首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study is to investigate the predictability of monthly climate variables in the Mediterranean area by using statistical models. It is a well-known fact that the future state of the atmosphere is sensitive to preceding conditions of the slowly varying ocean component with lead times being sufficiently long for predictive assessments. Sea surface temperatures (SSTs) are therefore regarded as one of the best variables to be used in seasonal climate predictions. In the present study, SST-regimes which have been derived and discussed in detail in Part I of this paper, are used with regard to monthly climate predictions for the Mediterranean area. Thus, cross-correlations with time lags from 0 up to 12?months and ensuing multiple regression analyses between the large-scale SST-regimes and monthly precipitation and temperature for Mediterranean sub-regions have been performed for the period 1950?C2003. Statistical hindcast ensembles of Mediterranean precipitation including categorical forecast skill can be identified only for some months in different seasons and for some individual regions of the Mediterranean area. Major predictors are the tropical Atlantic Ocean and the North Atlantic Ocean SST-regimes, but significant relationships can also be found with tropical Pacific and North Pacific SST-regimes. Statistical hindcast ensembles of Mediterranean temperature with some categorical forecast skill can be determined primarily for the Western Mediterranean and the North African regions throughout the year. As for precipitation the major predictors for temperature are located in the tropical Atlantic Ocean and the North Atlantic Ocean, but some connections also exist with the Pacific SST variations.  相似文献   

2.
The dominant mode of coupled variability over the South Atlantic Ocean is known as “South Atlantic Dipole” (SAD) and is characterized by a dipole in sea surface temperature (SST) anomalies with centers over the tropical and the extratropical South Atlantic. Previous studies have shown that variations in SST related to SAD modulate large-scale patterns of precipitation over the Atlantic Ocean. Here we show that variations in the South Atlantic SST are associated with changes in daily precipitation over eastern South America. Rain gauge precipitation, satellite derived sea surface temperature and reanalysis data are used to investigate the variability of the subtropical and tropical South Atlantic and impacts on precipitation. SAD phases are assessed by performing Singular value decomposition analysis of sea level pressure and SST anomalies. We show that during neutral El Niño Southern Oscillation events, SAD plays an important role in modulating cyclogenesis and the characteristics of the South Atlantic Convergence Zone. Positive SST anomalies over the extratropical South Atlantic (SAD negative phase) are related to increased cyclogenesis near southeast Brazil as well as the migration of extratropical cyclones further north. As a consequence, these systems organize convection and increase precipitation over eastern South America.  相似文献   

3.
This study investigates relationships between Atlantic sea surface temperature (SST) and the variability of the characteristics of the South American Monsoon System (SAMS), such as the onset dates and total precipitation over central eastern Brazil. The observed onset and total summer monsoon precipitation are estimated for the period 1979?C2007. SST patterns are obtained from the Empirical Orthogonal Function. It is shown that variations in SST on interannual timescales over the South Atlantic Ocean play an important role in the total summer monsoon precipitation. Negative (positive) SST anomalies over the topical South Atlantic along with positive (negative) SST anomalies over the extratropical South Atlantic are associated with early (late) onsets and wet (dry) summers over southeastern Brazil and late (early) onset and dry (wet) summers over northeastern Brazil. Simulations from Phase 3 of the World Climate Research Programme Coupled Model Intercomparison Project (CMIP-3) are assessed for the 20th century climate scenario (1971?C2000). Most CMIP3 coupled models reproduce the main modes of variability of the South Atlantic Ocean. GFDL2.0 and MIROC-M are the models that best represent the SST variability over the South Atlantic. On the other hand, these models do not succeed in representing the relationship between SST and SAMS variability.  相似文献   

