首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
准噶尔地块可分为东、西准噶尔构造区和准噶尔盆地.自古生代以来准噶尔盆地及其周边大规模的火山活动和复杂的构造演化、以及有关准噶尔盆地基底及其与周边的构造关系及其演化,一直存在争议.利用EMAG2岩石圈磁异常模型,采用三维反演技术,对准噶尔及其周边地区的地壳磁化率进行成像,得到了0~60 km深度范围之内的磁性结构.反演结果显示:准噶尔盆地腹部地壳磁性结构相对完整;西准噶尔地壳具有与洋壳俯冲相关岛弧环境的磁性结构;东准噶尔和吐哈盆地磁性层较厚且连续,具有古陆基底特征.此外,地壳磁化率异常展示了区域断裂构造及其深部延伸特征,同时显示在覆盖区可能存在隐伏深大断裂带.对该地区岩石圈磁异常成因的定量解释,为深入剖析准噶尔地区岩石圈构造及其与周边构造单元之间的关系提供了有益的资料和参考.   相似文献   

2.
青藏高原东北缘岩石圈密度与磁化强度及动力学含义   总被引:4,自引:0,他引:4  
利用横贯柴达木盆地南北的格尔木—花海子剖面岩石圈二维P波速度结构以及地震波速度与介质密度之间的关系,建立了该剖面岩石圈二维密度结构与二维磁化强度的初始模型。依据重磁同源原理,在柴达木盆地重、磁异常的二重约束下完成了重磁联合反演,获得了该剖面岩石圈二维密度结构与二维磁化强度分布。结果表明:柴达木盆地地壳厚度沿测线变化较大,平均厚度约60km。在柴达木盆地南缘地壳厚约50km,达布逊湖附近地壳最厚为63km左右,大柴旦附近地壳较薄,为50km左右。柴达木盆地的地壳纵向上可分为三层,即上地壳、中地壳与下地壳。位于盆地中部的中、下地壳分别发育大范围的壳内低密度体,并处于上地幔隆起的背景之上;横向上可将盆地分成南北两个部分,分界在达布逊湖附近。整个剖面结晶基底埋深变化也很大,在达布逊湖附近为12km,在昆仑山北缘基底几乎出露地表。结晶基底的展布形态与地壳底界,即莫霍面呈近似镜像对称。综合研究认为,柴达木盆地的岩石圈结构存在着明显的南北差异,其分界在达布逊湖的北面。在盆地南部,岩石圈介质横向变化较小,各层介质分布正常;在盆地的北侧,岩石圈结构特别在中、下地壳和上地幔顶部横向上发生了变化。壳内低密度体的存在意味着柴达木盆地具有较热的岩石圈和上地幔,加之基底界面与莫霍面的镜像对称分布,形成与准噶尔盆地和塔里木盆地的构造差异。多种地球物理参数所揭示的地壳上地幔结构及其横向变化特点为柴达木盆地构造演化及青藏高原北部边界的地球动力学研究提供了岩石圈尺度的地球物理证据。  相似文献   

3.
广西地处华南地块、印支地块与西太平洋板块的汇合部位,因特殊的构造部位,广西区内大地构造单元归属、构造单元边界等许多基础地质问题一直存在争议.自新生代以来的板块构造运动对岩石圈的改造,广西地壳与上地幔在地震波速度及温度结构方面具有显著差异.应用卫星重、磁异常数据以及区域重力和航磁资料对广西地区岩石圈密度和磁化率结构及其与上地壳构造的关系开展了研究,结果显示广西地区地壳密度和上地壳磁性结构与现今地表构造较为契合,但下地壳密度结构与上地幔存在不连续现象;此外,岩石圈磁化率结构指示中下地壳存在不同范围和程度的解耦.对广西岩石圈密度与磁性结构的解读认为,在中生代以来岩石圈被大规模改造的背景下,幔源物质上侵至上地壳的规模和范围都有限,这可能是整个广西地区上地幔结构与地壳构造不对应的主要原因.   相似文献   

