首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 759 毫秒
1.
Abstract— We calculated the trajectories of molten spheres of iron sulfide inclusions inside a melted chondrule during the nebular shock wave heating. Our calculations included the effects of high‐velocity internal flow in the melted chondrule and apparent gravitational force caused by the drag force of nebular gas flow. The calculated results show that large iron sulfide inclusions, which have radii 0.23 times larger than those of the parent chondrules, must reach the surface of the melted chondrule within a short period of time (<<1 s). This effect will provide us with very important information about chondrule formation by nebular shock wave heating.  相似文献   

2.
Abstract— Dynamic crystallization experiments on the ordinary chondrite Queen Alexandra Range (QUE) 97008 document textural features that occur in partially melted chondrules with changes in the degree of partial melting and cooling rate. We carried out a matrix of experiments, at peak temperatures of 1250, 1350, 1370, and 1450 °C, and cooling rates of 1000, 100, and 10 °C/h, and quenched. All experimentally produced textures closely resemble textures of porphyritic chondrules. Because peak temperatures were well below the liquidi for typical chondrule compositions, the textural similarities support an incomplete melting origin for most porphyritic chondrules. Our experiments can be used to determine the extent of melting of natural chondrules by comparing textural relationships among the experimental results with those of natural chondrules. We used our experiments along with X‐ray computerized tomography scans of a Semarkona chondrule to evaluate two other methods that have been used previously to quantify the degree of melting: nominal grain size and convolution index. Proper applications of these methods can result in valid assessments of a chondrule's degree of melting, but only if accompanied by careful interpretation, as chondrule textures are controlled by more than just the extent of melting. Such measurements of single aspects of chondrule textures might be coupled with qualitative analysis of other textural aspects to accurately determine degree of melting.  相似文献   

3.
Chondrule K7p from LL3.0 Semarkona consists of four nested barred‐olivine (BO) chondrules. The innermost BO chondrule (chondrule 1) formed by complete melting of an olivine‐rich dustball. After formation, the chondrule was incorporated into another olivine‐rich dustball. A second heating event caused this second dustball to melt; the mesostasis and some of the olivine in chondrule 1 were probably also melted at this time, but the chondrule 1 structure remained largely intact. At this stage, the object was an enveloping compound BO chondrule. This two‐step process of melting and dustball enshrouding repeated two more times. The different proportions of olivine and glass in chondrules 1–4 suggest that the individual precursor dustballs differed in the amounts of chondrule fragments they contained and the mineral proportions in those fragments. The final dustball (which ultimately formed chondrule 4) was somewhat more ferroan; after melting, crystallizing, and quenching, chondrule 4 contained olivine and glass with higher FeO and MnO contents than those of the earlier formed chondrules. Subsequent aqueous alteration on the LL parent body transformed the abundant metal blebs and stringers at the chondrule surface into carbide, iron oxide, and minor Ni‐rich metal. Portions of the mesostasis underwent dissolution, producing holes and adjacent blades of more resistant material. Much of the glass in the chondrule remained isotropic, even after minor hydration and leaching. The sharp, moderately lobate boundary between the extensively altered mesostasis and the isotropic glass represents the reaction front beyond which there was little or no glass dissolution.  相似文献   

4.
Abstract— The liquidus temperatures of chondrules range from about 1200 °C to almost 1900 °C, based on the calculation of Herzberg (1979). Dynamic melting and crystallization experiments with no external seeding suggest that some chondrule textures formed with initial temperatures below the liquidus (e.g., porphyritic, granular) and some were completely melted (e.g., excentroradial, glassy). Type I and III chondrules in carbonaceous chondrites in this interpretation consist of incompletely melted magnesian chondrules, completely melted silica-rich chondrules and intermediate composition chondrules with both porphyritic and nonporphyritic textures. A similar pattern for ordinary chondrites, with data also for Type II porphyritic and barred olivine chondrules, suggests that few chondrules with liquidus temperatures over 1750 °C were completely melted and few with under 1400 °C were incompletely melted. The range of liquidus temperatures for barred olivine chondrules, for which initial temperatures appear to have been essentially at the liquidus, is similar. Most chondrules may therefore have been heated to temperatures of 1400–1750 °C and, because of a peak in the distribution of barred olivine chondrule temperatures at 1500–1550 °C, the temperatures appear normally distributed within this range. Given a narrow range of temperatures, bulk composition is at least as important as initial temperature in controlling chondrule textures. Truly granular (not microporphyritic) Type I and truly glassy Type II and III chondrules appear under-represented in nature according to this model, based on internal nucleation experiments. External heterogeneous nucleation, or seeding due to droplet-dust collisions, is likely to occur in a dusty nebula and has been shown to reproduce chondrule textures experimentally. Generally high initial temperatures (1600–1800 °C), coupled with dust-seeding of superheated droplets of less refractory composition is an alternative explanation of chondrule textures. Cooling rates of 100–1000 °C/hr are required for chondrules, which must have been mass produced in clouds with sufficient particle density to buffer cooling rate and perhaps also initial temperature. Melting precursor particles in a thick clump and/or the nebular mid-plane would provide evaporation and thus explain the high oxidation state and volatile content of chondrules, relative to the bulk hydrogen-rich nebula, as well as the nature of the cooling.  相似文献   