4.
The NCEP twentieth century reanalyis and a 500-year control simulation with the IPSL-CM5 climate model are used to assess the influence of ocean-atmosphere coupling in the North Atlantic region at seasonal to decadal time scales. At the seasonal scale, the air-sea interaction patterns are similar in the model and observations. In both, a statistically significant summer sea surface temperature (SST) anomaly with a horseshoe shape leads an atmospheric signal that resembles the North Atlantic Oscillation (NAO) during the winter. The air-sea interactions in the model thus seem realistic, although the amplitude of the atmospheric signal is half that observed, and it is detected throughout the cold season, while it is significant only in late fall and early winter in the observations. In both model and observations, the North Atlantic horseshoe SST anomaly pattern is in part generated by the spring and summer internal atmospheric variability. In the model, the influence of the ocean dynamics can be assessed and is found to contribute to the SST anomaly, in particular at the decadal scale. Indeed, the North Atlantic SST anomalies that follow an intensification of the Atlantic meridional overturning circulation (AMOC) by about 9 years, or an intensification of a clockwise intergyre gyre in the Atlantic Ocean by 6 years, resemble the horseshoe pattern, and are also similar to the model Atlantic Multidecadal Oscillation (AMO). As the AMOC is shown to have a significant impact on the winter NAO, most strongly when it leads by 9 years, the decadal interactions in the model are consistent with the seasonal analysis. In the observations, there is also a strong correlation between the AMO and the SST horseshoe pattern that influences the NAO. The analogy with the coupled model suggests that the natural variability of the AMOC and the gyre circulation might influence the climate of the North Atlantic region at the decadal scale.  相似文献   

5.
This paper examines the mean annual cycle, interannual variability, and leading patterns of the tropical Atlantic Ocean simulated in a long-term integration of the climate forecast system (CFS), a state-of-the-art coupled general circulation model presently used for operational climate prediction at the National Centers for Environmental Prediction. By comparing the CFS simulation with corresponding observation-based analyses or reanalyses, it is shown that the CFS captures the seasonal mean climate, including the zonal gradients of sea surface temperature (SST) in the equatorial Atlantic Ocean, even though the CFS produces warm mean biases and underestimates the variability over the southeastern ocean. The seasonal transition from warm to cold phase along the equator is delayed 1 month in the CFS compared with the observations. This delay might be related to the failure of the model to simulate the cross-equatorial meridional wind associated with the African monsoon. The CFS also realistically simulates both the spatial structure and spectral distributions of the three major leading patterns of the SST anomalies in the tropical Atlantic Ocean: the south tropical Atlantic pattern (STA), the North tropical Atlantic pattern (NTA), and the southern subtropical Atlantic pattern (SSA). The CFS simulates the seasonal dependence of these patterns and partially reproduces their association with the El Niño-Southern Oscillation. The dynamical and thermodynamical processes associated with these patterns in the simulation and the observations are similar. The air-sea interaction processes associated with the STA pattern are well simulated in the CFS. The primary feature of the anomalous circulation in the Northern Hemisphere (NH) associated with the NTA pattern resembles that in the Southern Hemisphere (SH) linked with the SSA pattern, implying a similarity of the mechanisms in the evolution of these patterns and their connection with the tropical and extratropical anomalies in their respective hemispheres. The anomalies associated with both the SSA and NTA patterns are dominated by atmospheric fluctuations of equivalent-barotropic structure in the extratropics including zonally symmetric and asymmetric components. The zonally symmetric variability is associated with the annular modes, the Arctic Oscillation in the NH and the Antarctic Oscillation in the SH. The zonally asymmetric part of the anomalies in the Atlantic is teleconnected with the anomalies over the tropical Pacific. The misplaced teleconnection center over the southern subtropical ocean may be one of the reasons for the deformation of the SSA pattern in the CFS.  相似文献   

