首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The metamorphic allochthon of the central Norwegian Caledonides comprises a complex of discrete nappes of metasediments and igneous rocks ranging in age from probable Svecofennian through Vendian to Silurian. This southeastward-translated allochthon overlies a thin cover of autochthonous Vendian to Cambrian sediments deposited upon a crystalline Precambrian basement, and is superseded by late-orogenic, intermontanebasinal sediments of latest Silurian to Middle Devonian age. Stratigraphical sequences in higher allochthonous units are floored by oceanic tholeiitic basalts with rare, subjacent sheeted-dyke and gabbro units, considered as fragments of an ophiolite assemblage which suffered initial eastward transport in pre-Middle Arenig times, an important orogenic event which is well represented in northern and southwestern Norway. The overlying Ordovician—Silurian sequences, disturbed by episodic parorogenic events, embrace a variety of sedimentary facies from shallow-water carbonates to deep-marine terrigenous turbidites and include both island arc and marginal basin lavas and intrusives. Polyphase Middle Silurian metamorphism and deformation resulted in a complex telescoping and dissection of the Lower Palaeozoic rocks and their Precambrian substrate, with nappe translation in the order of several hundred kilometres. Folding and thrusting of Old Red Sandstone molasse sediments attests to continuing tectonism well into Devonian times.  相似文献   

2.
周海  陈亮  孙勇 《地质通报》2017,36(9):1569-1582
野外地质调查发现尾亚地区分布的主体为岛弧杂岩,被更晚的造山后花岗岩如钾长花岗岩等侵入改造。尾亚地区的岛弧杂岩受造山作用的改造,局部发生了一定程度的变质变形作用。这套变质岩分布局限,变质程度较低且主要为绿片岩相,劈理化强。2个样品YM01、YM02分别为黑云斜长变粒岩、角闪斜长变粒岩,其原岩分别为中酸性火山碎屑岩及闪长岩。2个样品的锆石年龄记录了中天山地块北侧的岛弧岩浆事件,表明古亚洲洋(北天山洋)从奥陶纪已经开始,一直持续到泥盆纪由北向南持续俯冲。俯冲过程在晚寒武世开始,暗示中天山地块北侧在当时已经发生了构造转换,作为一个微陆块由被动大陆边缘转变为主动大陆边缘。另外,岛弧杂岩体中没有前寒武纪年龄记录的特征,表明区域内的前寒武纪基底物质分布有限,而变质变形强烈的部分多为造山过程的产物,是在造山带后期改造形成的。  相似文献   

3.
At some time prior to the Ptychagnostus gibbus Zone of the Middle Cambrian the area of deposition of Upper Precambrian (or Lower Cambrian) well‐sorted sands, silts and dolomite was affected by tectonic movements producing uplift of the Tyennan Geanticline and change in the shape of the depositional basin (Spry, Chapter I). Continued tectonic activity and more rapid sinking of the sea floor resulted in a change in sedimentary association from well‐sorted sediments of the orthoquartzite‐limestone suite to poorly sorted sediments of the greywacke suite. Initially siltstone was the main deposit in the Dundas, Huskisson River, Ulverstone, Deloraine and Beaconsfield areas and this has been likened to the initial euxinic phase of geosynclinical development elsewhere (Campana, 1961b).

Silt seems to have been the predominant normal deposit during the Middle and early Upper Cambrian, but siliceous oozes and some limestone were also formed. Carbonaceous, pyritic and calcareous silts were deposited. Inter‐bedded with the silts are poorly‐sorted greywackes and greywacke conglomerates with a disrupted framework and graded bedding. Banks and Jennings interpret these as mostly turbidity current deposits. The proportion of greywacke and conglomerate varies through the successions in a cyclic manner (Carey and Banks, 1954; Banks, 1956) such that a conglomerate‐rich section is followed by a greywacke‐rich section and this by a predominantly lutaceous section. These cycles may be interpreted as due to tectonic instability and variation in height of the source area. Faulting of Upper Middle Cambrian and Lower Dresbachian age has been demonstrated near Ulverstone. Campana and King state: “The proportion of coarse material increases upwards in the Dundas and Huskisson successions at least.”

