首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stolpe  Martin B.  Cowtan  Kevin  Medhaug  Iselin  Knutti  Reto 《Climate Dynamics》2021,56(1-2):613-634

Global mean temperature change simulated by climate models deviates from the observed temperature increase during decadal-scale periods in the past. In particular, warming during the ‘global warming hiatus’ in the early twenty-first century appears overestimated in CMIP5 and CMIP6 multi-model means. We examine the role of equatorial Pacific variability in these divergences since 1950 by comparing 18 studies that quantify the Pacific contribution to the ‘hiatus’ and earlier periods and by investigating the reasons for differing results. During the ‘global warming hiatus’ from 1992 to 2012, the estimated contributions differ by a factor of five, with multiple linear regression approaches generally indicating a smaller contribution of Pacific variability to global temperature than climate model experiments where the simulated tropical Pacific sea surface temperature (SST) or wind stress anomalies are nudged towards observations. These so-called pacemaker experiments suggest that the ‘hiatus’ is fully explained and possibly over-explained by Pacific variability. Most of the spread across the studies can be attributed to two factors: neglecting the forced signal in tropical Pacific SST, which is often the case in multiple regression studies but not in pacemaker experiments, underestimates the Pacific contribution to global temperature change by a factor of two during the ‘hiatus’; the sensitivity with which the global temperature responds to Pacific variability varies by a factor of two between models on a decadal time scale, questioning the robustness of single model pacemaker experiments. Once we have accounted for these factors, the CMIP5 mean warming adjusted for Pacific variability reproduces the observed annual global mean temperature closely, with a correlation coefficient of 0.985 from 1950 to 2018. The CMIP6 ensemble performs less favourably but improves if the models with the highest transient climate response are omitted from the ensemble mean.

  相似文献   

2.
B. G. Hunt 《Climatic change》2009,97(3-4):389-407
A multi-millennial simulation with the CSIRO Mark 2 coupled global climatic model has been used to determine whether climatic conditions approximate to those experienced by the medieval Norse settlers in Greenland could be identified. The aim of this analysis was to see whether such conditions could be replicated by the natural climatic variability in this unforced simulation, in order to counteract claims that the current observed global warming is merely another example of this type of climatic regime. This view has been expressed in the media in an attempt to refute the existence of a CO2-induced global warming. A 291-year period of above-average temperature followed by a 41-year cooler period were identified in one millennium of the simulation, and subsequently used as an analogue of conditions representative of the time of the Norse settlements. Considerable interannual variability existed in both these periods, but with noticeable positive and negative surface temperature anomalies in the warm and cold periods respectively. Thus the warm period was not a time of uniform benign conditions. Above-average precipitation was also associated with the warm period, and these climatic conditions would have enhanced pasture growth and hay production (the only crop the Norse produced) thereby sustaining the livelihood of the Norse Greenlanders. The climatic conditions associated with the cold period in the model were probably sufficient to limit the survival prospects of the settlers, especially when other, probably more critical, deleterious factors are taken into account. The temperature anomalies replicated in the simulation are similar to the limited proxy data, but may be smaller in magnitude: nevertheless they appear to be sufficiently large to have affected the viability of the Norse Greenlanders. After considering possible climatic mechanisms that could have contributed to these warm and cold periods it was concluded that they are simply a consequence of stochastic influences generated by nonlinear processes in the simulation. Thus this simulation provides no support for the contention that the current global warming is a manifestation of conditions prevailing during the Norse settlements in Greenland.  相似文献   