6.
The tropical storm day(TSD)is a combined measure of genesis and lifespan.It reflects tropical cyclone(TC)overall activity,yet its variability has rarely been studied,especially globally.Here we show that the global total TSDs exhibit pronounced interannual(3-6 years)and decadal(10 years)variations over the past five-to-six decades without a significant trend.The leading modes of the interannual and decadal variability of global TSD feature similar patterns in the western Pacific and Atlantic,but different patterns in the Eastern Pacific and the Southern Indian Ocean.The interannual and decadal leading modes are primarily linked to El Ni?o-Southern Oscillation(ENSO)and Pacific Decadal Oscillation(PDO),respectively.The TSDs-ENSO relationship has been steady during the entire 55-year period,but the TSDs-PDO relationship has experienced a breakdown in the 1980 s.We find that the decadal variation of TSD in the Pacific is associated with the PDO sea surface temperature(SST)anomalies in the tropical eastern Pacific(PDO-E),while that in the Atlantic and the Indian Ocean is associated with the PDO SST anomalies in the western Pacific(PDO-W).However,the PDO-E and PDO-W SST anomalies are poorly coupled in the 1980 s,and this"destructive PDO"pattern results in a breakdown of the TSDs-PDO relationship.The results here have an important implication for seasonal to decadal predictions of global TSD.  相似文献   

7.
A standard principal component analysis has been performed over the Mediterranean and over the larger European region on monthly precipitation anomalies for the winters between 1979 and 1995. The main centres of action of the associated EOFs are very similar for the two regions and the two sets of PCs are highly correlated with each other. Focusing on the Mediterranean region, the same analysis has been performed using 500?hPa geopotential height monthly anomalies taken from the operational NCEP analysis. Comparing the two sets of PCs associated with upper-air and surface data, a strong correlation has been found suggesting the presence of a two-way link between regional precipitation patterns and large-scale circulation anomalies. For both fields, the largest fraction of variance is explained by the North Atlantic Oscillation, while smaller but still substantial fractions are explained by other known patterns of large-scale variability such as the Eastern Atlantic pattern and the Euro-Atlantic blocking. No detectable connection has been found between Mediterranean precipitation patterns and El Niño SST anomalies during winter. With respect to temporal variability, significant trends have been found over most European areas during the winters considered. The associated pattern is characterised by a substantial increase of precipitation over western Scandinavia and a general decrease over southern Europe. This result is confirmed by analysing data from stations located in northern Italy.  相似文献   

8.
The latest operational version of the ECMWF seasonal forecasting system is described. It shows noticeably improved skill for sea surface temperature (SST) prediction compared with previous versions, particularly with respect to El Nino related variability. Substantial skill is shown for lead times up to 1?year, although at this range the spread in the ensemble forecast implies a loss of predictability large enough to account for most of the forecast error variance, suggesting only moderate scope for improving long range El Nino forecasts. At shorter ranges, particularly 3?C6?months, skill is still substantially below the model-estimated predictability limit. SST forecast skill is higher for more recent periods than earlier ones. Analysis shows that although various factors can affect scores in particular periods, the improvement from 1994 onwards seems to be robust, and is most plausibly due to improvements in the observing system made at that time. The improvement in forecast skill is most evident for 3-month forecasts starting in February, where predictions of NINO3.4 SST from 1994 to present have been almost without fault. It is argued that in situations where the impact of model error is small, the value of improved observational data can be seen most clearly. Significant skill is also shown in the equatorial Indian Ocean, although predictive skill in parts of the tropical Atlantic are relatively poor. SST forecast errors can be especially high in the Southern Ocean.  相似文献   

9.
Coupled variability and air-sea interaction in the South Atlantic Ocean   总被引:2,自引:1,他引:2  
A total of 52 years of data (1949–2000) from the NCEP/NCAR reanalysis are used to investigate mechanisms involved in forcing and damping of sea surface temperature (SST) variability in the South Atlantic Ocean. Organized patterns of coupled ocean–atmosphere variability are identified using EOF and SVD analyses. The leading mode of coupled variability consists of an SST pattern with a strong northeast–southwest gradient and an SLP monopole centered at 15°W, 45°S. The anomalous winds associated with this monopole generate the SST pattern through anomalous latent heat flux and mixed layer deepening. Other heat flux components and anomalous Ekman transport play only a secondary role. Once established, the SST pattern is attenuated through latent heat flux. The higher SST modes are also induced by anomalous winds and destroyed by latent heat flux. It thus appears that the coupled variability in the South Atlantic Ocean consists of atmospheric circulation anomalies that induce SST anomalies through anomalous latent heat fluxes and wind-induced mixed layer deepening. These SST anomalies are destroyed by latent heat flux with no detectable systematic feedback onto the atmospheric circulation. Atmospheric variability in the South Atlantic is found to be largely independent of that elsewhere, although there is a weak relation with ENSO (El Niño-Southern Oscillation).  相似文献   