Turbidity currents brought fragments of grey, red, black and banded cherts, banded slate, quartzite, basalt and golden mica (this last presumably from breakdown of Precambrian mica schist) to the Dundas area. In view of the known distribution of chert in western Tasmania a westerly or north‐westerly source is likely. Turbidity currents deposited fragments of chert, claystone, quartzite, slate, greywacke, quartz mica schist, chloritised basic lava and spilite in the Deloraine area indicating a source area with Precambrian rocks and earlier Cambrian sediments and lavas. Near Rocky Boat Harbour the source area contained dolomite, ultrabasic rocks, granite, and Precambrian quartzites and schists.

A difference between the fauna in the silts and in the greywackes is evident in the Hodge Slate at Dundas and the Kateena Formation near Ulverstone at least. The “dendroids” in the Hodge Slate are in the siltstone and the fragmentary trilobites and cystoids in the greywacke. This suggests that the fossils in the greywackes are thanatocoenotic as might be expected and introduces the possibility of remanié fossils and of shallow water fauna intercalated with deeper water fauna. The bathymetric conditions suggested by Hills and Thomas (1954) for the Cambrian of Victoria may thus not be applicable to Tasmania.

Deposition was also interrupted from time to time by lava flows, some of them, at least, submarine. The Mt. Read Volcanics may be Lower Cambrian but acid and basic lavas and pyroclastic rocks are interbedded with or overlie Middle and Upper Cambrian sediments at Zeehan, Dundas, Ulverstone, Smithton and Beaconsfield. Acid volcanic rocks are commoner near the Tyennan Geanticline and basic rocks further away. Possibly during the Dresbachian ultrabasic rocks were intruded as sheets and dykes into Precambrian and earlier Cambrian rocks and by Franconian time were exposed to erosion at Adamsfield.

Deposition may have commenced later at Smithton (Upper Middle Cambrian), Beaconsfield (Lower Dresbachian) and Adamsfield (Lower Franconian) than at Dundas (Lower Middle Cambrian).

Campana and King express the thoughts of Bradley (1957, pp. 114–115) and the author when they state: “The Dundas Group reflects a eugeosynclinical cyclic sedimentation under unstable tectonic conditions. The group is no doubt a synorogenic suite comparable with the Flysch as it was deposited in the narrow subsiding Dundas Trough which developed along the Mt. Read Volcanic Arc, and which is similar to the present deeps of archipelago areas. Such a comparison is enhanced by the succeeding Ordovician conglomerates and sandstones, comparable in some respects with the molassic deposits which displaced the Flysch sedimentation in the Pre‐Alpine troughs (Fig. 12).”

The Cambrian rocks were folded or tilted at least along the western and northern margin of the Tyennan Geanticline and near New River Lagoon, the Tyennan Geanticline was rejuvenated, the Asbestos Range Geanticline raised and the highland areas near Ulverstone and Zeehan uplifted late in the Cambrian or very early in the Ordovician.  相似文献   