5.
In general, barred olivine (BO) chondrules formed from completely melted precursors. Among BO chondrules in unequilibrated ordinary chondrites, there are significant positive correlations among chondrule diameter, bar thickness, and rim thickness. In the nebula, smaller BO precursor droplets cooled faster than larger droplets (due to their higher surface area/volume ratios) and grew thinner bars and rims. There is a bimodal distribution in the olivine FeO content in BO chondrules, with a hiatus between 11 and 19 wt% FeO. The ratio of (FeO rich)/(FeO poor) BO chondrules decreases from 12.0 in H to 1.6 in L to 1.3 in LL. This is the opposite of the case for porphyritic chondrules: the mean (FeO rich)/(FeO poor) modal ratio increases from 0.8 in H to 1.8 in L to 2.8 in LL. During H chondrite agglomeration, most precursor dustballs were small with low bulk FeO/(FeO + MgO) ratios and moderately high melting temperatures. The energy available for chondrule melting from flash heating was relatively low, capable of completely melting many ferroan dusty precursors (to form FeO-rich BO chondrules), but incapable of completely melting many magnesian dusty precursors (to form FeO-poor BO chondrules). When L and LL chondrites agglomerated somewhat later, significant proportions of precursor dustballs were relatively large and had moderately high bulk FeO/(FeO + MgO) ratios. The energy available from flash heating was higher, capable of completely melting higher proportions of magnesian dusty precursors to form FeO-poor BO chondrules. These differences may have resulted from an increase in the amplitude of lightning discharges in the nebula caused by enhanced charge separation.  相似文献   

6.
Bulk chondrule compositions are important to many questions in cosmochemistry, however, the number of available bulk chondrule data sets is still small. A main reason for this is the difficulties of determining bulk chondrule compositions. A commonly used technique is to obtain 2D bulk chondrule compositions from meteorite sections. This technique has an error that we quantify here for the first time using a mathematical model of a chondrule called SIMCHON. The theoretically calculated errors are compared to errors that we determined from serial sectioning of eight Efremovka chondrules. The errors obtained from both approaches are in excellent agreement, proving that our mathematical model produces reliable errors that can be assigned to 2D bulk chondrule compositions. These errors allow a much better interpretation of 2D bulk chondrule data. We provide a table that contains typical errors for 2D bulk compositions of porphyritic chondrules. The errors are in the range of ±<1–30 relative‐%. This should be acceptable for many problems in cosmochemistry. The effect of a chemical layering inside chondrules and the occurrence of a rim around them, as well as the occurrence of opaque and other accessory phases have been studied. A spreadsheet is provided that enables the calculation of errors for any desired chondrule mineral composition. BO chondrules have a negligible error, but it is impossible to provide reasonable error estimates for BO chondrules with an igneous rim. Radial pyroxene chondrules have negligible errors.  相似文献   