3.
B. G. Hunt 《Climatic change》1998,38(2):133-157
The question as to whether the climatic anomalies associated with the Medieval Warm Period and the Little Ice Age can be attributed to natural climatic variability is explored in this paper. The output from a 500-year run with a global climatic model is used for this purpose. The model exhibits multi-decadal variability in its climatic outputs, which appears to have many of the characteristics of observed climatic data over the last millennium. Global distributions of surface temperature associated with peak warming and cooling phases of the model run highlight the spatial variability which occurs, and the lack of synchroneity in the response from region to region. Considerable year-to-year variability occurs in temperature anomaly patterns during the warming and cooling phases, indicating the complexity of the responses. The model results suggest that such climatic phases should not be considered as lengthy periods of universal warming or cooling. Comparison of observed time series of land surface temperature for the northern hemisphere for the last 500 years with model output indicates that most of the observed features in this climatic record can be reproduced by processes associated with internal mechanisms of the climatic system as reproduced in the model. While the model results do not exclude the possible contribution of external forcing agents as a contributing factor to these climatic episodes, the perception is that such agents would enhance existing naturally-induced climatic features rather than initiate them, at least for this time frame. Given the omnipresent nature of natural climatic variability, it is assumed that such variability rather than external forcing agents has primacy in generating and maintaining the underlying observed climatic variability. An understanding of the mechanisms and behaviour of such climatic features is becoming of increasing importance, in view of their possible role in modulating future climatic trends given the expected influence of the greenhouse effect.  相似文献   

4.
俞永强  宋毅 《大气科学》2013,37(2):395-410
在工业革命以来全球长期增暖趋势背景下,全球平均表面气温还同时表现出年代际变化特征,二者叠加在一起使得全球平均气温在某些年份增暖相对停滞(如1999~2008年)或者增暖相对较快(如1980~1998年).利用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG)发展的耦合气候模式FGOALS-s2历史气候和典型路径浓度(RCPs)模拟试验结果研究了可能造成全球增暖的年代际停滞及加速现象的原因,特别是海洋环流对全球变暖趋势的调制作用.该模式模拟的全球平均气温与观测类似,即在长期增暖趋势之上,还叠加了显著的年代际变化.对全球平均能量收支分析表明,模拟的气温年代际变化与大气顶净辐射通量无关,意味着年代际表面气温变化可能与能量在气候系统内部的重新分配有关.通过对全球增暖加速和停滞时期大气和海洋环流变化的合成分析及回归分析,发现全球表面气温与大部分海区海表温度(SST)均表现出几乎一致的变化特征.在增暖停滞时期,SST降低,更多热量进入海洋次表层和深层,使其温度增加;而在增暖加速时期,更多热量停留在表层,使得大部分海区SST显著增加,次表层海水和深海相对冷却.进一步分析表明,热带太平洋表层和次表层海温年代际变化主要是由于副热带—热带经圈环流(STC)的年代际变化所致,然后热带太平洋海温异常可以通过风应力和热通量强迫作用引起印度洋、大西洋海温的年代际变化.在此过程中,海洋环流变化起到了重要作用,例如印度尼西亚贯穿流(ITF)年代际异常对南印度洋次表层海温变化起到关键作用,而大西洋经圈翻转环流(AMOC)则能直接影响到北大西洋深层海温变化.  相似文献   

5.
Based on three global annual mean surface temperature time series and three Chinese annual mean surface air temperature time series, climate change trends on multiple timescales are analyzed by using the trend estimation method of multi-sliding time windows. The results are used to discuss the so-called global-warming hiatus during 1998–2012. It is demonstrated that different beginning and end times have an obvious effect on the results of the trend estimation, and the implications are particularly large when using a short window. The global-warming hiatus during 1998–2012 is the result of viewing temperature series on short timescales; and the events similar to it, or the events with even cold tendencies, have actually occurred many times in history. Therefore, the global-warming hiatus is likely to be a periodical feature of the long-term temperature change. It mainly reflects the decadal variability of temperature, and such a phenomenon in the short term does not alter the overall warming trend in the long term.  相似文献   

