pelitic rocks of the western Hitachi gneisses. As for the Takanuki area, the thrusting occurred in ductile synmetamorphic conditions with a north or northeastward displacement. Owing to lithologic, petrologic, structural similitudes, the nappe of the Hitachi metamorphic rocks and that of the Gosaisho series are unified into a unique nappe with a northward motion. The emplacement occurred between late Permian and late Cretaceous likely in late Jurassic. The allochthonous units of the Abukuma massif are correlated with the Green Schist nappe described in Southwest Japan, since they are surrounded by the same zones, namely the Tanba zone and the Kurosegawa-Kitakami one. Moreover both in Southwest and Northeast Japan, the emplacement of the Green Schist nappes is due to a shear deformation inducing rotational structures along the stretching lineation indicating the same sense of transport, that is eastward in Southwest Japan and northward in Northeast Japan, owing to the late bending of the Japanese Islands. The late Jurassic nappe structure is obliquely overprinted by a HT metamorphism, Ryoke in Southwest Japan, Abukuma in Northeast Japan, and afterwards cut by late faults as the Median Tectonic Line or the Tanakura fault, giving rise to the present complexity.  相似文献   

16.
It is proposed that fault textures in two dissected rhyolitic conduits in Iceland preserve evidence for shallow seismogenic faulting within rising magma during the emplacement of highly viscous lava flows. Detailed field and petrographic analysis of such textures may shed light on the origin of long-period and hybrid volcanic earthquakes at active volcanoes. There is evidence at each conduit investigated for multiple seismogenic cycles, each of which involved four distinct evolutionary phases. In phase 1, shear fracture of unrelaxed magma was triggered by shear stress accumulation during viscous flow, forming the angular fracture networks that initiated faulting cycles. Transient pressure gradients were generated as the fractures opened, which led to fluidisation and clastic deposition of fine-grained particles that were derived from the fracture walls by abrasion. Fracture networks then progressively coalesced and rotated during subsequent slip (phase 2), developing into cataclasite zones with evidence for multiple localised slip events, fluidisation and grain size reduction. Phase 2 textures closely resemble those formed on seismogenic tectonic faults characterised by friction-controlled stick-slip behaviour. Increasing cohesion of cataclasites then led to aseismic, distributed ductile deformation (phase 3) and generated deformed cataclasite zones, which are enriched in metallic oxide microlites and resemble glassy pseudotachylite. Continued annealing and deformation eventually erased all structures in the cataclasite and formed microlite-rich flow bands in obsidian (phase 4). Overall, the mixed brittle–ductile textures formed in the magma appear similar to those formed in lower crustal rocks close to the brittle–ductile transition, with the rheological response mediated by strain-rate variations and frictional heating. Fault processes in highly viscous magma are compared with those elsewhere in the crust, and this comparison is used to appraise existing models of volcano seismic activity. Based on the textures observed, it is suggested that patterns of long-period and hybrid earthquakes at silicic lava domes reflect friction-controlled stick-slip movement and eventual healing of fault zones in magma, which are an accelerated and smaller-scale analogue of tectonic faults.Editorial responsibility: J. Stix  相似文献   

17.
A ground gravity survey over the Bondy gneiss complex and its mineralized iron oxide- and copper-rich hydrothermal system(s) in the Grenville Province of SW Quebec was undertaken to aid mineral exploration in mapping subsurface intrusions. Several kilometric-scale positive Bouguer anomalies were identified that coincide with outcropping mafic and intermediate intrusive rocks of the post peak-metamorphic, 1.17-1.16 Ga mafic to intermediate Chevreuil suite intrusions and a 1.09-1.07 Ga Rolleau ultramafic stock. An additional 4 × 3 kilometre positive gravity anomaly indicates a mafic body underlies part of the metamorphosed hydrothermal system in the area of magnetite, pyrite, pyrrhotite, and chalcopyrite mineralization. Advanced argilic alteration associated with sulphide enrichment here is however indicative of an epithermal system with a felsic intrusion fluid source. As a felsic intrusion cannot explain the positive Bouguer gravity anomaly both felsic and mafic bodies must be present beneath the mineralized zone. Our preferred interpretation based on integrating gravity data and 2D forward gravity modelling with the results of field and geochemical studies is that this anomaly corresponds to a ca. 500 m deep mafic 1.17-1.16 Ga Chevreuil suite pluton that may have provided the source for hydrothermal fluids associated with late ductile shear- and fault-related mineralization or remobilization of early mineralization associated with a felsic pluton into late structures. This interpretation is compatible with gabbro xenoliths in the 1.07 Ga Rivard lamprophyre dyke on the NW margin of the gravity anomaly that bear significant similarities with those of the Chevreuil intrusive suite. The presence of both early felsic and late mafic intrusions beneath a group of three mineral occurrences in the Bondy gneiss complex strengthens their prospectivity in comparison to other mineral occurrences in the area. That early, pre-metamorphic mineralization was upgraded late in the tectonothermal evolution during a subsequent igneous and deformation event agrees with interpretations of other IOCG-style deposits in the Lac Manitou area of the eastern Grenville Province.  相似文献   