7.
The approximately spherical shapes of chondrules has long been attributed to surface tension acting on ~1 mm melt droplets that formed and cooled in the microgravity field of the solar nebula. However, chondrule shapes commonly depart significantly from spherical. In this study, 109 chondrules in a sample of CR2 chondrite NWA 801 were imaged by X-ray computed tomography and best-fitted to ellipsoids. The analysis confirms that many chondrules are indeed not spherical, and also that the chondrules’ collective shape fabric records a definite 13% compaction in the host meteorite. Dehydration of phyllosilicates within chondrules may account for that strain. However, retro-deforming all chondrules shows that a large majority were already far from spherical prior to accretion. Possible models for these initial shapes include prior deformation of individual chondrules in earlier hosts, and, as suggested by previous authors, rotation of chondrules as they were solidifying, and/or “streaming” of molten chondrules by their differential velocities with their gaseous hosts after melting. More in situ 3-D work such as this study on a variety of unequilibrated chondrites, combined with detailed structural petrography, should help further constrain these models and refine our understanding of chondrite formation.  相似文献   

8.
The origin of three-dimensional shapes of chondrules is an important information to identify their formation mechanism in the early solar nebula. The measurement of their shapes by using X-ray computed topography suggested that they are usually close to perfect spheres, however, some of them have rugby-ball-like (prolate) shapes [Tsuchiyama, A., Shigeyoshi, R., Kawabata, T., Nakano, T., Uesugi, K., Shirono, S., 2003. Lunar Planet. Sci. 34, 1271-1272]. We considered that the prolate shapes reflect the deformations of chondrule precursor dust particles when they are heated and melted in the high velocity gas flow. In order to reveal the origin of chondrule shapes, we carried out the three-dimensional hydrodynamics simulations of a rotating molten chondrule exposed to the gas flow in the framework of the shock-wave heating model for chondrule formation. We adopted the gas ram pressure acting on the chondrule surface of in a typical shock wave. Considering that the chondrule precursor dust particle has an irregular shape before melting, the ram pressure causes a net torque to rotate the particle. The estimated angular velocity is for the precursor radius of r0=1 mm, though it has a different value depending on the irregularity of the shape. In addition, the rotation axis is likely to be perpendicular to the direction of the gas flow. Our calculations showed that the rotating molten chondrule elongates along the rotation axis, in contrast, shrinks perpendicularly to it. It is a prolate shape. The reason why the molten chondrule is deformed to a prolate shape was clearly discussed. Our study gives a complementary constraint for chondrule formation mechanisms, comparing with conventional chemical analyses and dynamic crystallization experiments that have mainly constrained the thermal evolutions of chondrules.  相似文献   

9.
Abstract– Here, we show that several geochemical indicators point to number densities during chondrule formation that were far higher than can be accounted for by known nebula processes. The number densities implied by compound chondrules and nonspherical chondrules are shown to be significantly higher than estimated in previous studies. At the implied chondrule number densities, if a chondrule formation region survived a formation event it would have been gravitationally bound and would have collapsed quite rapidly to form an asteroidal‐sized body. The diversity of chondrule compositions and textures in a chondrite group could have formed in a single event in subvolumes of a formation region that were chemically isolated from one another because of slow diffusion in the gas. Within these subvolumes, equilibration between chondrules with different compositions would have been fairly rapid, although small isotopic mass fractionations in elements like Fe, Si, Mg, and O may persist. This could explain the existence of the small isotopic mass fractionations in these elements that have been observed in chondrules. However, the evidence for recycling of chondrules requires that there was more than one chondrule formation event prior to formation of a parent asteroid. Finally, we argue that OC and CO chondrule Mg‐Al systematics are both consistent with single ages or narrow ranges of ages, and that the CO, and possibly the OC, ages date parent body alteration. This would resolve the conundrum of needing to preserve in a turbulent nebula physically and chemically distinct CO and OC chondrule populations for 1–2 Myr.  相似文献   