6.
全球变暖趋缓研究进展   总被引:16,自引:5,他引:11  
近十几年来,全球年平均表面温度上升趋势显示出停滞状态,即全球变暖趋缓,这引起了国际社会的广泛关注,同时也引发了对全球变暖的质疑,各国气候学家正努力就全球变暖趋缓的事实、原因及其可能影响展开研究。本文综述了目前国内外对全球变暖趋缓的研究结果。多数科学家认可近十几年来全球变暖停滞的事实,并认为太阳活动处于低位相、大气气溶胶(自然和人为)增加以及海洋吸收热量是变暖停滞的可能影响因子,其中海洋(尤其是700米以下的深海)对热量的储存可能是变暖停滞的关键。国际耦合模式比较计划第5阶段中的模式并未精确地描述各种有利降温影响因子的近期位相演变,因而其模拟的近期增暖趋势较观测偏强。由此推断,变暖停滞主要是自然因素造成的,并且预测变暖趋缓将在近几年或几十年内结束(依赖于太平洋年代际振荡的位相转变),未来气温将仍主要受到温室气体增加的影响而表现出明显的上升趋势。因此,目前的全球变暖趋缓不大可能改变到本世纪末全球大幅度变暖带来的风险。本综述展望未来的研究热点包括:精确估算全球气温和海洋热含量的变率及其不确定性,海洋年代际信号(太平洋以及大西洋的年代际振荡)的转型机制,存储在深海的热量将在何时返回海洋表面及其对区域气候的潜在影响。  相似文献   

7.
全球变暖中的科学问题   总被引:5,自引:0,他引:5  
2013年各国政府间气候变化专门委员会(IPCC)第一工作组发布了第五次气候变化科学评估报告,以大量的观测分析和气候模式模拟证据,继续强调由于人类排放增加,全球正在变暖,未来将继续变暖的观点。本文综述研究全球变暖的几个深层次的科学问题,即多套全球气温观测资料的差异、不同标准气候态时段的作用、20世纪全球变暖的检测和归因及未来全球气温变化的走向,以此提出需进一步研究的科学问题。结果表明;需要进一步提高观测资料的质量;注意不同标准气候态时段对应的数值的不同;应进一步改善气候模式模拟年代际变率的能力及研究近15 a全球变暖减缓和停滞的原因,从而改善气候模式的模拟效果;造成预估未来全球气候变化的不确定性主要来自气候模式的差异、未来排放情景的差异及气候系统内部变率影响和自然外强迫的作用。  相似文献   

8.
Results from a global coupled ocean-atmosphere general circulation model (GCM) are used to perform the first in a series of studies of the various time and space scales of climate anomalies in an environment of gradually increasing carbon dioxide (CO2) (a linear transient increase of 1% per year in the coupled model). Since observed climate anomaly patterns often are computed as time-averaged differences between two periods, climate-change signals in the coupled model are defined using differences of various averaging intervals between the transient and control integrations. Annual mean surface air temperature differences for several regions show that the Northern Hemisphere warms faster than the Southern Hemisphere and that land areas warm faster than ocean. The high northern latitudes outside the North Atlantic contribute most to global warming but also exhibit great variability, while the high southern latitudes contribute the least. The equatorial tropics warm more slowly than the subtropics due to strong upwelling and mixing in the ocean. The globally averaged surface air temperature trend computed from annual mean differences for years 23–60 is 0.03 C per year. Projecting this trend to the time of CO2 doubling in year 100 produces a warming of 2.3° C. By chance, one particular northern winter five-year average geographical difference pattern in the Northern Hemisphere from the coupled model resembles the recent observed pattern of surface temperature and sea-level pressure anomalies. This pattern is not consistent from one five-year period to the next in any season in the model. However, multidecadal averages in the coupled model show that the North Atlantic warms less than the rest of the high northern latitudes, and recent observations may be a manifestation of this phenomenon. Consistent geographic patterns of climate anomalies forced by increased CO2 in the model are more evident with a longer averaging interval. There is also the possibility that the CO2 climate-change signal may itself be a function of time and space. The general pattern of zonal mean temperature anomalies for all periods in the model shows warming in the troposphere and cooling in the stratosphere. This pattern (or one similar to it taking into account the rest of the trace gases) could be looked for in observations to verify the enhanced greenhouse effect. A zonal mean pattern, however, could prove scientifically satisfactory but of little value to policymakers seeking regional climate-change forecasts. These results from the coupled model underscore the difficulty in identifying a time- and space-dependent fingerprint of greenhouse warming that has some practical use from short climatic records and point to the need to understand the mechanisms of decadal-scale variability.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