4.
40Ar/39Ar age data from the boundary between the Delamerian and Lachlan Fold Belts identify the Moornambool Metamorphic Complex as a Cambrian metamorphic belt in the western Stawell Zone of the Palaeozoic Tasmanide System of southeastern Australia. A reworked orogenic zone exists between the Lachlan and Delamerian Fold Belts that contains the eastern section of the Cambrian Delamerian Fold Belt and the western limit of orogenesis associated with the formation of an Ordovician to Silurian accretionary wedge (Lachlan Fold Belt). Delamerian thrusting is craton-verging and occurred at the same time as the final consolidation of Gondwana. 40Ar/39Ar age data indicate rapid cooling of the Moornambool Metamorphic Complex at about 500 Ma at a rate of 20 – 30°C per million years, temporally associated with calc-alkaline volcanism followed by clastic sedimentation. Extension in the overriding plate of a subduction zone is interpreted to have exhumed the metamorphic rocks within the Moornambool Metamorphic Complex. The Delamerian system varies from a high geothermal gradient with syntectonic plutonism in the west to lower geothermal gradients in the east (no syntectonic plutonism). This metamorphic zonation is consistent with a west-dipping subduction zone. Contrary to some previous models involving a reversal in subduction polarity, the Ross and Delamerian systems of Antarctica and Australia are inferred to reflect deformation processes associated with a Cambrian subduction zone that dipped towards the Gondwana supercontinent. Western Lachlan Fold Belt orogenesis occurred about 40 million years after the Delamerian Orogeny and deformed older, colder, and denser oceanic crust, with metamorphism indicative of a low geothermal gradient. This orogenesis closed a marginal ocean basin by west-directed underthrusting of oceanic crust that produced an accretionary wedge with west-dipping faults that verge away from the major craton. The western Lachlan Fold Belt was not associated with arc-related volcanism and plutonism occurred 40 – 60 million years after initial deformation. The revised orogenic boundaries have implications for the location of world-class 440 Ma orogenic gold deposits. The structural complexity of the 440 Ma Stawell gold deposit reflects its location in a reworked part of the Cambrian Delamerian Fold Belt, while the structurally simpler 440 Ma Bendigo deposit is hosted by younger Ordovician turbidites solely deformed by Lachlan orogenesis.  相似文献   

5.
文飞  田忠华 《岩石学报》2021,37(2):619-635
前寒武纪造山带解析是地球科学研究的重点。胶-辽-吉造山带作为华北克拉通最具代表性的造山带之一,是研究前寒武纪造山过程和物质折返的理想场所。本文以辽东半岛辽河群为研究对象,以变质变形为研究手段,系统解析胶-辽-吉造山带的造山及折返过程。含夕线石榴黑云片麻岩(样品18TZH49)位于造山带核心部分,其岩相学观察和相平衡模拟表明,其峰期和峰后变质阶段矿物组合分别为Sil+Grt+Pl+Bi+Qz+Ilm+Melt和St+Grt+Pl+Bi+Chl+Qz+Ilm,变质温压条件为720~780℃/5.9~6.9kbar和540~565℃/3~4.1kbar,从峰期到峰后记录了一个降温降压的顺时针P-T演化轨迹。锆石UPb年代学研究表明其退变质年龄为1851Ma。结合南、北辽河群其他变泥质岩研究工作,提出造山带北部北辽河群泥质岩经历低角闪岩相变质作用,以典型的巴罗式变质带为特征;造山带南部南辽河群经历角闪岩相至麻粒岩相变质作用,退变质特征明显。从构造角度来说,北辽河群受向北逆冲推覆构造影响,显示向龙岗基底的运动学特征;造山带核心部位的南、北辽河群直立褶皱发育,指示地壳强烈收缩过程;南辽河群受向南逆冲推覆构造影响,显示向南侧狼林陆块的运动学特征。变质变形及年代学共同指示,辽河群经历1.95~1.90Ga造山作用,构造增厚作用使不同类型岩石相互叠置并发生不同程度变质作用。随后,~1.85Ga发生造山后伸展作用,不同变质等级岩片剥露于地表。  相似文献   

6.
The formation of Gondwana took place across a series of Brasiliano–Pan African suture zones that record late Neoproterozoic to earliest Paleozoic collisions between Precambrian cratons. In South America, an internal suture zone marks the disappearance of the Clymene Ocean that separated the Amazon craton from the São Francisco and Rio de la Plata cratons. New geochronological data from the southern end of this massive collision zone in the Sierras Australes of central-eastern Argentina document Paleoproterozoic crust and suggest an Ediacaran age for the oldest sedimentary rocks. These two observations extend the known limit of the Rio de la Plata craton at least 200 km SW of previous estimates. New data also confirm the occurrence of late Ediacaran to late Cambrian magmatism in the Sierras Australes. The age of these hypabyssal to volcanic rocks corresponds to igneous events in the Pampean belt along the western margin of the Rio de la Plata craton, although the shallow level magma emplacement in the Sierra da Ventana study area contrasts with the deeply exhumed rocks of the Pampean orogeny type locality. These new age data are compared with a broad compilation of geochronological age Clymene collision belts to the north, the Paraguai and Araguaia belts. The close overlap of the timing of orogenesis indicates the age of Clymene ocean closure in its northern reaches. In the south, the Pampean belt was unconfined, allowing continued tectonic activity and crustal accretion throughout the Paleozoic.  相似文献   