10.
Elemental compositions of olivine, low-Ca pyroxene and mesostasis in chondrules from type-3 ordinary chondrites (OC), CV3, CO3, CM2 and EH3 chondrites were compiled in a search for mineral compositional differences among chondrules of different chondrite groups. Such differences are demonstrated. A few elements occur in silicic phases in amounts proportional to their bulk chondrule concentrations: e.g., Mn in OC chondrules, Ti in CV chondrules, Cr in EH chondrules. However, OC chondrules have higher bulk Cr than CM-CO chondrules, higher Cr in mesostasis, but lower Cr in olivine and low-Ca pyroxene. The higher oxidation state of OC chondrules implies that Cr is more likely to be trivalent, and thus, less likely to enter the olivine crystal structure and more likely to concentrate in pyroxene and mesostasis. CV and OC chondrules have similar high bulk Fe and mesostasis Fe, but OC chondrules have much more FeO in olivine and low-Ca pyroxene. The remaining Fe in CV chondrules is reduced and occurs as metal blebs in the mesostasis. Relative to OC chondrules, EH chondrules have lower bulk Ca, lower Ca in pyroxene and mesostasis, but higher (by a factor of 2) Ca in olivine. EH chondrules may have been incompletely melted, preserving relict refractory lithophile-rich olivine nuclei. OC chondrules are richer than EH chondrules in FeO; they have a lower melting temperature and may have been more completely melted during chondrule formation.  相似文献   

11.
We report on a suite of microchondrules from three unequilibrated ordinary chondrites (UOCs). Microchondrules, a subset of chondrules that are ubiquitous components of UOCs, commonly occur in fine‐grained chondrule rims, although may also occur within matrix. Microchondrules have a variety of textures: cryptocrystalline, microporphyritic, radial, glassy. In some cases, their textures, and in many cases, their compositions, are similar to their larger host chondrules. Bulk compositions for both chondrule populations frequently overlap. The primary material that composes many of the microchondrules has compositions that are pyroxene‐normative and is similar to low‐Ca‐pyroxene phenocrysts from host chondrules; primary material rarely resembles olivine or plagioclase. Some microchondrules are composed of FeO‐rich material that has compositions similar to the bulk submicron fine‐grained rim material. These microchondrules, however, are not a common compositional type and probably represent secondary FeO‐enrichment. Microchondrules may also be porous, suggestive of degasing to form vesicles. Our work shows that the occurrence of microchondrules in chondrule rims is an important constraint that needs to be considered when evaluating chondrule‐forming mechanisms. We propose that microchondrules represent melted portions of the chondrule surfaces and/or the melt products of coagulated dust in the immediate vicinity of the larger chondrules. We suggest that, through recycling events, the outer surfaces of chondrules were heated enough to allow microchondrules to bud off as protuberances and become entrained in the surrounding dusty environment as chondrules were accreting fine‐grained rims. Microchondrules are thus byproducts of cyclic processing of chondrules in localized environments. Their occurrence in fine‐grained rims represents a snapshot of the chondrule‐forming environment. We evaluate mechanisms for microchondrule formation and hypothesize a potential link between the emergence of type II chondrules in the early solar system and the microchondrule‐bearing fine‐grained rims surrounding type I chondrules.  相似文献   

12.
Abstract— Meteoritic data strongly suggest that most chondrules reached maximum temperatures in a range of 1650–2000 K and cooled at relatively slow rates of 100–1000 K/h, implying a persistence of external energy supply. The presence of fine‐grained rims around chondrules in most unequilibrated chondrites also indicates that a significant quantity of micron‐sized dust was present in chondrule formation regions. Here, we assume that the persistent external energy source needed to explain chondrule cooling rates consists primarily of radiation from surrounding heated chondrules, fine dust, and gas after the formation event. Using an approximate one‐dimensional numerical model for the outward diffusion of thermal radiation from such a system, the scale sizes of formation regions required to yield acceptable cooling rates are determined for a range of possible chondrule, dust, and gas parameters. Results show that the inferred scale sizes depend sensitively on the number densities of micron‐sized dust and on their adopted optical properties. In the absence of dust, scale sizes > 1000 km are required for plausible maximum chondrule number densities and heated gas parameters. In the presence of dust with mass densities comparable to those of the chondrules and with absorptivities and emissivities of ~0.01 calculated for Mie spheres with a pure mineral composition, scale sizes as small as ~100 km are possible. If dust absorptivities and emissivities approach unity (as may occur for particles with more realistic shapes and compositions), then scale sizes as small as ×10 km are possible. Considering all uncertainties in model parameters, it is concluded that small scale sizes (10–100 km) for chondrule formation regions are allowed by the experimentally inferred cooling rates.  相似文献   