9.
2000年后全球气温的增温率显著下降,全球进入变暖减缓期.本文基于CRU(Climatic Research Unit) 观测资料,分析讨论了2000年后全球及欧亚中高纬度地区全球变暖的减缓特征,评估了CMIP5(Coupled Model Intercomparison Project Phase 5)试验多模式对全球变暖减缓的模拟及未来气温变化预估.结果表明,2000年后全球陆地平均地面气温的增温率大幅下降至0.14℃ (10 a)-1,仅为1976~1999年加速期增温率的一半.全球陆地13个区域中有9个地区的增温率小于2000年前,4个地区甚至出现了降温.其中以欧亚中高纬地区最为特殊.加速期(1976~1999年)增温率达到0.50℃ (10 a)-1,为全球陆地最大,2000年后陡降至-0.17℃ (10 a)-1,为全球最强降温区,为全球变暖的减缓贡献了49.13%.并且具有显著的季节依赖,减缓期冬季增温率下降了-2.68℃ (10 a)-1,而秋季升高了0.86℃ (10 a)-1,呈现反位相变化特征.CMIP5多模式计划中仅BCC-CSM1.1在RCP2.6情景下和MRI-ESM1模式在RCP8.5下的模拟较好地预估了全球及欧亚中高纬地区在2000年后增温率的下降以及欧亚中高纬秋、冬温度的反位相变化特征.BCC-CSM1.1在RCP2.6情景下预估欧亚中高纬地区2012年后温度距平保持在1.2℃左右,2020年后跃至2℃附近振荡.而MRI-ESM1在RCP8.5情景下预估的欧亚中高纬度温度在2030年前一直维持几乎为零的增温率,之后迅速升高.  相似文献   

10.
本文使用美国伍兹霍尔海洋研究所发布的客观分析海气通量项目数据集及日本海洋科学技术中心的Ishii次表层温盐数据,利用经验正交函数分析方法、小扰动展开、线性回归、海水热力学方程2010等方法,主要研究在增温停滞背景(1979~2000年,升温阶段;2001~2013年,停滞阶段)下,北半球两支西边界流区域即黑潮及其延伸区域(简称黑潮区域)和墨西哥湾流区域(简称湾流区域)海表潜热通量的年代际趋势转变和影响因子,以及内部热含量的年代际变化。结果表明,两支西边界流在增温停滞背景下都发生了年代际尺度的趋势反转,而反转的时间节点以及前后的反转趋势都不相同:黑潮区域潜热通量年代际趋势于2001年左右由正转负;而湾流区域潜热通量年代际趋势于1993年左右由负转正。其影响因子在前后阶段也有不同:通过影响海表饱和比湿进而影响海气比湿差,海表温度是影响黑潮区域全时间段以及湾流区域1993~2013年时间段潜热通量变化的主要因素;而风速通过直接的影响以及对空气湿度的影响也会对潜热通量变化产生间接影响,主要在湾流区域的1979~1992年时间段体现。黑潮及湾流区域0~1000 m海水热含量的年代际变化同样存在差异:黑潮区域表层热含量年代际变化同混合层一致;湾流区域表层热含量年代际变化同深层相异,而表层以下的变化较为一致;两个区域的深层热含量变化都体现了增温停滞的现象,黑潮区域可能存在下层至上层的影响;而湾流区域可能存在上层至下层的影响。黑潮与湾流区域表面的差异可以归结为海洋与大气因素的影响差异,而内部热含量年代际变化的垂直差异可能归结为两区域的结构差异。增温停滞对两区域的变化影响显著,而区域的变化可能存在对增温停滞的反馈。  相似文献   

