首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A statistically-based low-level cloud parameterization scheme is introduced, modified, and applied in the Flexible coupled General Circulation Model (FGCM-0). It is found that the low-level cloud scheme makes improved simulations of low-level cloud fractions and net surface shortwave radiation fluxes in the subtropical eastern oceans off western coasts in the model. Accompanying the improvement in the net surface shortwave radiation fluxes, the simulated distribution of SSTs is more reasonably asymmetrical about the equator in the tropical eastern Pacific, which suppresses, to some extent, the development of the double ITCZ in the model. Warm SST biases in the ITCZ north of the equator are more realistically reduced, too. But the equatorial cold tongue is strengthened and extends further westward, which reduces the precipitation rate in the western equatorial Pacific but increases it in the ITCZ north of the equator in the far eastern Pacific. It is demonstrated that the low-level cloud-radiation feedback would enhance the cooperative feedback between the equatorial cold tongue and the ITCZ. Based on surface layer heat budget analyses, it is demonstrated that the reduction of SSTs is attributed to both the thermodynamic cooling process modified by the increase of cloud fractions and the oceanic dynamical cooling processes associated with the strengthened surface wind in the eastern equatorial Pacific, but it is mainly attributed to oceanic dynamical cooling processes associated with the strengthening of surface wind in the central and western equatorial Pacific.  相似文献   

2.
The daily patterns and activity of Intertropical Convergence Zone(ITCZ) in the Western-Central Pacific Ocean are analyzed using NOAA interpolated Outgoing Longwave Radiation dataset during the period from 1979 to 2008, and the relationships between ITCZ patterns and Arctic Oscillation(AO) is investigated in this paper. In accordance with the central activity region the daily ITCZ can be divided into six patterns—north, south, equator, double, full and weak pattern, respectively. The statistic result shows that the north(accounting for 30.98% of the total observations), south(31.11%) and weak(24.05%) ITCZ patterns are the most active daily patterns within a 30-year period, while the other three ITCZ patterns occur infrequently. Results show that the February-April AO index has a significant positive(negative) correlation with the frequency of the north(weak) ITCZ pattern from March-May to August-October, with the strongest correlation in April-June(March-May). At the same time, the lower tropospheric atmosphere circulation(850-hPa wind field) and SST anomalies corresponding to the AO change significantly in the tropical Pacific. When AO is in the positive phase, there is an anomalous westerly from the equator to 15°N and warmer SST in the critical north ITCZ active region, while there is an anomalous easterly and insignificant change of SST from the equator to 15°S. The wind and SST anomalies share the same characteristics of the equatorial asymmetry and thus enlarge the gradient between the south and north of equator, which would help reinforce convection in the north of equator and result in more frequent occurrence of the northern type of ITCZ.  相似文献   

3.
It has been known for more than a decade that an aqua-planet model with a globally- and temporally-uniform sea surface temperature and solar isolation angle can generate intertropical convergence zones (ITCZ). Employing such a model, previous studies have shown that one of several means can be used to change between a single ITCZ over the equator and a double ITCZ straddling the equator. These means include switching to a different cumulus parametrization scheme, making changes within the cumulus parametrization scheme, and changing other aspects of the model such as horizontal resolution. Here, an interpretation of these findings is offered. In an aqua-planet model with globally and temporally uniform sea surface temperature and solar isolation angle, the latitudinal location of an ITCZ is the latitude where a balance exists between two types of attraction, both resulting from the Earths rotation. The first attraction pulls the ITCZ towards the equator and is not sensitive to changes in model design. It is directly related to the Coriolis parameter, which provides stability to the atmosphere. The second ssattraction pulls the ITCZ poleward and is sensitive to changes in model design. It is related to the convective circulation, modified by the Coriolis force. A balance between the two types of attraction is reached either at the equator or more than 10° north and south of the equator, depending on the shape and magnitude of the attractions. A balance at the equator yields a single ITCZ over the equator, whereas a balance north and south of the equator yields a double ITCZ straddling the equator.  相似文献   