4.
《地学前缘》2017,(3):13-26
文章主要利用中—新生代热史、地壳分层结构以及流变学参数,模拟计算渤海湾盆地中—新生代岩石圈热结构和热-流变结构演化特征。结果表明,盆地由三叠纪—侏罗纪时期的"冷幔热壳"型岩石圈热结构转变为白垩纪至今的"热幔冷壳"型岩石圈热结构。从济阳坳陷岩石圈热-流变结构演化特征来看,中生代早期上地壳上部、中地壳上部及上地幔顶部表现为厚的脆性层;早白垩世初期中地壳上部及上地幔顶部的脆性层完全转变为韧性层;晚白垩世开始,中地壳上部出现薄层的脆性层;古近纪早期中地壳上部脆性层变薄变浅;现今则除了发育上地壳上部、中地壳上部脆性层外,上地幔顶部开始在浅部发育薄的脆性层。中—新生代岩石圈总强度演化表明在早白垩世晚期和古近纪早期经历了两期减弱,中生代早期岩石圈总强度远大于中侏罗世之后的岩石圈总强度。岩石圈热-流变结构和强度演化与华北克拉通破坏过程中岩石圈厚度的变化具有良好的对应关系,从侧面反映太平洋板块俯冲和回撤导致华北克拉通东部破坏的地球动力学过程。因此,岩石圈热-流变结构可以为盆地形成、大陆边缘和造山带等的动力学演化过程研究提供科学依据。  相似文献   

5.
苏鲁大别造山带岩石圈三维P波速度结构特征   总被引:13,自引:1,他引:13  
本文全面收集整理并解析了地学断面、地震测深、体波和面波层析成像资料,得到了苏鲁大别造山带及其邻区岩石圈1°×1°三维P波速度数据体。研究结果表明,苏鲁与大别造山带高压、超高压变质带的岩石圈速度结构具有上地壳明显高速且上凸;中地壳增厚;下地壳埋藏较深且下凹等相似的基本特征。苏鲁和大别超高压变质带下的莫霍面比其周围深2~4 km,深度分别达到32~33 km和34~38 km。在大别造山带,有地壳低速体从南向北俯冲到上地幔的迹象,可能显示了扬子地块地壳物质向华北地块俯冲,坠入上地幔的残留体。超高压变质带岩石圈底部的地幔,往往有明显高速层或高速体存在。苏鲁与大别地区的岩石圈速度结构不同特征及其成因在于苏鲁地区上地壳P波速度更高,但是,下地壳下凹没有大别地区明显,而且区域构造较为均一。这可能是受到郯庐断层左行平移的主控影响所致。郯庐断裂带的上、中地壳和上地幔表现为相对低速异常,郯庐断裂及其地下延伸部分将岩石圈地幔浅部低速层和深部高速层切为两段,其影响深达岩石圈底部约90 km处。  相似文献   

6.
四川龙门山构造带是我国一条典型的冲断构造带,其岩石圈结构具层圈性,从浅部到深部可分为:上部地壳层(沉积盖层)、中部地壳层、下部地壳层、上地幔顶部层和软流圈以下层。龙门山地区岩石圈的层圈性决定了龙门山冲断带发生了由深部地幔物质的调整,使上地幔顶部层沿软流圈、下部地壳层沿莫霍面、中部地壳层沿壳内高导层由东向西的多级滑脱,从而导致上部地壳层沿其内的塑性层和结晶基底面由西向东的多层次推覆。这种深部多级滑脱和浅部多层次推覆产生了众多的地质现象和地球物理异常。  相似文献   

7.
华北克拉通晚中生代壳-幔拆离作用: 岩石流变学约束   总被引:6,自引:5,他引:1  
大陆岩石圈的流变学结构对于岩石圈深部过程(壳/幔过程)有着深刻的影响,直接表现在岩石圈壳-幔结构与浅部构造上.本文注意到华北克拉通晚中生代岩石圈减薄期间地壳的伸展、拆离与减薄在不同地区的宏观、微观构造及地壳岩石流变学等方面的差异表现与区域变化,以及现今和晚中生代时期岩石圈厚度的不均匀性.讨论了以水为主体的地质流体的存在对于岩石圈流变性的影响.综合克拉通东部与西部地壳/地幔厚度变化特点以及下地壳和上地幔含水性特点,阐述了晚中生代时期华北克拉通岩石圈内部壳幔耦合与解耦的规律,提出了华北岩石圈壳-幔拆离作用模型以解释华北克拉通晚中生代岩石圈减薄的基本现象与深部过程.提出区域性伸展作用是岩石圈减薄的主要动力学因素,东部地区在晚中生代伸展作用过程中壳-幔具有典型的解耦性,上部地壳、下部地壳和岩石圈地幔的变形具有显著差异性.而西部区壳幔总体具有耦合性,下地壳与岩石圈地幔共同构成流变学强度很高且难以变形的岩石圈根.  相似文献   