11.
利用1961-2014年水平分辨率为0.5°×0.5°的均一化气温网格数据,分析全球变暖趋缓期(1998-2014年)中国气温的变化特征。结果显示:1998-2014年中国气温上升趋缓明显,与增暖期(1985-1997年)相比,年平均气温和年平均最高气温由升温趋势转为降温趋势,分别为-0.05℃/10a和-0.11℃/10a,而年平均最低气温仍保持弱的上升趋势(0.06℃/10a)。全球变暖趋缓期中国的增暖型发生了显著变化:北方地区由增温趋势转为降温趋势,青藏高原和西南地区则呈现出相对强的增温趋势;从季节来看,冬季降温最强、夏季增温较其他季节偏强,而冬季(强降温)正是中国增暖趋缓的主要贡献季节。增温最强的要素仍然是最低气温。  相似文献   

12.
The recent hiatus in global temperature at the surface has been analysed by several studies, mainly using global climate models. The common accepted picture is that since the late 1990s, the increase in anthropogenic radiative forcings has been counterbalanced by other factors, e.g., a decrease in natural forcings, augmented ocean heat storage and negative phases of ocean–atmosphere-coupled oscillation patterns. Here, simple vector autoregressive models are used for forecasting the temperature hiatus in the period 2001–2014. This gives new insight into the problem of understanding the ocean contribution (in terms of heat uptake and atmosphere–ocean-coupled oscillations) to the appearance of this recent hiatus. In particular, considering data about the ocean heat content until a depth of 700 m and the Atlantic multidecadal oscillation is necessary for correctly forecasting the hiatus, so catching both trend and interannual variability. Our models also show that the ocean heat uptake is substantially driven by the natural component of the total radiative forcing at a decadal time scale, confining the importance of the anthropogenic influences to a longer range warming of the ocean.  相似文献   

13.
基于多套全球海温再分析数据和2种线性趋势分析方法,评估了1958-2014年中国近海海表温度(SST)的变化及其对全球气候变化的响应特征,并与全球平均地表温度特别是与若干重要海区的SST做了比较。研究表明:在全球变暖的显著加速期(1980年代和1990年代),中国近海区域年平均SST表现出更快速的升温特征,其速率达0.60℃/10a,是同期全球平均升温速率的5倍以上;在变暖暂缓期(1998-2014年),中国近海SST出现显著的下降趋势。研究还表明,中国近海区域SST的年代际变化与太平洋年代际涛动(PDO)的位相转换一致,前者SST的快速上升(下降)期与PDO正(负)位相最大值的时期相对应,PDO可能是通过东亚季风和黑潮影响中国近海SST的年代际变化。  相似文献   

14.
基于1961—2013年中国台站的均一化气温数据、NOAA月平均海温资料和CMIP5气候模式数据,利用气候统计手段,定量分析太平洋年代际振荡(PDO)对中国冬季最低气温年代际变化的贡献。结果表明:PDO的年代际序列与年代际滤波后的最低气温场在全国大部分地区呈显著正相关,即PDO负位相时中国冬季最低气温偏低,反之偏高。2006年后中国冬季最低气温变暖减缓,造成这一现象的主要原因是自然变率起到的降温作用,而自然变率又主要由PDO起主导作用,约占自然变率贡献的40%左右。PDO对温度的贡献呈现出明显的年代际变化,在变暖减缓期对升温有明显的负贡献,且负贡献逐渐增大至超过50%。  相似文献   

15.
全球增暖对ENSO影响的数值模拟研究   总被引:4,自引:0,他引:4       下载免费PDF全文
胡博  李维京  陈鲜艳 《大气科学》2007,31(2):214-221
利用日本东京大学气候系统研究所、日本环境研究所和日本地球环境研究中心联合开发的海气耦合模式MIROC3.2,研究了全球变暖对ENSO年际变率的影响。该模式较好地模拟了ENSO循环的不同阶段表层和次表层海水温度变化,海表温度最大振幅出现在120°W以东,与观测一致,表明模式可以较好反映热带地区大气、海洋的动力、热力特征。研究还比较了控制试验和CO2浓度年增长1%的瞬时试验,结果表明,在全球变暖的大环境下ENSO事件发生频率没有显著变化,但ENSO事件强度增大,年际变率变大;热带太平洋呈现整体增暖趋势,表层温度尤其是热带中太平洋地区温度升高显著。敏感性分析表明,年际ENSO变率的振幅增大的主要贡献来自于海洋。海水增温导致热带太平洋海温垂直梯度增大,在热带西太平洋海温垂直温度梯度变化最为明显;次表层海温对单位大气风应力变化的响应大于表层海温响应。当这种响应与热带太平洋赤道地区径向温度梯度变化的共同作用导致温室效应下ENSO振幅增大。  相似文献   