4.
Summary The factors that control the strength of the ITCZ (Inter Tropical Convergence Zone) in an aquaplanet GCM (General Circulation Model) have been investigated. The strength of the equatorial ITCZ was found to increase rapidly with increase in meridional gradient of SST. On the other hand, the strength of the off-equatorial ITCZ does not increase rapidly with increase in meridional gradient of SST. This unusual difference in behavior between off-equatorial and equatorial ITCZ has been interpreted with a diagnostic model. The diagnostic model is based on budgets of moisture and dry static energy in the ITCZ. The diagnostic model indicates that the variations in the strength of the ITCZ are related to changes in the net energy convergence and vertical moist static stability. It was found that the net energy convergence in the off-equatorial ITCZ increases much less rapidly with meridional SST gradient than the equatorial counterpart. This difference in the behavior of net energy convergence is related to the surface wind speed which in the off-equatorial ITCZ simulation is largely insensitive to changes in the meridional SST gradient. Thus the primary difference between the equatorial and off-equatorial ITCZ is on account of the fact that wind speeds were lower in the former (on account of the constraint that zonal wind has to be zero at the equator). The impact of increasing the SST maximum on the strength of the ITCZ has also been studied. It was found that the strength of ITCZ increases with an increase in SST maximum. This increase in the strength of the ITCZ with the maximum SST is governed by the increase in boundary layer specific humidity and its impact on vertical moist static stability.  相似文献   

5.
Coupled general circulation model (GCM) simulations participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are analyzed with respect to their performance in the equatorial Atlantic. In terms of the mean state, 29 out of 33 models examined continue to suffer from serious biases including an annual mean zonal equatorial SST gradient whose sign is opposite to observations. Westerly surface wind biases in boreal spring play an important role in the reversed SST gradient by deepening the thermocline in the eastern equatorial Atlantic and thus reducing upwelling efficiency and SST cooling in the following months. Both magnitude and seasonal evolution of the biases are very similar to what was found previously for CMIP3 models, indicating that improvements have only been modest. The weaker than observed equatorial easterlies are also simulated by atmospheric GCMs forced with observed SST. They are related to both continental convection and the latitudinal position of the intertropical convergence zone (ITCZ). Particularly the latter has a strong influence on equatorial zonal winds in both the seasonal cycle and interannual variability. The dependence of equatorial easterlies on ITCZ latitude shows a marked asymmetry. From the equator to 15°N, the equatorial easterlies intensify approximately linearly with ITCZ latitude. When the ITCZ is south of the equator, on the other hand, the equatorial easterlies are uniformly weak. Despite serious mean state biases, several models are able to capture some aspects of the equatorial mode of interannual SST variability, including amplitude, pattern, phase locking to boreal summer, and duration of events. The latitudinal position of the boreal spring ITCZ, through its influence on equatorial surface winds, appears to play an important role in initiating warm events.  相似文献   

6.
西北区东部夏季极端降水事件同太平洋SSTA的遥相关   总被引:9,自引:1,他引:9  
利用近50年月平均NCEP再分析高度场、风场、NOAA重构海表温度以及中国西北区东部38个台站逐日降水资料,运用SVD及合成分析等方法,研究了太平洋SSTA对我国西北区东部夏季极端降水事件的可能影响。结果表明,冬季太平洋海表温度对后期西北区东部夏季极端降水事件的影响最显著,并且赤道中东太平洋是影响西北区东部夏季极端降水事件的关键区,当赤道中东太平洋海表温度发生异常时,首先引起纬向和经向垂直环流圈发生异常,进而强迫大气环流发生调整,先后通过PNA和WP遥相关使得西太平洋副热带高压发生异常,最终使得西北区东部夏季极端降水事件发生异常。  相似文献   

7.
The atmospheric general circulation models ARPEGE-climate and LMDz are used in an aquaplanet configuration to study the response of a zonally symmetric atmosphere to a range of sea surface temperature (SST) forcing. We impose zonally-symmetric SST distributions that are also symmetric about the equator, with varying off-equatorial SST gradients. In both models, we obtain the characteristic inter-tropical convergence zone (ITCZ) splitting that separates two regimes of equilibrium (in terms of precipitations): one with one ITCZ over the equator for large SST gradients in the tropics, and one with a double ITCZ for small tropical SST gradients. Transition between these regimes is mainly driven by changes in the low-level convergence that are forced by the SST gradients. Model-dependent, dry and moist feedbacks intervene to reinforce or weaken the effect of the SST forcing. In ARPEGE, dry advective processes reinforce the SST forcing, while a competition between sensible heat flux and convective cooling provides a complex feedback on the SST forcing in the LMDz. It is suggested that these feedbacks influence the location of the transition in the parameter range.  相似文献   