7.
Abstract

The Braganca amd Morais Massifs (NE Portugal) comprise a pile of four nappes on lop of the Autochthon of the Central-Iberian Zone : a Parautochthon (PTC), a Lower Allochthon (LATC), an Ophiolitic Complex (OTC) and an Upper Allochton (UATC). This article focuses on the tectonic evolution of the prc-Variscan basement preserved in the Upper Allochthonous Thrust Complex. (1) In the Morais Massif, the UATC is mainly composed of orthogneisscs, micaschists and high-grade melamorphic rocks restricted to a small duplex between the orthogneisses and the ophiolitic complex. The orthogneisses are pervasively deformed by D6 (Variscan D1). characterized by NNW-SSE stretching lineation, C-S structures, and sense of shear to the SSE. The high-grade melamorphic rocks show at least three ductile deformation phases older than the gneisses deformation. The micaschists and the orthogneisses are cut by mafic sills and dykes transformed into amphibolites by the Variscan tec-tonometamorphic evolution. In a restricted domain where dykes arc less deformed, two deformation events can be recognized and arc considered to be pre-Variscan. The walls of the dykes show a N-S stretching and mineral lineation interpreted as resulting from D6 (Variscan D1). (2) In the Braganca Massif, the UATC comprises mafic to ultrainafic igneous and high-grade melamorphic rocks, and paragncisses with ky-eclogite lenses. Six ductile deformation phases are recognized. The D1 to D4 events may correspond to a complete pre-Variscan orogenic cycle, from subduction (D1) to collision (D2-DS) and thrusting of the high-grade metamorphic rocks to upper levels in the crust (D3-D4); D5 may result from the Lower Palaeozoic extensional event that marks the begining of the Variscan Wilson cycle; D6 is interpreted as the first Variscan orogenic event with southward movement. The UATC of the Cabo Ortegal anil Braganca Massifs comprise mainly upper mantle/lower erustal rocks. By contrast, the UATC of the Ordenes and Morais Massifs is mainly composed of middle to upper erustal rocks. Vic propose that this is the result of a regional ductile normal fault (extensional event) that was active prior to the Variscan orogeny, in Lower Palaeozoic times, and affected a Precambrian basement.  相似文献   

8.
Crystalline rocks from the Sierra de Comechingones, eastern Sierras Pampeanas, evolved through three distinct orogenic cycles during the Eopalaeozoic: (1) the first tectono-thermal event named Pampean orogeny (550 to 505 Ma), which peaked in the Early Cambrian, was responsible for extensive metamorphism, partial melting, juvenile magmatism, rapid decompression, and persistent tectonic activity. Large part of the crustal section that was residing at middle levels (c. 27 km) was heated above 800 °C during the thermal peak stage of the Pampean orogeny; decompression of the Pampean orogen's core took place at this high temperature. The exhumation mechanism that assisted rapid uplifting combined the effects of ongoing tectonic forces with a buoyant instability created by a large amount of anatectic magmas in the middle to lower crust. (2) Beginning at the Early Ordovician, the Famatinian orogeny produced an overall shortening, causing pervasive textural reworking of the Cambrian metamorphic sequences under a high-strain regime. By being adjacent to the Famatinian magmatic arc, the western border of the Cambrian crystalline package absorbed imposed deformation along a crustal scale ductile shear zone. Within this zone, the high-grade metamorphic rocks were reworked and re-hydrated to lower temperature assemblages (<600°C and 3–6 kbar). Early Ordovician subduction-related igneous activity, even though manifested as small plutons, intruded Cambrian crystalline sequences, and experienced textural reworking during Late Famatinian tectonic exhumation. Late Famatinian convergence resulted in west-vergent ductile shear zones that placed Cambrian onto Ordovician crystalline sequences. (3) During post-Famatinian times (360–400 Ma) enduring crustal perturbation produced intra-crustal-derived granitic magmatism. West- to northwest-directed thrusting was concentrated in belts nucleated along crustal-scale tectonic boundaries formed between older tectono-stratigraphic units. As a result, Devonian anatectic granites were formed and tectonically extruded among Pampean and Famatinian crystalline sequences. The post-Famatinian event is also characterised by the intrusion of batholith-scale monzogranites into Pampean and Famatinian crystalline sequences residing in the upper crust.