10.
The main goal of this study is to determine the oceanic regions corresponding to variability in African rainfall and seasonal differences in the atmospheric teleconnections. Canonical correlation analysis (CCA) has been applied in order to extract the dominant patterns of linear covariability. An ensemble of six simulations with the global atmospheric general circulation model ECHAM4, forced with observed sea surface temperatures (SSTs) and sea ice boundary variability, is used in order to focus on the SST-related part of African rainfall variability. Our main finding is that the boreal summer rainfall (June–September mean) over Africa is more affected by SST changes than in boreal winter (December–March mean). In winter, there is a highly significant link between tropical African rainfall and Indian Ocean and eastern tropical Pacific SST anomalies, which is closely related to El Niño-Southern Oscillation (ENSO). However, long-term changes are found to be associated with SST changes in the Indian and tropical Atlantic Oceans, thus, showing that the tropical Atlantic plays a critical role in determining the position of the intertropical convergence zone (ITCZ). Since ENSO is less in summer, the tropical Pacific and the Indian Oceans are less important for African rainfall. The African summer monsoon is strongly influenced by SST variations in the Gulf of Guinea, with a response of opposite sign over the Sahelian zone and the Guinean coast region. SST changes in the subtropical and extratropical oceans mostly take place on decadal time scales and are responsible for low-frequency rainfall fluctuations over West Africa. The modelled teleconnections are highly consistent with the observations. The agreement for most of the teleconnection patterns is remarkable and suggests that the modelled rainfall anomalies serve as suitable predictors for the observed changes.  相似文献   

11.
Local to regional climate anomalies are to a large extent determined by the state of the atmospheric circulation. The knowledge of large-scale sea level pressure (SLP) variations in former times is therefore crucial when addressing past climate changes across Europe and the Mediterranean. However, currently available SLP reconstructions lack data from the ocean, particularly in the pre-1850 period. Here we present a new statistically-derived 5° × 5° resolved gridded seasonal SLP dataset covering the eastern North Atlantic, Europe and the Mediterranean area (40°W–50°E; 20°N–70°N) back to 1750 using terrestrial instrumental pressure series and marine wind information from ship logbooks. For the period 1750–1850, the new SLP reconstruction provides a more accurate representation of the strength of the winter westerlies as well as the location and variability of the Azores High than currently available multiproxy pressure field reconstructions. These findings strongly support the potential of ship logbooks as an important source to determine past circulation variations especially for the pre-1850 period. This new dataset can be further used for dynamical studies relating large-scale atmospheric circulation to temperature and precipitation variability over the Mediterranean and Eurasia, for the comparison with outputs from GCMs as well as for detection and attribution studies.  相似文献   

12.
Summary The Southwestern Cape (SWC) region of South Africa is characterized by winter rainfall mainly via cold fronts and by substantial interannual variability. Evidence is presented that interannual variability in SWC winter rainfall is related to sea-surface temperature (SST) and sea-ice anomalies in the central South Atlantic and adjoining Southern Ocean and to large scale ocean–atmosphere interaction in this region. During wet winters, the jet is strengthened just upstream of the SWC and significant cyclonic anomalies extend from the SW Atlantic over the region. SST tends to be anomalously warm (cool) in the SW Atlantic and SE Atlantic (central South Atlantic) and sea-ice extent increased in the central South Atlantic sector of the Southern Ocean. These patterns favor increased cyclogenesis upstream, a more northward track of midlatitude depressions, local intensification near the SWC and enhanced rainfall. Roughly the reverse patterns occur during dry winters. Some preliminary results from atmospheric GCM experiments are presented which help support these findings. Received November 9, 2001 Revised December 28, 2001  相似文献   