8.
与其他耦合环流模式一样,LASG耦合模式FGCM-0也存在虚假的“双ITCZ”。为了认识FGCM-0中“双ITCZ”,首先研究了FGCM-0的大气分量模式,剧INCAR(美国国家大气研究中心)的公用气候模式CCM3对秘鲁和加利福尼亚沿岸低云以及低层大气整体稳定度的模拟能力。发现:尽管CCM3模拟的低层大气整体稳定度与利用NCEP(美国国家环境预报中心)再分析资料分析的结果较一致,但模拟的低云量比ISCCP(国际卫星云气候计划)观测值显偏少。利用ISCCP低云量与由NCEP再分析温度场分析的低层整体稳定度之间的回归关系,修改了CCM3中低云参数化方案,并用于敏感性试验,以研究副热带东太平洋低云对FGCM-0中“双ITCZ”的影响。结果发现,修改的方案能显增强对低云量的模拟,秘鲁沿岸冷海域低云量增加能显减弱赤道以南热带东太平洋海表面温度(SST)的暖偏差,但同时也将使赤道冷舌增强、向西伸展更远;加利福尼亚沿岸低云量增加可以有效减弱赤道以北ITCZ区SST暖偏差。为了检验秘鲁沿岸SST与低云间的正反馈,又实施了一个控制秘鲁沿岸SST的敏感性试验,结果表明:控制秘鲁沿岸SST抑制其增暖,对自东南太平洋向西北至中、西赤道太平洋广大区域产生的影响,与增加秘鲁沿岸低云量产生的影响相似。  相似文献   

9.
This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM-FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the first two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular ValueDecomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimatedeast-west gradient of SST in the equatorial Pacific in the ocean spin-up process, and (2) the underestimatedamount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, VersionThree). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, affected by the Coriolis force in the Southern Hemisphere, turns into an anomalouswesterly in a broad area south of the equator and is enhanced by atmospheric anomalous circulationdue to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. Theanomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Pacific.The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustmentprocesses in the coupled system, which can be traced to the uncoupled models, oceanic component, andatmospheric component. The zonal gradient of the equatorial SST is too large in the ocean componentand the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.  相似文献   

10.
The effect of the Tibetan Plateau (TP) on the Intertropical Convergence Zone (ITCZ) was investigated using a coupled Earth system model. The location of the ITCZ (in this work represented by the center of the tropical precipitation maximum) over the tropical Atlantic was found to be sensitive to the existence of the TP. Removing the TP led to a remarkable sea surface temperature (SST) cooling (warming) in the Northern (Southern) Hemisphere, which manifested clearly in the Atlantic rather than the Pacific. The locations of maximum precipitation and SST moved southwards clearly in the tropical Atlantic, forcing a southward shift of the atmospheric convection center, and thus the ITCZ. The shift in the ITCZ was also supported by the latitudinal change in the ascending branch of the tropical Hadley Cell, which moved southwards by about 2° in the boreal summer in response to the TP's removal. From the viewpoint of the energy balance between the two hemispheres, the cooling (warming) in the Northern (Southern) Hemisphere requires an enhanced northward atmospheric heat transport across the equator, which can be realized by the southward displacement of the ITCZ. This study suggests that the presence of the TP may have played an important role in the climatology of the ITCZ, particularly its location over the tropical Atlantic.摘要本文利用耦合地球气候系统模式研究了青藏高原对热带辐合带 (ITCZ) 的影响. 我们研究发现热带大西洋ITCZ的位置对青藏高原存在与否有明显的敏感性. 与目前真实情况相比, 移除青藏高原会导致北半球海面降温, 南半球海面升温. 这种海面温度变化在大西洋表现得尤为明显, 导致热带大西洋最大海温中心向南移动, 从而迫使大气对流中心向南移动, 即表现为ITCZ的南移. 相应地, 夏季热带大气Hadley环流的上升支也发生明显南移. 北 (南) 半球海洋变冷 (变暖) 这种态势要求增强跨赤道向北的大气经向热量输送, 从而维持各个半球的能量平衡, 而这需要ITCZ位置的南移才能实现. 本文研究表明, 青藏高原的存在在现今ITCZ气候态的形成中可能扮演了重要角色.  相似文献   