Crystalline rocks currently exposed in the Sierra de Comechingones show that they crystallised and were exhumed in a setting where tectono-thermal activity lasted, even though it might have waned, until the Middle Palaeozoic. From the latest Neoproterozoic (c. 550 Ma) until the Late Devonian (c. 360 Ma) tectonic activity was intermittently acting, indicating continuous convergence along the proto-Pacific margin of Gondwana.  相似文献   


9.
New field mapping, U–Pb zircon geochronology and structural analysis of the southernmost Sardinia metamorphic basement, considered a branch of the Variscan foreland, indicate that it is, in part, allochthonous and was structurally emplaced within the foreland area, rather than being older depositional basement beneath the foreland succession. The Bithia Formation, classically considered part of the ‘Southern Sulcis metamorphic Complex’ (and here termed the Bithia tectonic unit, or BTU), is a greenschist facies metamorphic unit commonly interpreted as Precambrian in age. New geochronology of felsic volcanic rocks in the BTU, however, yield a U–Pb zircon age of 457.01 ± 0.17 Ma (Upper Ordovician). Thus, the depositional age of the unit is younger than the weakly metamorphosed Lower Cambrian rocks of the adjacent foreland succession. New detailed mapping and analysis of the field relationships between the BTU and foreland succession indicates that their contact is a mylonitic shear zone. The metamorphic character, general lithology, and deformational history of the BTU are similar to those of units in the Variscan Nappe Zone located northeast of the foreland area. We reinterpret the BTU as a synformal klippe of material related tectonically to the Variscan Nappe Zone. We infer that it was thrust over and became infolded into the foreland during late stages of the Variscan contractional deformation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The Northern, Central, and Southern zones are distinguished by stratigraphic, lithologic, and structural features. The Northern Zone is characterized by Upper Silurian–Lower Devonian sedimentary rocks, which are not known in other zones. They have been deformed into near-meridional folds, which formed under settings of near-latitudinal shortening during the Ellesmere phase of deformation. In the Central Zone, mafic and felsic volcanic rocks that had been earlier referred to Carboniferous are actually Neoproterozoic and probably Early Cambrian in age. Together with folded Devonian–Lower Carboniferous rocks, they make up basement of the Central Zone, which is overlain with a angular unconformity by slightly deformed Lower (?) and Middle Carboniferous–Permian rocks. The Southern Zone comprises the Neoproterozoic metamorphic basement and the Devonian–Triassic sedimentary cover. North-vergent fold–thrust structures were formed at the end of the Early Cretaceous during the Chukchi (Late Kimmerian) deformation phase.  相似文献   

11.
下扬子地区海相盆地演化及油气勘探选区评价   总被引:2,自引:0,他引:2  
从晚震旦世开始至中三叠世,下扬子地区沉积了三套巨厚的海相烃源岩系(Z2-O3、C-P、T1).三套烃源岩热演化特点不同,下古生界烃源岩经历了加里东、印支-燕山期构造阶段的热演化(已达过成熟干气阶段);上古生界烃源岩基本处于生油阶段晚期;三叠系大部烃源岩处于成熟生油阶段,少数处于未成熟阶段.区内下古生界烃源岩经历了两次成油过程,即加里东运动前的盆地沉降阶段和加里东运动后晚古生代陆表海沉积阶段.海相油气储盖条件发育,配置有利,经多年油气勘探证实,下古生界油气勘探应立足于苏北地区;上古生界油气勘探除苏北地区外,尚有皖南与浙西地区.中生界海相油气勘探应集中在几个发育较好的中生代盆地,如常州、句容、无为、望江等盆地.  相似文献   