13.
Since the 1950s, the terrestrial carbon uptake has been characterized by interannual variations, which are mainly determined by interannual variations in gross primary production (GPP). Using an ensemble of seven-member TRENDY (Trends in Net Land–Atmosphere Carbon Exchanges) simulations during 1951–2010, the relationships of the interannual variability of seasonal GPP in China with the sea surface temperature (SST) and atmospheric circulations were investigated. The GPP signals that mostly relate to the climate forcing in terms of Residual Principal Component analysis (hereafter, R-PC) were identified by separating out the significant impact from the linear trend and the GPP memory. Results showed that the seasonal GPP over China associated with the first R-PC1 (the second R-PC2) during spring to autumn show a monopole (dipole or tripole) spatial structure, with a clear seasonal evolution for their maximum centers from springtime to summertime. The dominant two GPP R-PC are significantly related to Sea Surface Temperature (SST) variability in the eastern tropical Pacific Ocean and the North Pacific Ocean during spring to autumn, implying influences from the El Ni?o–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). The identified SST and circulation factors explain 13%, 23% and 19% of the total variance for seasonal GPP in spring, summer and autumn, respectively. A clearer understanding of the relationships of China’s GPP with ocean–atmosphere teleconnections over the Pacific and Atlantic Ocean should provide scientific support for achieving carbon neutrality targets.  相似文献   

14.
Summary Climatic patterns associated with extreme modes of summer rainfall over southern Africa are investigated using composite techniques. Differences between the wet summers of the mid-1970s and the dry summers of the early 1980s are highlighted. In dry summers both the Southern Oscillation Index (SOI) and Quasi-Biennial Oscillation (QBO) are negatively biased. Composite difference fields of outgoing longwave radiation (OLR), sea surface temperature (SST), and upper and lower tropospheric wind are analysed. The OLR difference field indicates the widespread nature of convective variations with a consistent sign in the domain 15–33° S, 0–40° E. An area of opposing sign is conspicuous over the southwest Indian Ocean and represents a dipole, whereby wet summers over southern Africa coincide with dry summers over the adjacent ocean. This dipole behaviour is an expression of the primary mode of interannual climatic variability in the region. SST composite differences are negative over a wide portion of the central equatorial Indian Ocean and SE Atlantic, and positive to the south of Africa where the Agulhas Current flows. Wind composites reveal distinctive circulation differences in the extreme summers considered. In the tropical zone off the east coast of Africa difference vectors indicate upper westerly and lower easterly circulation anomalies, and distinguish a pathway for moist Indian Ocean air. A deep anticyclonic gyre is located over the region of positive SST differences in the sub-tropics to the SE of Africa. The identification of climatic patterns in extreme summers offers some useful guidelines in seasonal forecasts.With 6 Figures  相似文献   