11.
A global non-hydrostatic atmospheric model, i.e., GRAPES_YY (Global/Regional Assimilation and Prediction System on the Yin–Yang grid), with a semi-implicit semi-Lagrangian (SISL) dynamical core developed on the Yin–Yang grid was coupled with the physical parameterization package of the operational version of GRAPES. A 3.5-yr integration was carried out on an aqua planet to assess the numerical performance of this non-hydrostatic model relative to other models. Specific aspects of precipitation and general circulation under two different sea surface temperature (SST) conditions (CONTROL and FLAT) were analyzed. The CONTROL SST peaked at the equator. The FLAT SST had its maximum gradient at about 20° latitude, giving a broad equatorial SST maximum in the tropics and flat profile approaching the equator. The tropical precipitation showed different propagation features in the CONTROL and FLAT simulations. The CONTROL showed tropical precipitation bands moving eastward with some envelopes of westward convective-scale disturbance. Less organized westward-propagating rainfall cells and bands were seen in the FLAT and the propagation of the tropical wave varied with the SST gradient. The Inter Tropical Convergence Zone (ITCZ), Hadley cell, and westerly jet core were weaker and more poleward as the SST profile flattened from the CONTROL to FLAT. The climatological structures simulated by GRAPES_YY, such as the distribution of precipitation and the large-scale circulation, fell within the bounds from other models. The stronger ITCZ precipitation, accompanied with stronger Hadley cells and convective heating in the CONTROL simulation, may be summed up as a result of stronger parameterized convection and the non-hydrostatic effects in GRAPES_YY. In addition, mechanism of the zonal mean circulation maintaining is analyzed for the different SST patterns referring the transient eddy flux.  相似文献   

12.
 The mechanisms responsible for the seasonal cycle in the tropical central and eastern Pacific sea surface temperature (SST) are investigated using a coupled general circulation model. We find that the annual westward propagation of SST anomalies along the equator is explained by a two-stage process. The first stage sets the phase of the variation at the eastern boundary. The strengthening of the local Hadley Circulation in boreal summer leads to a strengthening of the northward winds that blow across the equator. These stronger winds drive enhanced evaporation and entrainment cooling of the oceanic mixed layer. The resulting change in SST is greatest in the east because the mixed layer is at its shallowest there. As the east Pacific SST cools the zonal SST gradient in the central Pacific becomes more negative. This development signals the onset of the second stage in the seasonal variation of equatorial SST. In response to the anomalous SST gradient the local westward wind stress increases. This increase drives cooling of the oceanic mixed layer in which no single mechanism dominates: enhanced evaporation, wind-driven entrainment, and westward advection all contribute. We discuss the role that equatorial upwelling plays in modulating mixed layer depth and hence the entrainment cooling, and we highlight the importance of seasonal variations in mixed layer depth. In sum these processes act to propagate the SST anomaly westward. Received: 22 February 1999 / Accepted: 20 March 2000  相似文献   

13.
文中研究了耦合海-气环流模式中的双热带辐合带(Double ITCZ)现象,并对这一现象的成因从海洋热量收支的角度进行了初步分析。Double ITCZ现象是在热带太平洋赤道南北两侧各出现一条ITCZ的现象,这是耦合海-气环流模式中的较为普遍的一种异常现象,与实际气候中出现的Double ITCZ现象并非指同一问题。文中对比观测和模式结果,指出了Double ITCZ现象的主要特征,针对它的出现过程进行细致分析,再利用模式输出的热量收支各项进行统计,得到了从海洋热收支分析得到的海表温度变化原因。与观测到的正常模态相比,Double ITCZ是一个异常的模态,它的特征突出地表现为西太平洋暖池区的降温和东南太平洋10°S附近的升温。海洋热量收支分析表明,暖池区的降温主要是受到扩散的作用,而表层平流的异常增暖在决定异常辐合带区升温过程中占第一位的作用。  相似文献   