12.
《Gondwana Research》2010,18(4):704-714
The Iran continental crust was metamorphosed, intruded by granitoid magmas, folded and faulted during the Late Precambrian by the Pan-African Orogeny. The basement complex in the Takab Complex (northwest Iran) consists of gneisses, amphibolites, pelitic schists, meta-ultramafic and calc-silicate rocks. Geochemically, the protoliths of the Takab gneisses are slightly peraluminous and medium to high-potassic with calc-alkaline affinity. These gneisses may have been emplaced in volcanic arc tectonic setting. Furthermore, the metapelitic protolith is shale deposited in an active continental margin setting. All these characteristics, and presence of paleo-suture zone and ophiolitic rocks (i.e. serpentines, meta-mafic and meta-ultramafic rocks) around the high grade metamorphic rocks suggest that a continental-margin magmatic arc (Andean-type) formed the Takab Precambrian basement. The basement complexes are extensively overprinted by the Pan-African Orogeny and younger igneous events; this supports the inference that Early Cambrian orogenesis in the Takab Complex region of northwest Iran marks one of the fundamental lithospheric boundaries within Gondwana which belonged to a greater Late Neoproterozoic–Early Paleozoic orogenic system that was active along the Proto-Tethyan margin of the Gondwana supercontinent, extending at least from its Arabian margin to the Himalayan margin of the Indian subcontinent.  相似文献   

13.
Hydrocarbon shows occur in Cambrian sandstones in the Welsh Borderland. In Shropshire, sandstones of the Upper Comley Group in particular contain hydrocarbons infilling residual primary porosity and secondary porosity after leaching of feldspars. In the Malvern Hills, the Hollybush Sandstone is locally black due to an impregnation by hydrocarbons. Evidence from the distribution of hydrocarbons in other Lower Palaeozoic rocks and in Precambrian rocks in Shropshire suggests that they have migrated from hydrocarbon-bearing Carboniferous sandstones. However, the source of hydrocarbons for the Hollybush Sandstone may be the immediately superjacent Upper Cambrian black shales.  相似文献   

14.
About 100 000 km2 of the previously unmapped Bolivian sector of the Central Brazil shield has been studied by “Proyecto Precámbrico”, an Anglo-Bolivian technical cooperation programme. The Lower Proterozoic is represented by the Lomas Maneches Granulite Group and the bulk of the Chiquitania Paragneiss Complex, which were formed during the Trans-Amazonic orogenic cycle (± 2000 Ma). The Middle Proterozoic spans the orogenic cycles of San Ignacio (± 2000-1300 Ma) and Sunsas (<1300-950 Ma). The San Ignacio cycle included the deposition of the San Ignacio Schist Group, now belts of pelitic schists with basic/ultrabasic sills, and the subsequent mobilisation of these and older rocks within a north-trending orogenic belt, accompanied by granitoid development. The Sunsas cycle began with the deposition of the molassic Sunsas Group and closed with the growth of a westnorthwest-trending orogenic belt, bordered to the north by a marginal zone and a stable craton, which was accompanied by granitoid phases and major basic/ultrabasic igneous activity. The close of the Sunsas orogeny marked the cratonization of the shield at about 950 Ma.Unmetamorphosed Upper Proterozoic and possibly Cambrian sediments on the southern and eastern flanks of the shield represent marine transgressions related to the intra-continental Braziliano orogenic cycle. East-trending dolerite dykes were probably intruded during this period within the shield.  相似文献   