15.
Impact of ocean model resolution on CCSM climate simulations   总被引:1,自引:1,他引:0  
The current literature provides compelling evidence suggesting that an eddy-resolving (as opposed to eddy-permitting or eddy-parameterized) ocean component model will significantly impact the simulation of the large-scale climate, although this has not been fully tested to date in multi-decadal global coupled climate simulations. The purpose of this paper is to examine how resolved ocean fronts and eddies impact the simulation of large-scale climate. The model used for this study is the NCAR Community Climate System Model version 3.5 (CCSM3.5)—the forerunner to CCSM4. Two experiments are reported here. The control experiment is a 155-year present-day climate simulation using a 0.5° atmosphere component (zonal resolution 0.625 meridional resolution 0.5°; land surface component at the same resolution) coupled to ocean and sea-ice components with zonal resolution of 1.2° and meridional resolution varying from 0.27° at the equator to 0.54° in the mid-latitudes. The second simulation uses the same atmospheric and land-surface models coupled to eddy-resolving 0.1° ocean and sea-ice component models. The simulations are compared in terms of how the representation of smaller scale features in the time mean ocean circulation and ocean eddies impact the mean and variable climate. In terms of the global mean surface temperature, the enhanced ocean resolution leads to a ubiquitous surface warming with a global mean surface temperature increase of about 0.2?°C relative to the control. The warming is largest in the Arctic and regions of strong ocean fronts and ocean eddy activity (i.e., Southern Ocean, western boundary currents). The Arctic warming is associated with significant losses of sea-ice in the high-resolution simulation. The sea surface temperature gradients in the North Atlantic, in particular, are better resolved in the high-resolution model leading to significantly sharper temperature gradients and associated large-scale shifts in the rainfall. In the extra-tropics, the interannual temperature variability is increased with the resolved eddies, and a notable increases in the amplitude of the El Ni?o and the Southern Oscillation is also detected. Changes in global temperature anomaly teleconnections and local air-sea feedbacks are also documented and show large changes in ocean–atmosphere coupling. In particular, local air-sea feedbacks are significantly modified by the increased ocean resolution. In the high-resolution simulation in the extra-tropics there is compelling evidence of stronger forcing of the atmosphere by SST variability arising from ocean dynamics. This coupling is very weak or absent in the low-resolution model.  相似文献   

16.
 This study examines time evolution and statistical relationships involving the two leading ocean-atmosphere coupled modes of variability in the tropical Atlantic and some climate anomalies over the tropical 120 °W–60 °W region using selected historical files (75-y near global SSTs and precipitation over land), more recent observed data (30-y SST and pseudo wind stress in the tropical Atlantic) and reanalyses from the US National Centers for Environmental Prediction (NCEP/NCAR) reanalysis System on the period 1968–1997: surface air temperature, sea level pressure, moist static energy content at 850 hPa, precipitable water and precipitation. The first coupled mode detected through singular value decomposition of the SST and pseudo wind-stress data over the tropical Atlantic (30 °N–20 °S) expresses a modulation in the thermal transequatorial gradient of SST anomalies conducted by one month leading wind-stress anomalies mainly in the tropical north Atlantic during northern winter and fall. It features a slight dipole structure in the meridional plane. Its time variability is dominated by a quasi-decadal signal well observed in the last 20–30 ys and, when projected over longer-term SST data, in the 1920s and 1930s but with shorter periods. The second coupled mode is more confined to the south-equatorial tropical Atlantic in the northern summer and explains considerably less wind-stress/SST cross-covariance. Its time series features an interannual variability dominated by shorter frequencies with increased variance in the 1960s and 1970s before 1977. Correlations between these modes and the ENSO-like Nino3 index lead to decreasing amplitude of thermal anomalies in the tropical Atlantic during warm episodes in the Pacific. This could explain the nonstationarity of meridional anomaly gradients on seasonal and interannual time scales. Overall the relationships between the oceanic component of the coupled modes and the climate anomaly patterns denote thermodynamical processes at the ocean/atmosphere interface that create anomaly gradients in the meridional plane in a way which tends to alter the north–south movement of the seasonal cycle. This appears to be consistent with the intrinsic non-dipole character of the tropical Atlantic surface variability at the interannual time step and over the recent period, but produces abnormal amplitude and/or delayed excursions of the intertropical convergence zone (ITCZ). Connections with continental rainfall are approached through three (NCEP/NCAR and observed) rainfall indexes over the Nordeste region in Brazil, and the Guinea and Sahel zones in West Africa. These indices appear to be significantly linked to the SST component of the coupled modes only when the two Atlantic modes+the ENSO-like Nino3 index are taken into account in the regressions. This suggests that thermal forcing of continental rainfall is particularly sensitive to the linear combinations of some basic SST patterns, in particular to those that create meridional thermal gradients. The first mode in the Atlantic is associated with transequatorial pressure, moist static energy and precipitable water anomaly patterns which can explain abnormal location of the ITCZ particularly in northern winter, and hence rainfall variations in Nordeste. The second mode is more associated with in-phase variations of the same variables near the southern edge of the ITCZ, particularly in the Gulf of Guinea during the northern spring and winter. It is primarily linked to the amplitude and annual phase of the ITCZ excursions and thus to rainfall variations in Guinea. Connections with Sahel rainfall are less clear due to the difficulty for the model to correctly capture interannual variability over that region but the second Atlantic mode and the ENSO-like Pacific variability are clearly involved in the Sahel climate interannual fluctuations: anomalous dry (wet) situations tend to occur when warmer (cooler) waters are present in the eastern Pacific and the gulf of Guinea in northern summer which contribute to create a northward (southward) transequatorial anomaly gradient in sea level pressure over West Africa. Received: 14 April 1998 / Accepted: 24 December 1998  相似文献   