14.
基于美国哥伦比亚大学Lamont—Doherty地球观象台LDEO(Lamont—DohertyEarth Observatory)海表温度资料和NCEP/NCAR再分析风场资料,分析了1997/1998年El Nino3期间西太平洋暖池海表温度和西风距平的时间演变特征,同时也分析了东太平洋暖池海表温度和北风距平的时间演变特征。结果表明,1997/1998年El Nino3事件期间,西太平洋暖池海表温度变化及异常西风和东太平洋暖池海表温度变化及异常北风都与Nino3指数变化密切相关。将东、西太平洋暖池及异常北风、西风一并结合起来考虑,进一步研究了1997/1998年El Nino3事件发生、发展的可能机制:异常西风驱动西太平洋暖池东端暖水向东伸展直接有利于赤道东太平洋海表温度增加;异常西风激发东传的暖Kelvin波对东太平洋的冷上升流有抑制作用,从而有利于赤道东太平洋海表温度增加;东传的异常西风可以通过埃克曼漂流效应将赤道两侧的海表暖水向赤道辐合从而加强了赤道附近的下沉流,也有利于赤道东太平洋赤道附近海表温度增加。几乎与此同时,北风距平通过产生北风吹流将东太平洋暖池暖水由北向南输送至赤道附近直接导致Nino3区海表温度增加。上述增温因素的叠加作用共同导致了1997/1998年El Nino事件迅速发生、异常强大。  相似文献   

15.
Precipitation changes over the Indo-Pacific during El Niño events are studied using an Atmospheric General Circulation Model forced with sea-surface temperature (SST) anomalies and changes in atmospheric CO2 concentrations. Linear increases in the amplitude of the El Niño SST anomaly pattern trigger nonlinear changes in precipitation amounts, resulting in shifts in the location and orientation of the Intertropical Convergence Zone (ITCZ) and the South Pacific Convergence Zone (SPCZ). In particular, the maximum precipitation anomaly along the ITCZ and SPCZ shifts eastwards, the ITCZ shifts south towards the equator, and the SPCZ becomes more zonal. Precipitation in the equatorial Pacific also increases nonlinearly. The effect of increasing CO2 levels and warming SSTs is also investigated. Global warming generally enhances the tropical Pacific precipitation response to El Niño. The precipitation response to El Niño is found to be dominated by changes in the atmospheric mean circulation dynamics, whereas the response to global warming is a balance between dynamic and thermodynamic changes. While the dependence of projected climate change impacts on seasonal variability is well-established, this study reveals that the impact of global warming on Pacific precipitation also depends strongly on the magnitude of the El Niño event. The magnitude and structure of the precipitation changes are also sensitive to the spatial structure of the global warming SST pattern.  相似文献   

16.
利用MPAS-A(The Model for Prediction Across Scales-Atmosphere)模式设计了中东太平洋热带辐合带CEP-ITCZ(Intertropical Convergence Zone over Central and Eastern Pacific)对两类厄尔尼诺SST(Sea Surface Temperature)异常的敏感性试验,通过试验结果与两类厄尔尼诺年实际大气异常的对比,初步解释了CEP-ITCZ在两类厄尔尼诺年产生不同异常的可能原因。通过CP-EL试验发现,热带太平洋SST异常的第一模态会使中东太平洋低层风场辐合增强,但对辐合带的位置影响不大,与中部型厄尔尼诺对CEP-ITCZ的影响基本一致。通过EP-EL试验发现,热带太平洋SST异常的第二模态会使中东太平洋低层风场产生较大异常,辐合带中心向南移动,辐合带明显减弱增宽,与东部型厄尔尼诺对CEP-ITCZ的影响基本一致。  相似文献   

17.
Summary The seasonal and intraseasonal variation of tropical climate in National Center for Atmospheric Research (NCAR) Community Climate Model Version 2 (CCM2) General Circulation Model (GCM) has been examined using two different cumulus parameterization schemes, the moist convective adjustment scheme of Manabe et al. (1965) and the mass-flux scheme of Hack (1994). Ten-year simulations have been undertaken with each of these schemes with SST prescribed according to the monthly mean climatology. The seasonal mean rainfall in the tropics simulated by the moist convective adjustment scheme (MCA) scheme was found to be more realistic than the mass-flux (Hack) scheme. The more realistic simulation by the MCA scheme was found to be on account of the fact that the mean moist static energy of the lower troposphere in the MCA scheme was closer to the observations than in the Hack scheme. In both the schemes, the precipitation in the tropics increases montonically with precipitable water vapour when the precipitable water vapour is above 40 mm. This is consistent with relationship between precipitation and precipitable water in the observations. The Hack scheme tends to simulate lower precipitation (for a given amount of precipitable water) when compared to observations. The MCA scheme simulates the eastward migration of convective systems along the equator quite well, although the speed of propagation is somewhat low. The poleward migration of convective systems in the Indian region is more realistically simulated by the MCA scheme than the Hack scheme. This is because the latitudinal gradient of the mean moist static energy in the MCA scheme is more realistic than in the Hack scheme. Over most of the tropics, simulation by the MCA scheme is more realistic on both seasonal and intraseasonal timescales. Received November 1, 2000 Revised June 20, 2001  相似文献   