18.
The Spurr volcanic complex (SVC) is a calc-alkaline, medium-K, sequence of andesites erupted over the last 250000 years by the eastern-most currently active volcanic center in the Aleutian arc. The ancestral Mt. Spurr was built mostly of andesites of uniform composition (58%–60% SiO2), although andesite production was episodically interrupted by the introduction of new batches of more mafic magma. Near the end of the Pleistocene the ancestral Mt. Spurr underwent avalanche caldera formation, resulting in the production of a volcanic debris avalanche with overlying ashflows. Immediately afterward, a large dome (the present Mt. Spurr) formed in the caldera. Both the ash flows and dome are made of acid andesite more silicic (60%–63% SiO2) than any analyzed lavas from the ancestral Mt. Spurr, yet contain olivine and amphibole xenocrysts derived from more mafic magma. The mafic magma (53%–57% SiO2) erupted during and after dome emplacement from a separate vent only 3 km away. Hybrid block-and-ash flows and lavas were also produced. The vents for the silicic and mafic lavas are in the center and in the breach of the 5-by-6-km horseshoe-shaped caldera, respectively, and are less than 4 km apart. Late Holocene eruptive activity is restricted to Crater Peak, and magmas continue to be relatively mafic. SVC lavas are plag ±ol+cpx±opx+mt bearing. All postcaldera units contain small amounts of high-Al2O3, high-alkali amphibole, and proto-Crater Peak and Crater Peak lavas contain abundant pyroxenite and anorthosite clots presumably derived from an immediately preexisting magma chamber. Ranges of mineral chemistries within individual samples are often nearly as large as ranges of mineral chemistries throughout the SVC suite, suggesting that magma mixing is common. Elevated Sr, Pb, and O isotope ratios and trace-element systematics incompatible with fractional crystallization suggest that a significant amount of continental crust from the upper plate has been assimilated by SVC magmas during their evolution.  相似文献   

19.
During the geological survey of the metamorphic rocks in Xingning-Wuhua region on the western side of Wuyi Mountain, South China, we discovered the Neoproterozoic rhyolite and rhyolitic greywacke for the first time that outcrop in the Proterozoic metamorphic rocks near Jingnan Town of Xingning County, eastern Guangdong Province. A systematic research on petrology, geochemistry and geochronology of rhyolitic rocks was conducted to understand their tectonic setting and formation age. The Jingnan rhyolite is interbedded with a coeval greywacke, with a total thickness of 60 m; both rhyolite and greywacke display a similar folding and metamorphic pattern. Meta-rhyolite consists of groundmass and phenocrystals including sanidine, orthoclase, and quartz with distinct undulose extinction; the groundmass has been recrystallized into fine-grain feldspar, quartz and sericite aggregation. Meta-greywacke is composed of crystallinoclastic grains (sanidine, orthoclase, quartz and oligoclase) and clay groundmass. Zircon grains used for the SHRIMP U-Pb analysis are light brown-colored and euhedral or subeuhedral. Dating data suggest two age groups; eight grains of magmatype zircon with an idiomorphic form yield an age of 972±8 Ma, and the other seven weakly corroded grains of zircon with euhedral to subeuhedral shape construct an average age of 1097±11 Ma, which were captured from older rocks by an uplifting magma, implying that a late Mesoproterozoic basement exists in the Nanling region. In addition, one Paleoproterozoic age, 2035±11 Ma, is obtained from a rounded detrital zircon, indicating that a Paleoproterozoic thermal event took place in the South China. Geochemically, the Jingnan rhyolitic rocks are characterized by high K2O content, intermediate Al2O3 content, with the ACNK value 0.98―1.11, and belonging to high-K alkaline series. They are rich in ΣREE, Rb, Th and Ce, depleted in Ba, Sr, Eu, Ti, P and Nb-Ta, and with moderate negative Eu and Sr anomalies. These features indicate that the Jingnan volcanic rocks have an affinity of continental arc that is similar to those of acid volcanic rocks in the SE-China Coastal Region, in other words, a Neoproterozoic tectonomagma event might have taken place in the western Wuyi region, leading to an eruption of high-K calc-alkaline granitic magma.  相似文献   

20.
The Pollara tuff-ring resulted from two explosive eruptions whose deposits are separated by a paleosol 13 Ka old. The oldest deposits (LPP, about 0.2 km3) consist of three main fall units (A, B, C) deposited from a subplinian column whose height (7–14 km) increased with time from A to C, as a consequence of the increased magma discharge rate during the eruption (1–8x106 kg/s). A highly variable juvenile population characterizes the eruption. Black, dense, highly porphyritic, mafic ejecta (SiO2=50–55%) almost exclusively form A deposits, whereas grey, mildly vesiculated, mildly porphyritic pumice (SiO2=56–67%) and white, highly vesiculated, nearly aphyric pumice (SiO2=66–71%) predominate in B and C respectively. Mafic cumulates are abundant in A, while crystalline lithic ejecta first appear in B and increase upward. The LPP result from the emptying of an unusual and unstable, compositionally zoned, shallow magma chamber in which high density mafic melts capped low density salic ones. Evidence of the existence of a short crystal fractionation series is found in the mafic rocks; the andesitic pumice results from complete blending between rhyolitic and variously fractionated mafic melts (salic component up to 60 wt%), whereas bulk dacitic compositions mainly result from the presence of mafic xenocrysts within rhyolitic glasses. Viscosity and composition-mixing diagrams show that blended liquids formed when the visosities of the two end members had close values. The following model is suggested: 1. A rhyolitic magma rising through the metamorphic basement enterrd a mafic magma chamber whose souter portions were occupied by a highly viscous, mafic crystal mush. 2. Under the pressure of the rhyolitic body the nearly rigid mush was pushed upwards and mafic melts were squeezed against the walls of the chamber, beginning roof fracturing and mingling with silicic melts. 3. When the equilibrium temperature was reached between mafic and silicic melts, blended liquids rapidly formed. 4. When fractures reached the surface, the eruption began by the ejection of the mafic melts and crystal mush (A), followed by the emission of variously mingled and blended magmas (B) and ended by the ejection of nearly unmixed rhyolitic magma (C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号