17.
Rainfall over West Africa shows strong interannual variability related to changes in Sea Surface Temperature (SST). Nevertheless, this relationship seem to be non-stationary. A particular turning point is the decade of the 1970s, which witnessed a number of changes in the climatic system, including the climate shift of the late 1970s. The first aim of this study is to explore the change in the interannual variability of West African rainfall after this shift. The analysis indicates that the dipolar features of the rainfall variability over this region, related to changes in the Atlantic SST, disappear after this period. Also, the Pacific SST variability has a higher correlation with Guinean rainfall in the recent period. The results suggest that the current relationship between the Atlantic and Pacific El Ni?o phenomena is the principal responsible for these changes. A fundamental goal of climate research is the development of models simulating a realistic current climate. For this reason, the second aim of this work is to test the performance of Atmospheric General Circulation models in simulating rainfall variability over West Africa. The models have been run with observed SSTs for the common period 1957?C1998 as part of an intercomparison exercise. The results show that the models are able to reproduce Guinean interannual variability, which is strongly related to SST variability in the Equatorial Atlantic. Nevertheless, problems in the simulation of the Sahelian interannual variability appear: not all models are able to reproduce the observed negative link between rainfall over the Sahel and El Ni?o-like anomalies in the Pacific, neither the positive correlation between Mediterranean SSTs and Sahelian rainfall.  相似文献   

18.
The seasonal prediction skill of the Asian summer monsoon is assessed using retrospective predictions (1982–2009) from the ECMWF System 4 (SYS4) and NCEP CFS version 2 (CFSv2) seasonal prediction systems. In both SYS4 and CFSv2, a cold bias of sea-surface temperature (SST) is found over the equatorial Pacific, North Atlantic, Indian Oceans and over a broad region in the Southern Hemisphere relative to observations. In contrast, a warm bias is found over the northern part of North Pacific and North Atlantic. Excessive precipitation is found along the ITCZ, equatorial Atlantic, equatorial Indian Ocean and the maritime continent. The southwest monsoon flow and the Somali Jet are stronger in SYS4, while the south-easterly trade winds over the tropical Indian Ocean, the Somali Jet and the subtropical northwestern Pacific high are weaker in CFSv2 relative to the reanalysis. In both systems, the prediction of SST, precipitation and low-level zonal wind has greatest skill in the tropical belt, especially over the central and eastern Pacific where the influence of El Nino-Southern Oscillation (ENSO) is dominant. Both modeling systems capture the global monsoon and the large-scale monsoon wind variability well, while at the same time performing poorly in simulating monsoon precipitation. The Asian monsoon prediction skill increases with the ENSO amplitude, although the models simulate an overly strong impact of ENSO on the monsoon. Overall, the monsoon predictive skill is lower than the ENSO skill in both modeling systems but both systems show greater predictive skill compared to persistence.  相似文献   