15.
K‐Ar ages of biotite and hornblende from undeformed granodiorite plutons and of slaty and phyllitic rocks, ranging from prehnite‐pumpellyite metagreywacke to greenschist fades, have been determined in an attempt to define the age of orogenesis in the eastern part of the Nambucca Slate Belt. The plutons have K‐Ar ages of 226–227 m.y. (biotite) and 228–231 m.y. (hornblende) that provide a younger age limit for deformation. The lower grade metamorphic rocks yield a range of ages including some comparable with the depositional age of the rocks as indicated by fossils. Rocks of pumpellyite‐actinolite and greenschist facies give a more coherent group of ages which suggest orogenesis at about 250–255 m.y. Specimens of these latter rocks that have been affected by a later structural episode than that during which slaty cleavage formed, yield slightly older ages, which may result from the inclusion of minor amounts of environmental excess 40Ar.

Support for the 250–255 m.y. age comes from previously determined radiometric ages from the western part of the Slate Belt, although the presence of granitic bodies perhaps as old as 289 m.y., some closely associated with high‐grade regional metamorphic rocks, may indicate the presence of additional earlier orogenic movements in this region.  相似文献   

16.
分布在锡林浩特—达青牧场一带的锡林郭勒杂岩主要由变质表壳岩、变质基性-超基性岩、花岗质片麻岩等组成,其中部分为前寒武纪地层和岩石,构成前寒武纪微陆块。本文对锡林浩特西部呼热木台敖包和白音陶勒盖一带锡林郭勒杂岩中副变质岩锆石LA-MC-ICP-MS U-Pb年代学进行了研究,原岩碎屑锆石年龄介于403~3077 Ma,其中~(206)Pb/~(238)U最年轻一组的年龄在403~420 Ma,代表了该变质岩原岩的沉积下限。结合其变质时代(337 Ma)及被早石炭世—晚石炭世早期岛弧侵入岩侵入的事实,该套地层主要形成在早泥盆世中期—早石炭世早期,不是前寒武纪地层。其原岩主要为一套正常沉积碎屑岩,缺少火山岩,不具弧前沉积建造特征。它是沉积在前寒武纪锡林浩特微陆块之上的一套地层,为早古生代造山后伸展背景下晚古生代贺根山洋盆南缘初始的沉积记录。  相似文献   

17.
Satellite remote sensing is shown to provide critical support for geological and structural mapping in semiarid and arid areas. In this work, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were used to clarify the geological framework of the Precambrian basement of the Iguerda Proterozoic inlier in the Moroccan Central Anti-Atlas. In this study, the interpretation of the processed digital data has been ground truthed with geological field data collected during a reconnaissance-mapping program in the Central Anti-Atlas. The Iguerda inlier offers a deeply eroded Precambrian massif dominated by a Paleoproterozoic basement composed of supracrustal metasedimentary units intruded by various Eburnian granitoids. Impressive mafic dyke swarms mainly of Proterozoic age crosscut this basement. Eburnian basement rocks are unconformably overlain by Lower Ediacaran volcanosedimentary rocks of the Ouarzazate Group and Upper Ediacaran–Lower Cambrian carbonates. The applied ASTER analyses are particularly effective in the lithological differentiation and discrimination of geological units of the Iguerda inlier. The spectral information divergence (SID) classification algorithm coupled with spectral angle mapper and maximum likelihood classification effectively discriminates between metamorphic rocks, granitoid bodies, and carbonate cover. SID classification improves geologic map accuracy with respect to the spatial distribution of plutonic bodies and metamorphic units. In addition, Paleoproterozoic granitoids have been well discriminated into separate distinct suites of porphyritic granites, granodiorites, and peraluminous leucogranite suites. This discrimination was initially identified via remote sensing analysis and later ground truthed in the field. This methodology enhances geological mapping and illustrates the potential of ASTER data to serve as a vital tool in detailed geologic mapping and exploration of well-exposed basement of arid regions, such as the Proterozoic of the Anti-Atlas Mountains of Morocco.  相似文献   