8.
在印度洋板块与欧亚板块碰撞、挤压作用下,促使深部物质重新分异、调整和运移,并导致了地壳的短缩增厚,而且造成了高原的整体隆升和深部壳、幔物质的侧向流展。基于青藏高原腹地和周边地域地壳与上地幔的成层速度结构,特别是其特异层序的展布研究表明,青藏高原地壳巨厚,但岩石圈却相对较薄;地壳中于深20±5km处存在一低速层,层速度为5.7±0.1km/s,厚度为8±2km;上地幔软流圈顶部深度为110±10km;下地壳与上地幔盖层物质以地壳低速层为上滑移面,以岩石圈漂曳的上地幔软流圈顶面为下滑移面,在印度洋板块N-NNE向力源作用下在同步运移,即形成了青藏高原腹地和周边地域特异的大陆地球动力学环境。  相似文献   

9.
钱知之  杨文采 《地质论评》2023,69(5):2023050007-2023050007
利用卫星重力场数据和小波多尺度分析方法对东非大裂谷进行三维密度结构成像,取得了东非大裂谷地壳和上地幔多个深度等效层上的密度扰动图像,为东非大裂谷岩石圈结构和动力学的研究提供了重要佐证。结果表明,东非大裂谷中段的西支裂谷与东支裂谷的幔源熔体同源,但是西支裂谷发育较不充分、形成较晚。东非大裂谷的动力学模式为熔流体上涌的树形分叉模式,其要点包括:① 低密度流体在软流圈大面积上涌;② 流体在岩石圈继续上涌,部分转化为基性岩浆岩,平面面积缩小;③ 进入地壳后上涌熔流体分叉成多支,平面总面积进一步缩小; ④ 熔流体上涌到上地壳后仅在裂谷带活动,反映为火山链和玄武岩带。  相似文献   

10.
利用卫星重力场数据和小波多尺度分析方法对东非大裂谷进行三维密度结构成像,取得了东非大裂谷地壳和上地幔多个深度等效层上的密度扰动图像,为东非大裂谷岩石圈结构和动力学的研究提供了重要佐证。结果表明,东非大裂谷中段的西支裂谷与东支裂谷的幔源熔体同源,但是西支裂谷发育较不充分、形成较晚。东非大裂谷的动力学模式为熔流体上涌的树形分叉模式,其要点包括:① 低密度流体在软流圈大面积上涌;② 流体在岩石圈继续上涌,部分转化为基性岩浆岩,平面面积缩小;③ 进入地壳后上涌熔流体分叉成多支,平面总面积进一步缩小; ④ 熔流体上涌到上地壳后仅在裂谷带活动,反映为火山链和玄武岩带。  相似文献   

11.
Located at the center of the Eurasian continent and accommodating as much as 44% of the present crustal shortening between India and Siberia, the Tianshan orogenic belt (TOB) is one of the youngest (<20 Ma) and highest (elevation>7000 m) orogenic belts in the world. It provides a natural laboratory for examining the processes of intracontinental deformation. In recent years, wide angle seismic reflection/refraction profiling and magnetotelluric sounding surveys have been carried out along a geoscience transect which extends northeastward from Xayar at the northern margin of the Tarim basin (TB), through the Tianshan orogenic belt and the Junggar basin (JB), to Burjing at the southern piedmont of the Altay Mountain. We have also obtained the 2D density structure of the crust and upper mantle of this area by using the Bouguer anomaly data of Northwestern Xinjiang. With these surveys, we attempt to image the 2D velocity and the 2D electric structure of the crust and upper mantle beneath the Tianshan orogenic belt and the Junggar basin. In order to obtain the small-scale structure of the crust–mantle transitional zone of the study area, the wavelet transform method is applied to the seismic wide angle reflection/refraction data. Combining our survey results with heat flow and other geological data, we propose a model that interprets the deep processes beneath the Tianshan orogenic belt and the Junggar basin.Located between the Tarim basin and the Junggar basin, the Tianshan orogenic belt is a block with relatively low velocity, low density, and partially high resistivity. It is tectonically a shortening zone under lateral compression. A detachment exists in the upper crust at the northern margin of the Tarim basin. Its lower part of the upper crust intruded into the lower part of the upper and the middle crust of the Tianshan, near the Korla fault; its middle crust intruded into the lower crust of the Tianshan; and its lower crust and lithospheric mantle subducted into the upper mantle of the Tianshan. In these processes, the mass of the lower crust of the Tarim basin was carried down to the upper mantle beneath the Tianshan, forming a 20-km-thick complex crust–mantle transitional zone composed of seven thin layers with a lower than average velocity. The thrusting and folding of the sedimentary cover, the intrusive layer in the upper and middle crust, and the mass added by the subduction of the Tarim basin into the upper mantle of the Tianshan are probably responsible for the crustal thickening of the Tianshan. Due to the important mass deficiency in the crust and the upper mantle of the Tianshan, buoyancy must occur and lead to rapid ascent of the Tianshan.The episodic tectonic uplift of the Tianshan and tectonic subsidence of the Junggar basin are closely related to the evolution of the Paleozoic, Mesozoic, and Cenozoic Tethys.  相似文献   