13.
Abstract— Detailed numerical models have shown that solar nebula shock waves would be able to thermally process chondrules in a way that is consistent with experimental constraints. However, it has recently been argued that the high relative velocities that would be generated between chondrules of different sizes immediately behind the shock front would lead to energetic collisions that would destroy the chondrules as they were processed rather than preserving them for incorporation into meteorite parent bodies. Here the outcome of these collisions is quantitatively explored using a simple analytic expression for the viscous dissipation of collisional energy in a liquid layer. It is shown that molten chondrules can survive collisions at velocities as high as a few hundred meters per second. It is also shown that the thermal evolution of chondrules in a given shock wave varies with chondrule size, which may allow chondrules of different textures to form in a given shock wave. While experiments are needed to further constrain the parameters used in this work, these calculations show that the expected outcomes from collisions behind shock waves are consistent with what is observed in meteorites.  相似文献   

14.
The size-frequency-distributions of different chondrule types in the Qingzhen, Kota-Kota and Allan Hills A77156 EH3 chondrites were determined by petrographic analysis of thin sections and, in the case of Qingzhen, by examination of large separated chondrules. EH chondrules are considerably smaller than L and LL chondrules and are probably slightly smaller than H, CM and CO chondrules. In the EH3 chondrites, radial pyroxene (RP) chondrules are somewhat (85% confidence level) larger than cryptocrystalline (C) chondrules, nonporphyritic chondrules have a broader size-frequency-distribution than porphyritic chondrules, and porphyritic olivine-pyroxene (POP) chondrules are considerably (98% confidence level) larger than porphyritic pyroxene (PP) chondrules. The larger size of RP chondrules relative to C chondrules in EH3 chondrites may be due to a tendency of the chondrule-forming mechanism not to have heated large precursor aggregates above the liquidus. Consequent retention of numerous relict grains would have caused these objects to develop RP rather than C textures upon cooling. The large proportion (≥50%) of nonporphyritic EH3 chondrules among the smaller chondrule size-fractions may have been caused by preferential disruption of large nonporphyritic chondrule droplets. The large proportion (≥50%) of nonporphyritic EH3 chondrules among the larger chondrule size-fractions is problematic. The larger size of POP relative to PP chondrules is due to reaction of fine-grained olivine with free silica to form pyroxene during mild thermal metamorphism of the whole-rocks.  相似文献   

15.
Abstract— The Mg‐isotopic compositions in five barred olivine (BO) chondrules, one coarse‐grained rim of a BO chondrule, a relic spinel in a BO chondrule, one skeletal olivine chondrule similar to BO chondrules in mineralogy and composition, and two non‐BO chondrules from the Allende meteorite have been measured by thermal ionization mass spectrometry. The Mg isotopes are not fractionated and are within terrestrial standard values (±2.0%o per amu) in seven of the eight analyzed ferromagnesian chondrules. A clump of relic spinel grain and its host BO chondrule R‐11 give well‐resolvable Mg fractionations that show an enrichment of the heavier isotopes, up to +2.5%‰ per amu. The Mg‐isotopic compositions of coarse‐grained rim are identical to those of the host chondrule with BO texture. The results imply that ferromagnesian and refractory precursor components of the Allende chondrule may have been formed from isotopically heterogeneous reservoirs. In the nebula region where Allende chondrules formed, recycling of chondrules and multiple high‐temperature heating did not significantly alter the chemical and isotopic memory of earlier generations. Chemical and isotopic characteristics of refractory precursors of carbonaceous chondrite chondrules and CAIs are more closely related than previously thought. One of the refractory chondrule precursors of CV Allende is enriched in the heavier Mg isotopes and different from those of more common ferromagnesian chondrule precursors. The most probable scenario at the location where chondrule R‐11 formed is as follows. Before chondrule formation, several high‐temperature events occurred and then RPMs, refractory oxides, and silicates condensed from the nebular gas in which Mg isotopes were fractionated. Then, this CAI was transported into the chondrule formation region and mixed with more common, ferromagnesian precursors with normal Mg isotopes, and formed the BO chondrule. Because Mg isotope heterogeneity among silicates and spinel are found in some CAIs (Esat and Taylor, 1984), we cannot rule out the possibility that Mg isotopes of a melted portion of the refractory precursor (i.e., outer portion of CAI) are normal or enriched in the light isotope. Magnesium isotopes in the R‐11 host are also enriched in the heavier isotopes, +2.5%o per amu, which suggests that effects of isotopic heterogeneity among silicates and spinel, if they existed, are not considered to be large. It is possible that CAI precursor silicates partially dissolved during the chondrule forming event, contributing Mg to the melt and producing a uniform Mg‐isotopic signature but enriched in the heavier Mg isotopes, +2.5%‰ per amu. Most Mg isotopes in more common ferromagnesian chondrules represent normal chondritic material. Chemical and Mg‐isotopic signatures formed during nebular fractionations were not destroyed during thermal processes that formed the chondrule, and these were partly preserved in relic phases. Recycling of Allende chondrules and multiple heating at high temperature did not significantly alter the chemical and Mg‐isotopic memory of earlier generations.  相似文献   