18.
The application of the SHRIMP U/Pb dating technique to zircon and monazite of different rock types of the Sierras de Córdoba provides an important insight into the metamorphic history of the basement domains. Additional constraints on the Pampean metamorphic episode were gained by Pb/Pb stepwise leaching (PbSL) experiments on two titanite and garnet separates. Results indicate that the metamorphic history recorded by Crd-free gneisses (M2) started in the latest Neoproterozoic/earliest Cambrian (553 and 543 Ma) followed by the M4 metamorphism at ~530 Ma that is documented in the diatexites. Zircon ages of 492 Ma in the San Carlos Massif correlate partly with rather low Th/U ratios (<0.1) suggesting their growth by metamorphic fluids. This age is even younger than the PbSL titanite ages of 506 Ma. It is suggested that the fluid alteration relates to the beginning of the Famatinien metamorphic cycle in the neighbouring Sierra de San Luis and has not affected the titanite ages. The PTt evolution can be correlated with the plate tectonic processes responsible for the formation of the Pampean orogene, i.e., the accretion of the Pampean basement to the Río de La Plata craton (M2) and the later collision of the Western Pampean basement with the Pampean basement.  相似文献   

19.
We compare detrital U/Pb zircon age spectra of Carboniferous and Permian / Lower Triassic sedimentary rocks from different structural positions within the Austroalpine nappe pile with published ages of magmatic and metamorphic events in the Eastern Alps and the West Carpathians. Similarities between sink and possible sources are used to derive provenance of sediments and distinct frequency peaks in sink and source age pattern are used for paleogeographic plate tectonic reconstructions. From this, travel paths of Austroalpine and West Carpathian basement units are traced from the Late Neoproterozoic to the Jurassic. We place the ancestry of basement units on the northeastern Gondwana margin, next to Anatolia and the Iranian Luth-Tabas blocks. Late Cambrian rifting by retreat of the Cadomian Arc failed and continental slivers re-attached to Gondwana during a late Cambrian / early Ordovician orogenic event. In the Upper Ordovician crustal fragments of the Galatian superterrane rifted off Gondwana through retreat of the Rheic subduction. An Eo-Variscan orogenic event at ~390 Ma in the Austroalpine developed on the northern rim of Galatia, simultaneously with a passive margin evolution to the south of it. The climax of Variscan orogeny occurred already during a Meso-Variscan phase at ~350 Ma by double-sided subduction beneath Galatia fragments. The Neo-Variscan event at ~330 Ma was mild in eastern Austroalpine units. This orogenic phase was hot enough to deliver detrital white mica into adjacent basins but too cold to create significant volumes of magmatic or metamorphic zircon. Finally, the different zircon age spectra in today's adjacent Carboniferous to Lower Triassic sediments disprove original neighbourhood of basins. We propose lateral displacement of major Austroalpine and West-Carpathian units along transform faults transecting Apulia. The intracontinental transform system was released by opening of the Penninic Ocean and simultaneous closure of the Meliata Hallstatt Ocean as part of the Tethys.  相似文献   

20.
The Dadeldhura thrust sheet inm western Nepal consists of Proterozoic–Lower Paleozoic sedimentary and plutonic rocks, and their metamorphic equivalents, that rest structurally on Proterozoic strata of the Lesser Himalayan sequence. Although regional metamorphism and ductile deformation were widespread during Tertiary thrust emplacement, relicts of early Paleozoic tectonism are preserved locally. New field and geochronologic studies, together with the findings of previous workers, indicate that this early Paleozoic tectonism included: (1) regional metamorphism to at least garnet grade, (2) regional folding of a thick metamorphic sequence into a broad east–west trending syncline, (3) outcrop-scale folding of metasedimentary rocks, (4) emplacement of Cambro–Ordovician granitic bodies during and after the metamorphism and deformation, (5) uplift and erosion of the metamorphic sequence, with garnet-grade rocks locally exposed at the surface, and (6) derivation of Ordovician conglomeratic sandstones from the early Paleozoic orogen. Similar records of metamorphism, deformation, and uplift/erosion have been found in other regions of the Himalaya, indicating that rocks of the Dadeldhura thrust sheet were originally involved in a regionally extensive orogenic system. Future tectonic models of Himalayan orogenesis must accommodate this early Paleozoic event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号