12.
We obtain a lithospheric shear‐wave velocity model across the Tien Shan orogenic belt by jointly inverting Rayleigh wave group velocities and teleseismic P‐wave receiver functions at 61 broadband seismic stations deployed in this region. Our new model reveals prominent lateral variations of shear‐wave velocity in both the crust and uppermost mantle. This model reveals different structures in the upper and middle crust across the Talas Fergana Fault, which may suggest the presence of a tectonic boundary between the western and central Tien Shan beneath the fault. According to the velocity images, the depth extent of the fault is ~40 km and this is confined to the crust. Pronounced low‐velocity anomalies are imaged in the middle crust and uppermost mantle beneath the southern and middle Tien Shan, implying that the upwelling of the materials from the upper mantle could have played an important role in the mountain building.  相似文献   

13.
利用中国地震台网和ISC台站记录的P波到时数据,采用球坐标系有限差分地震层析成像方法反演了南海东北部及其邻近地区壳幔三维P波速度结构,并分析了不同地质单元的构造差异及其深部特征。结果表明:南海东北部表现出陆架地区的岩石层特性,属于华南大陆向海区的延伸,岩石层厚度较大,现今不存在大规模的地幔热流活动,推测大陆边缘张裂作用仅限于地壳内部而没有延伸进入上地幔,具有非火山型大陆边缘的深部特点。中央海盆附近上地幔P波速度明显降低,与海盆下方地幔热流活动密切相关。不同的速度异常特征表明:华南大陆暨台湾地区属于欧亚大陆的正常地壳或是与菲律宾海板块相互作用产生的增厚型地壳,冲绳海槽则是弧后扩张产生的减薄型地壳。滨海断裂带作为华南大陆高速异常和南海北部高速异常的分界,代表了一定地质时期华南地块和南海地块的拼合边界。断裂附近的上地幔低速异常揭示了闽粤沿海岩浆作用的深层动力机制。吕宋岛弧、马尼拉海沟、东吕宋海槽的速度异常与其所处的特殊构造位置有密切的关系,清晰地反映出岛弧俯冲带的地壳结构差异;台湾南部至吕宋岛弧的上地幔低速异常揭示了两个重要火山链的深部构造特征,北吕宋海脊下方100 km深度的条带状高速异常有可能代表了俯冲下沉的岩石层板片。  相似文献   

14.
We study high-resolution three-dimensional P-wave velocity (Vp) tomography and anisotropic structure of the crust and uppermost mantle under the Helan–Liupan–Ordos western margin tectonic belt in North-Central China using 13,506 high-quality P-wave arrival times from 2666 local earthquakes recorded by 87 seismic stations during 1980–2008. Our results show that prominent low-velocity (low-V) anomalies exist widely in the lower crust beneath the study region and the low-V zones extend to the uppermost mantle in some local areas, suggesting that the lower crust contains higher-temperature materials and fluids. The major fault zones, especially the large boundary faults of major tectonic units, are located at the edge portion of the low-V anomalies or transition zones between the low-V and high-V anomalies in the upper crust, whereas low-V anomalies are revealed in the lower crust under most of the faults. Most of large historical earthquakes are located in the boundary zones where P-wave velocity changes drastically in a short distance. Beneath the source zones of most of the large historical earthquakes, prominent low-V anomalies are visible in the lower crust. Significant P-wave azimuthal anisotropy is revealed in the study region, and the pattern of anisotropy in the upper crust is consistent with the surface geologic features. In the lower crust and uppermost mantle, the predominant fast velocity direction (FVD) is NNE–SSW under the Yinchuan Graben and NWW–SEE or NW–SE beneath the Corridor transitional zone, Qilian Orogenic Belt and Western Qinling Orogenic Belt, and the FVD is NE–SW under the eastern Qilian Orogenic Belt. The anisotropy in the lower crust may be caused by the lattice-preferred orientation of minerals, which may reflect the lower-crustal ductile flow with varied directions. The present results shed new light on the seismotectonics and geodynamic processes of the Qinghai–Tibetan Plateau and its northeastern margin.  相似文献   