16.
Abstract– Seventy‐four macrochondrules with sizes >3 mm were studied. Considering the extraordinary size of the chondrules (occasionally achieving a mass of 1000 times (and more) the mass of a normal‐sized chondrule), the conditions in the formation process must have been somewhat different compared with the conditions for the formation of the common chondrules. Macrochondrules are typically rich in olivine and texturally similar to specific chondrule types (barred, radial, porphyritic, and cryptocrystalline) of normal‐sized chondrules. However, our studies show that most of the macrochondrules are fine‐grained or have elongated crystals (mostly BO, RP, and C), which lead to the assumption that they were once totally molten and cooled quite rapidly. Porphyritic chondrules belong to the least abundant types of macrochondrules. This distribution of chondrule types is highly unusual and just a reverse of the distribution of chondrule types among the typical‐sized chondrules in most chondrite groups except for the CH and CB chondrites. New chondrule subtypes (like radial‐olivine [RO] or multi‐radial [MR] chondrules) are defined to better describe the textures of certain large chondrules. Macrochondrules may have formed due to melting of huge precursor dust aggregates or due to rapid collisions of superheated melt droplets, which led to the growth of large molten spherules in regions with high dust densities and high electrostatic attraction.  相似文献   

17.
Abstract— Hadley Rille is a millimeter-size EH chondrite containing euhedral and acicular enstatite grains, kamacite globules and preferentially aligned silicate aggregates separated by elongated kamacite-rich patches. The Hadley Rille chondrite was significantly impact melted when it accreted to the lunar regolith at relative velocities of ~>3 km s?1; ~65–75% of the chondrules present initially were melted. During the impact, portions of the local regolith were melted and an agglutinate-like rim formed around the chondritic projectile; the rim consists of flow-banded vesicular glass, blebs of troilite and low-Ni metallic Fe, rock fragments, glass(?) shards, and mineral grains. The mineral grains include enstatite (which is otherwise absent from the Moon and must have been derived from the projectile) and poorly characterized, micrometer-size phases enriched in light rare-earth-elements (LREE), which probably formed during the impact. Several of the rock fragments contain <33 mg/g Cl, which was probably derived through impact-induced volatilization of Cl from chondrule mesostases in the EH projectile.  相似文献   

18.
Abstract— In a search for evidence of evaporation during chondrule formation, the mesostases of 11 Bishunpur chondrules and melt inclusions in olivine phenocrysts in 7 of them have been analyzed for their alkali element abundances and K‐isotopic compositions. Except for six points, all areas of the chondrules that were analyzed had δ41K compositions that were normal within error (typically ±3%, 2s?). The six “anomalous” points are probably all artifacts. Experiments have shown that free evaporation of K leads to large 41K enrichments in the evaporation residues, consistent with Rayleigh fractionation. Under Rayleigh conditions, a 3% enrichment in δ41K is produced by ~12% loss of K. The range of L‐chondrite‐normalized K/Al ratios (a measure of the K‐elemental fractionation) in the areas analyzed vary by almost three orders of magnitude. If all chondrules started out with L‐chondrite‐like K abundances and the K loss occurred via Rayleigh fractionation, the most K‐depleted chondrules would have had compositions of up to δ41K ? 200%. Clearly, K fractionation did not occur by evaporation under Rayleigh conditions. Yet experiments and modeling indicate that K should have been lost during chondrule formation under currently accepted formation conditions (peak temperature, cooling rate, etc.). Invoking precursors with variable alkali abundances to produce the range of K/Al fractionation in chondrules does not explain the K‐isotopic data because any K that was present should still have experienced sufficient loss during melting for there to have been a measurable isotopic fractionation. If K loss and isotopic fractionation was inevitable during chondrule formation, the absence of K‐isotopic fractionation in Bishunpur chondrules requires that they exchanged K with an isotopically normal reservoir during or after formation. There is evidence for alkali exchange between chondrules and rim‐matrix in all unequilibrated ordinary chondrites. However, melt inclusions can have alkali abundances that are much lower than the mesostases of the host chondrules, which suggests that they at least remained closed since formation. If it is correct that some or all melt inclusions remained closed since formation, the absence of K‐isotopic fractionation in them requires that the K‐isotopic exchange took place during chondrule formation, which would probably require gas‐chondrule exchange. Potassium evaporated from fine‐grained dust and chondrules during chondrule formation may have produced sufficient K‐vapor pressure for gas‐chondrule isotopic exchange to be complete on the timescales of chondrule formation. Alternatively, our understanding of chondrule formation conditions based on synthesis experiments needs some reevaluation.  相似文献   

