首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
I review our understanding of the evolution of the spin periods of neutron stars in binary stellar systems, from their birth as fast, spin-powered pulsars, through their middle life as accretion-powered pulsars, upto their recycling or “rebirth” as spin-powered pulsars with relatively low magnetic fields and fast rotation. I discuss how the new-born neutron star is spun down by electromagnetic and “propeller” torques, until accretion of matter from the companion star begins, and the neutron star becomes an accretion-powered X-ray pulsar. Detailed observations of massive radio pulsar binaries like PSR 1259-63 will yield valuable information about this phase of initial spindown. I indicate how the spin of the neutron star then evolves under accretion torques during the subsequent phase as an accretion-powered pulsar. Finally, I describe how the neutron star is spun up to short periods again during the subsequent phase of recycling, with the accompanying reduction in the stellar magnetic field, the origins of which are still not completely understood.  相似文献   

2.
In 1982 we discovered a pulsar with the phenomenal rotation rate of 642 Hz, 20 times faster than the spin rate of the Crab pulsar. The absence of supernova debris in the vicinity of the pulsar at any wavelength indicates an age of the neutron star greater than 105 yr. The miniscule spindown rate of 1.1 × 10-19 confirms the old age and indicates a surface magnetic field of 109 G. A second millisecond pulsar was discovered by Boriakoff, Buccheri & Fauci (1983) in a 120-day orbit. These fast pulsars may have been spun-up by mass transfer in a close binary evolutionary stage. Arrival-time observations of the 642-Hz pulsar display remarkably low residuals over the first 14 months. The stability implied by these observations, 3 × 10-14, suggests that millisecond pulsars will provide the most accurate basis for terrestrial dynamical time. If so, the pulsar data will lead to improvements in the planetary ephemeris and to new searches for light-year scale gravitational waves. Many new searches for fast pulsars are under way since previous sky surveys excluded pulsars with spins above 60 Hz.  相似文献   

3.
Summary. Soft X–ray Transients (SXRTs) have long been suspected to contain old, weakly magnetic neutron stars that have been spun up by accretion torques. After reviewing their observational properties, we analyse the different regimes that likely characterise the neutron stars in these systems across the very large range of mass inflow rates, from the peak of the outbursts to the quiescent emission. While it is clear that close to the outburst maxima accretion onto the neutron star surface takes place, as the mass inflow rate decreases, accretion might stop at the magnetospheric boundary because of the centrifugal barrier provided by the neutron star. For low enough mass inflow rates (and sufficiently short rotation periods), the radio pulsar mechanism might turn on and sweep the inflowing matter away. The origin of the quiescent emission, observed in a number of SXRTs at a level of , plays a crucial role in constraining the neutron star magnetic field and spin period. Accretion onto the neutron star surface is an unlikely mechanism for the quiescent emission of SXRTs, as it requires very low magnetic fields and/or long spin periods. Thermal radiation from a cooling neutron star surface in between the outbursts can be ruled out as the only cause of the quiescent emission. We find that accretion onto the neutron star magnetosphere and shock emission powered by an enshrouded radio pulsar provide far more plausible models. In the latter case the range of allowed neutron star spin periods and magnetic fields is consistent with the values recently inferred from the properties of kHz quasi-periodic oscillation in low mass X–ray binaries. If quiescent SXRTs contain enshrouded radio pulsars, they provide a missing link between X–ray binaries and millisecond pulsars. Received 4 November 1997; Accepted 15 April 1998  相似文献   

4.
We investigate a stationary particle acceleration zone in the outer magnetosphere of an obliquely rotating neutron star. The charge depletion as a result of global current causes a large electric field along the magnetic field lines. Migratory electrons and/or positrons are accelerated by this field to radiate curvature gamma-rays, some of which collide with the X-rays to materialize as pairs in the gap. As a result of this pair-production cascade, the replenished charges partially screen the electric field, which is self-consistently solved together with the distribution of particles and gamma-rays. If no current is injected at either of the boundaries of the accelerator, the gap is located around the so-called null surface, where the local Goldreich–Julian charge density vanishes. However, we find that the gap position shifts outwards (or inwards) when particles are injected at the inner (or outer) boundary. We apply the theory to the seven pulsars whose X-ray fields are known from observations. We show that the gap should be located near to or outside of the null surface for the Vela pulsar and PSR B1951+32, so that their expected GeV spectrum may be consistent with observations. We then demonstrate that the intrinsically large TeV flux from the outer gap of PSR B0540–69 is absorbed by the magnetospheric infrared photons, causing it to be undetectable. We also point out that the electrodynamic structure and the resultant GeV emission properties of millisecond pulsars are similar to young pulsars.  相似文献   