15.
A two-dimensional model of the crust and uppermost mantle for the western Siberian craton and the adjoining areas of the Pur-Gedan basin to the north and Baikal Rift zone to the south is determined from travel time data from recordings of 30 chemical explosions and three nuclear explosions along the RIFT deep seismic sounding profile. This velocity model shows strong lateral variations in the crust and sub-Moho structure both within the craton and between the craton and the surrounding region. The Pur-Gedan basin has a 15-km thick, low-velocity sediment layer overlying a 25-km thick, high-velocity crystalline crustal layer. A paleo-rift zone with a graben-like structure in the basement and a high-velocity crustal intrusion or mantle upward exists beneath the southern part of the Pur-Gedan basin. The sedimentary layer is thin or non-existent and there is a velocity reversal in the upper crust beneath the Yenisey Zone. The Siberian craton has nearly uniform crustal thickness of 40–43 km but the average velocity in the lower crust in the north is higher (6.8–6.9 km/s) than in the south (6.6 km/s). The crust beneath the Baikal Rift zone is 35 km thick and has an average crustal velocity similar to that observed beneath the southern part of craton. The uppermost mantle velocity varies from 8.0 to 8.1 km/s beneath the young West Siberian platform and Baikal Rift zone to 8.1–8.5 km/s beneath the Siberian craton. Anomalous high Pn velocities (8.4–8.5 km/s) are observed beneath the western Tunguss basin in the northern part of the craton and beneath the southern part of the Siberian craton, but lower Pn velocities (8.1 km/s) are observed beneath the Low Angara basin in the central part of the craton. At about 100 km depth beneath the craton, there is a velocity inversion with a strong reflecting interface at its base. Some reflectors are also distinguished within the upper mantle at depth between 230 and 350 km.  相似文献   

16.
王芃  张忠杰  张晰  韩颜颜  王敏玲  侯爵  徐涛 《岩石学报》2014,30(4):1179-1187
龙门山是我国东西构造、地貌分界线的重要组成部分。其两侧的岩石圈结构差异,是形成龙门山造山带的主要原因之一,并对龙门山的构造演化起着持续影响。为了解龙门山两侧壳幔结构差异,本文从重力角度探讨跨龙门山地区的地壳密度结构。我们使用EGM2008模型的重力异常数据,以最新的阿坝-遂宁人工源地震剖面速度模型为基础,得到了龙门山造山带中段及其邻区的精细地壳密度结构。密度结构显示松潘-甘孜地区和四川盆地分别具有软弱和坚硬的下地壳。根据本文所得到的地壳密度结构模型,我们认为龙门山的隆升主要受印度洋板块与欧亚大陆板块的陆-陆碰撞作用影响,强烈的挤压作用使青藏高原物质向东运移,东移物质在青藏高原东缘龙门山地区受到坚硬的四川盆地的阻挡转而向上运移,造成了龙门山的隆升。  相似文献   

17.
根据钻井和航磁资料,准噶尔盆地基底可划分为西、北、南三区。3个地区火山岩中辉石的化学成分、种属名称各不相同。辉石化学成分反映出来的寄主岩的碱度、碱度演化趋势以及寄主岩形成的构造环境、构造环境演化史均各有差异,佐证了准噶尔盆地基底是由哈萨克斯坦板块东南缘、西伯利亚板块西南缘和塔里木板块北缘增生大陆拼合而成。其中西、北两区拼合较早,早石炭世末的早海西运动时抬升成陆;南区成陆较晚,晚古炭世末的晚海西运动使南区与西、北两区联合大陆对接,形成完整的准噶尔盆地海西褶皱基底。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号