19.
Abstract— We measured the sizes and textural types of 719 intact chondrules and 1322 chondrule fragments in thin sections of Semarkona (LL3.0), Bishunpur (LL3.1), Krymka (LL3.1), Piancaldoli (LL3.4) and Lewis Cliff 88175 (LL3.8). The mean apparent diameter of chondrules in these LL3 chondrites is 0.80 φ units or 570 μm, much smaller than the previous rough estimate of ~900 μm. Chondrule fragments in the five LL3 chondrites have a mean apparent cross‐section of 1.60 φ units or 330 μm. The smallest fragments are isolated olivine and pyroxene grains; these are probably phenocrysts liberated from disrupted porphyritic chondrules. All five LL3 chondrites have fragment/ chondrule number ratios exceeding unity, suggesting that substantial numbers of the chondrules in these rocks were shattered. Most fragmentation probably occurred on the parent asteroid. Porphyritic chondrules (porphyritic olivine + porphyritic pyroxene + porphyritic olivine‐pyroxene) are more readily broken than droplet chondrules (barred olivine + radial pyroxene + cryptocrystalline). The porphyritic fragment/chondrule number ratio (2.0) appreciably exceeds that of droplet‐textured objects (0.9). Intact droplet chondrules have a larger mean size than intact porphyritic chondrules, implying that large porphyritic chondrules are fragmented preferentially. This is consistent with the relatively low percentage of porphyritic chondrules within the set of the largest chondrules (57%) compared to that within the set of the smallest chondrules (81%). Differences in mean size among chondrule textural types may be due mainly to parent‐body chondrule‐fragmentation events and not to chondrule‐formation processes in the solar nebula.  相似文献   

20.
Abstract— We have studied a unique impact-melt rock, the Ramsdorf L chondrite, using optical and scanning microscopy and electron microprobe analysis. Ramsdorf contains not only clast-poor impact melt (Begemann and Wlotzka, 1969) but also a chondritic portion (>60 g) with what appears at low magnification to be a normal, well-defined chondritic texture. However, detailed studies at high magnification show that >90 vol% of the crystals in the chondritic portion were largely melted by the impact: the chondrules lack normal microtextures and are ghosts of the original features. The only relics from the precursor chondrules are olivine crystals, which have the highest melting temperature (~1620 °C). Pyroxene-rich chondrules were so extensively melted that no phenocrysts were preserved and the melt crystallized in situ before significant mixing with exterior olivine-rich melts. Fine-grained pyroxene chondrule ghosts have sharper boundaries with the matrix than porphyritic olivine and pyroxene chondrule ghosts, probably because pyroxene-rich melts are significantly more viscous. Complex textures that formed by injection of melt along cracks and fractures in relic olivines suggest that the chondritic portion of Ramsdorf formed directly from petrologic type 3–4 material by strong shock. We infer that Ramsdorf was largely melted by shock pressures of ~75–90 GPa and that chondrule ghosts and relic olivine phenocrysts were locally preserved by rapid cooling. Quenching was not due to the addition of cold clasts into the melt but to heterogeneous shock heating that only caused internal melting of large olivines and pyroxenes. Ramsdorf appears to be one of the most heavily shocked meteorites that has retained some trace of its original texture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号