19.
Spatial patterns of mid-latitude large-scale ocean-atmosphere interaction on monthly to seasonal time scales have been observed to exhibit a similar structure in both the North Pacific and North Atlantic basins. These patterns have been interpreted as a generic oceanic response to surface wind anomalies, whereby the anomalous winds give rise to corresponding anomalous regions of surface heat flux and consequent oceanic cooling. This mechanistic concept is investigated in this study using numerical models of a global atmosphere and a mid-latitude ocean basin (nominally the Atlantic). The models were run in both coupled and uncoupled mode. Model output was used to generate multi-year time series of monthly mean fields. Empirical orthogonal function (EOF) and singular value decomposition (SVD) analyses were then used to obtain the principal patterns of variability in heat flux, air temperature, wind speed, and sea surface temperature (SST), and to determine the relationships among these variables. SVD analysis indicates that the turbulent heat flux from the ocean to the atmosphere is primarily controlled by the surface scalar wind speed, and to a lesser extent by air temperature and SST. The principal patterns of air-sea interaction are closely analogous to those found in observational data. In the atmosphere, the pattern consists of a simultaneous strengthening (or weakening) of the mid-latitude westerlies and the easterly trades. In the ocean there is cooling (warming) under the anomalously strong (weak) westerlies and trade winds, with a weaker warming (cooling) in the region separating the westerly and easterly wind regimes. These patterns occur in both coupled and uncoupled models and the primary influence of the coupling is in localizing the interaction patterns. The oceanic patterns can be explained by the principal patterns of surface heat flux and the attendant warming or cooling of the ocean mixed layer.  相似文献   

20.
运用NCEP、Had ISST再分析资料,北大西洋涛动(NAO)月指数序列,探讨了海表面温度(SST)锋的时空变化特征,揭示了北大西洋SST锋的主要气候变率及其与北大西洋风暴轴和大气大尺度环流异常的关系。研究表明,剔除季节循环后的SST锋显示其最主要变率为锋区的向南/北摆动,其对应的风暴轴发生相应的西南/东北移动,并同时在北大西洋上空对应一个跨海盆的位势高度负/正异常。这种环流异常可引起高纬度海平面气压(SLP)的反气旋/气旋式环流,这有利于增强海表面风对大洋副极地环流的负/正涡度异常输入,进一步减弱/加强了高纬度上层冷水向SST锋区的输送。北大西洋SST锋的另一主要模态为锋区在南北方向的分支和合并。当SST锋异常在40°N~45°N以单支形式加强时,对流层位势高度场和SLP南北梯度增大,对应NAO正位相,此时风暴轴也为单支型;同时SLP异常场促使冰岛附近具有气旋式风应力异常,亚速尔地区具有反气旋式风应力异常,导致副极地环流和副热带环流均加强,增加高纬度冷水和低纬度暖水在锋区的输入,从而进一步增强40°N~45°N附近的SST锋区。当SST锋异常在40°N~45°N纬带南北发生分支时,风暴轴也同时出现北强南弱的南北分支,此时对应了负位相NAO,来自北南的冷暖水输送减弱,SST锋也发生减弱分支。此外,位于大洋内区的SST锋东端也存在一个偶极子型的模态,尽管其解释方差相对较小,但仍与偏东北的NAO型具有显著相关。谱分析表明,北大西洋SST锋与风暴轴具有1~3年和年代际共振,与中高纬大尺度环流也存在周期1~3年的共变信号,其中准一年共变信号体现了SST锋和NAO之间的对应关系。进一步诊断分析表明,SST锋上空的近表层大气斜压性和经向温度梯度随着SST锋的增强而增强,经向热通量的向北输送导致涡动有效位能的增加;海洋的非绝热加热产生更强的垂直热量通量,这有利于涡动有效位能释放成为涡动动能,从而表现为该区域的风暴轴加强,并进一步影响风暴轴中的天气尺度扰动与下游大尺度环流异常的相互作用过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号