16.
Climatic trends     
A 10,000-year long simulation has been made with the CSIRO Mark 2 coupled global atmospheric-oceanic model for present climatic conditions. The annual mean output from the model has been used to calculate global distributions of climatic trends. These trends were derived by linear regression using a least squares fit to a given climatic time series for a selected trend duration. Typically, this information cannot be obtained from the limited observational record, hence the simulation provides a documentation of many climatic trend characteristics not previously available. A brief examination of observed climatic trends is given to demonstrate the viability of the trend analysis. This is followed by a range of global trend distributions for various climatic variables and trend durations. At any one time only relatively small regions of the globe have trends significant at the 95% level. Markedly different trend patterns occur for a given trend duration computed for different times within the simulation. Decadal and multi-decadal trend patterns revealed consistent relationships for El Niño/Southern Oscillation (ENSO)-related climatic variables. It was found that within a given duration trend, noticeable shorter term counter-trends can exist, with the latter being much stronger. In general, a strong trend is indicative of a short duration, thus highlighting the danger of extrapolating such trends. Examination of time series of climatic trends emphasised the dominance of decadal variability and the essential residual nature of, especially longer term, trends. Rainfall trends over Australia are used to indicate the almost continent-wide changes that can occur in trend patterns within a few decades, in agreement with observation. The outcome emphasises that any changes in current, observed climatic trends should not automatically be attributed to greenhouse forcing. Importantly, it is noted that for conditions associated with naturally occurring climatic variability, the global mean of any climatic trend distribution should be zero or near zero. Departures from this situation imply the existence of an external forcing agency. Thousand year trends could be readily identified within the simulation, but the variations from millennium to millennium indicate the occurrence of secular variability. A probability density function distribution of 30-year duration trends within a selected millennium revealed a near-Gaussian outcome. This, together with other analyses, supports the conclusion that stochastic processes dominate the climatic variability within the simulation.  相似文献   

17.
A distinct aridity tread in China in last 100 years is presented by applying a linear fitting to both the climate re-cords and the hydrological records, which is supported by evidence of environmental changes and seems to be associ-ated with a global warming trend during this period.The Mann Kendall Rank statistic test reveals a very interesting feature that the climate of China entered into a dry regime abruptly in about l920’s, which synchronized with the rapid warming of the global temperature at almost the same time.According to an analysis of the meridional profile of observed global zonal mean precipitation anomalies during the peak period of global warming (1930-1940), the drought occurred in whole middle latitude zone (25oN-55oN) of the Northern Hemisphere, where the most part of China is located in. Although this pattern is in good agreement with the latitude distribution of the difference of zonal mean rates of precipitation between 4 × CO2 and 1 × CO2 simu-lated by climate model (Manabe and Wetherald, 1983), more studies are required to understand the linkage between the aridity trend in China and the greenhouse effect.The EOF analysis of the Northern Hemisphere sea level pressure for the season of June to August shows an ab-rupt change of the time coefficient of its first eigenvector from positive to negative in mid-lP^s, indicating an enhancement of the subtropical high over Southeast Asia and the western Pacific after that time. This is an atmos-pheric circulation pattern that is favorable to the development of dry climate in China.  相似文献   