18.
The simulation of the mean seasonal cycle of sea surface temperature (SST) remains a challenge for coupled ocean–atmosphere general circulation models (OAGCMs). Here we investigate how the numerical representation of clouds and convection affects the simulation of the seasonal variations of tropical SST. For this purpose, we compare simulations performed with two versions of the same OAGCM differing only by their convection and cloud schemes. Most of the atmospheric temperature and precipitation differences between the two simulations reflect differences found in atmosphere-alone simulations. They affect the ocean interior down to 1,000 m. Substantial differences are found between the two coupled simulations in the seasonal march of the Intertropical Convergence Zone in the eastern part of the Pacific and Atlantic basins, where the equatorial upwelling develops. The results confirm that the distribution of atmospheric convection between ocean and land during the American and African boreal summer monsoons plays a key role in maintaining a cross equatorial flow and a strong windstress along the equator, and thereby the equatorial upwelling. Feedbacks between convection, large-scale circulation, SST and clouds are highlighted from the differences between the two simulations. In one case, these feedbacks maintain the ITCZ in a quite realistic position, whereas in the other case the ITCZ is located too far south close to the equator.  相似文献   

19.
黄昕  周天军  吴波  陈晓龙 《大气科学》2019,43(2):437-455
本文通过与观测和再分析资料的对比,评估了LASG/IAP发展的气候系统模式FGOALS的两个版本FGOALS-g2和FGOALS-s2对南亚夏季风的气候态和年际变率的模拟能力,并使用水汽收支方程诊断,研究了造成降水模拟偏差的原因。结果表明,两个模式夏季气候态降水均在陆地季风槽内偏少,印度半岛附近海域偏多,在降水年循环中表现为夏季北侧辐合带北推范围不足。FGOALS-g2中赤道印度洋"东西型"海温偏差导致模拟的东赤道印度洋海上辐合带偏弱,而FGOALS-s2中印度洋"南北型"海温偏差导致模拟的海上辐合带偏向西南。水汽收支分析表明,两个模式中气候态夏季风降水的模拟偏差主要来自于整层积分的水汽通量,尤其是垂直动力平流项的模拟偏差。一方面,夏季阿拉伯海和孟加拉湾的海温偏冷而赤道西印度洋海温偏暖,造成向印度半岛的水汽输送偏少;另一方面,对流层温度偏冷,冷中心位于印度半岛北部对流层上层,同时季风槽内总云量偏少,云长波辐射效应偏弱,对流层经向温度梯度偏弱以及大气湿静力稳定度偏强引起的下沉异常造成陆地季风槽内降水偏少。在年际变率上,观测中南亚夏季风环流和降水指数与Ni?o3.4指数存在负相关关系,但FGOALS两个版本模式均存在较大偏差。两个模式中与ENSO暖事件相关的沃克环流异常下沉支和对应的负降水异常西移至赤道以南的热带中西印度洋,沿赤道非对称的加热异常令两个模式中越赤道环流季风增强,导致印度半岛南部产生正降水异常。ENSO相关的沃克环流异常下沉支及其对应的负降水异常偏西与两个模式对热带南印度洋气候态降水的模拟偏差有关。研究结果表明,若要提高FGOALS两个版本模式对南亚夏季风气候态模拟技巧,需减小耦合模式对印度洋海温、对流层温度及云的模拟偏差;若要提高南亚夏季风和ENSO相关性模拟技巧需要提高模式对热带印度洋气候态降水以及与ENSO相关的环流异常的模拟能力。  相似文献   

20.
The mass stream function of zonal mean meridional circulation is calculated in terms of NCEP/NCAR monthly meridional wind speed and vertical velocity, and the climatic and anomalous features of zonal mean SST and meridional circulation are investigated. Results show that (1) a joint ascending branch of Northern and Southern Hadley circulation is on the side of the summer hemisphere near the equator ,being well consistent with the extremum of [SST ],and a strong descending by the winter-hemispheric side.(2)El Nino-related [SST] in low latitudes is an important outer-forcing source for anomaly meridional circulation, which is affected by seasonal variation of basic airflow and [SST ], and interannual and interdecadal changes of [SST] .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号