18.
Global mean surface temperature (GMST) during 1910–2012 experienced four alternated rapid warming and warming hiatus phases. Such a temporal variation is primarily determined by global mean sea surface temperature (SST) component. The relative roles of ocean dynamic and thermodynamic processes in causing such global mean SST variations are investigated, using two methods. The first method is ocean mixed layer heat budget analysis. The budget diagnosis result shows that the thermodynamic processes dominate in the rapid warming phases, while the ocean dynamics dominate during the hiatus phases. The second method relies on the diagnosis of a simple equilibrium state model. This model captures well the horizontal distribution of SST difference between two warmer and cooler equilibrium states during either the rapid warming or hiatus phases. It is found that the SST difference during the rapid warming phases is primarily controlled by the increase of downward longwave radiation as both column integrated water vapor and CO2 increase during the phases. During the hiatus phases, the water vapor induced greenhouse effect offsets the CO2 effect, and the SST cooling tendency is primarily determined by the ocean dynamics over the Southern Ocean and tropical Pacific. The SST pattern associated with the Interdecadal Pacific Oscillation (IPO) might be responsible for the remote and local ocean dynamic responses through induced wind change.  相似文献   

19.
This study examines in detail the ‘atmospheric’ radiative feedbacks operating in a coupled General Circulation Model (GCM). These feedbacks (defined as the change in top of atmosphere radiation per degree of global surface temperature change) are due to responses in water vapour, lapse rate, clouds and surface albedo. Two types of radiative feedback in particular are considered: those arising from century scale ‘transient’ warming (from a 1% per annum compounded CO2 increase), and those operating under the model’s own unforced ‘natural’ variability. The time evolution of the transient (or ‘secular’) feedbacks is first examined. It is found that both the global strength and the latitudinal distributions of these feedbacks are established within the first two or three decades of warming, and thereafter change relatively little out to 100 years. They also closely approximate those found under equilibrium warming from a ‘mixed layer’ ocean version of the same model forced by a doubling of CO2. These secular feedbacks are then compared with those operating under unforced (interannual) variability. For water vapour, the interannual feedback is only around two-thirds the strength of the secular feedback. The pattern reveals widespread regions of negative feedback in the interannual case, in turn resulting from patterns of circulation change and regions of decreasing as well as increasing surface temperature. Considering the vertical structure of the two, it is found that although positive net mid to upper tropospheric contributions dominate both, they are weaker (and occur lower) under interannual variability than under secular change and are more narrowly confined to the tropics. Lapse rate feedback from variability shows weak negative feedback over low latitudes combined with strong positive feedback in mid-to-high latitudes resulting in no net global feedback—in contrast to the dominant negative low to mid-latitude response seen under secular climate change. Surface albedo feedback is, however, slightly stronger under interannual variability—partly due to regions of extremely weak, or even negative, feedback over Antarctic sea ice in the transient experiment. Both long and shortwave global cloud feedbacks are essentially zero on interannual timescales, with the shortwave term also being very weak under climate change, although cloud fraction and optical property components show correlation with global temperature both under interannual variability and transient climate change. The results of this modelling study, although for a single model only, suggest that the analogues provided by interannual variability may provide some useful pointers to some aspects of climate change feedback strength, particularly for water vapour and surface albedo, but that structural differences will need to be heeded in such an analysis.  相似文献   

20.
A simulation of the possible consequences of a doubling of the CO2 content of the atmosphere has been performed with a low resolution global climatic model. The model included the diurnal and seasonal cycles, computed sea ice amount and cloud cover, and used implied oceanic heat fluxes to represent transport processes in the oceans. A highly responsive 2-layer soil moisture formulation was also incorporated. Twenty year equilibrated simulations for control (1 × CO2) and greenhouse (2 × CO2) conditions were generated. The major emphasis of the analysis presented here is on the intra-annual and interannual variability of the greenhouse run with respect to the control run. This revealed considerable differences from the time-averaged results with occasions of marked positive and negative temperature deviations. Of particular interest were the periods of negative temperature departures compared to the control run which were identified, especially over the Northern Hemisphere continents. Temporal and spatial precipitation and soil moisture anomalies also occurred, some of which were related to the surface temperature changes. Substantial sea surface temperature anomalies were apparent in the greenhouse run, indicating that a source of climatic forcing existed in addition to that due to doubling of the CO2. Comparison of the intra-annual and interannual variability of the control run with that of the greenhouse run suggests that, in many situations, it will be difficult to identify a greenhouse signal against the intrinsic natural variability of the climatic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号