5.
The initial period of a pulsar is an important factor in our understanding of the formation of neutron stars and of the nature of the equation of state of neutron star matter.Up to now this quantity can only be obtained for a few pulsars for which accurate age and braking index are known.Based on the theory of the offcenter dipole emission,in which pulsars obtain theiry high velocities depending on the initial periods,we calculate the initial period using the proper motion data,Because the orbital velocity of the progenitor and asymmetric kick in the supernova explosion may also contribute to the observed velocity of the pusar,the derived values of initial periods are lower limits.For normal pulsars,the initial periods are in the range of 0.6~2.6ms.For the millisecond pulsars,the initial periods are comparable to their current periods,and the ratio between the initial period and the current period increases with the decrease of the current period.For PSR B1937 21 with the shortest period of 1.56ms,the ratio is 0.77.  相似文献   

6.
We present results of our pulsar population synthesis of normal and millisecond pulsars in the Galactic plane. Over the past several years, a program has been developed to simulate pulsar birth, evolution and emission using Monte Carlo techniques. We have added to the program the capability to simulate millisecond pulsars, which are old, recycled pulsars with extremely short periods. We model the spatial distribution of the simulated pulsars by assuming that they start with a random kick velocity and then evolve through the Galactic potential. We use a polar cap/slot gap model for γ-ray emission from both millisecond and normal pulsars. From our studies of radio pulsars that have clearly identifiable core and cone components, in which we fit the polarization sweep as well as the pulse profiles in order to constrain the viewing geometry, we develop a model describing the ratio of radio core-to-cone peak fluxes. In this model, short period pulsars are more cone-dominated than in our previous studies. We present the preliminary results of our recent study and the implications for observing these pulsars with GLAST and AGILE.   相似文献   

7.
为了研究脉冲星本质与磁层动力学过程,如何从观测限定脉冲星辐射区域的部位和几何结构是其中一个基本且关键的问题.介绍了目前各种脉冲星辐射区几何限定方法的主要思想和结果,并对其异同和各自的优势作了比较和评述;根据已有的限定结果总结了其对辐射束结构、加速区模型和射电辐射机制等理论问题研究的帮助和启示;从各种方法的发展过程来看,完善能够限定脉冲星多波段辐射区域三维结构的方法,并与辐射区和加速区等理论问题的研究更紧密地结合是该领域的重要发展方向.  相似文献   

8.
This review describes the observational properties of radio pulsars, fast rotating neutron stars, emitting radio waves. After the introduction we give a list of milestones in pulsar research. The following chapters concentrate on pulsar morphology: the characteristic pulsar parameters such as pulse shape, pulsar spectrum, polarization and time dependence. We give information on the evolution of pulsars with frequency since this has a direct connection with the emission heights, as postulated in the radius to frequency mapping (RFM) concept. We deal successively with the properties of normal (slow) pulsars and of millisecond (fast-recycled) pulsars. The final chapters give the distribution characteristics of the presently catalogued 1300 objects.Received: 5 December 2003, Published online: 15 April 2004 Correspondence to: Richard Wielebinski  相似文献   

9.
Two investigations of millisecond pulsar radiation are discussed: average total intensity pulse morphology and individual pulse to pulse fluctuations. The average emission profiles of millisecond pulsars are compared with those of slower pulsars in the context of polar cap models. In general the full widths of pulsar emission regions continue to widen inversely with periodP as P-(0.30-0.5) as expected for dipole polar cap models. Many pulse components are very narrow. The period scaling of pulsar profiles -separations and widths -can tell us about the angular distribution of radiating currents. An investigation of individual pulses from two millisecond pulsars at 430 MHz shows erratic pulse to pulse variations similar to that seen in slow pulsars. PSR B1937+21 displays occasional strong pulses that are located in the trailing edge of the average profile with relative flux densities in the range of 100 to 400. These are similar to the giant pulses seen in the Crab pulsar.  相似文献   

10.
Summary. As of today, seven X-ray sources have been tentatively identified as radio-quiet, isolated neutron stars. The family appears to be a rapidly growing one, although not all the objects have been identified with the same degree of certainty. The most convincing example of radio quiet pulsar is certainly Geminga, the neutron star nature of which, proposed in 1983 on the basis of its similarity with the Vela pulsar, has been firmly established with the discovery of its X and pulsation. Four more neutron star candidates, originally found in the Einstein data, have been confirmed by ROSAT, which has added to the list two more entries. All this is not the result of an unbiased search. The seven sources were not selected at random: four are inside supernova remnants, an obvious place to search for isolated neutron stars, while the remaining three were singled out because of some peculiarity. Intense -ray emission in the case of Geminga, very high X-ray counting rate for RXJ185635-3754, or being the brightest unidentified source in the Einstein medium sensitivity survey, MS 0317-6647. In spite of the limited number of objects and of the observational biases, these seven radio quiet neutron star candidates add valuable pieces of information to the observational panorama of known pulsars. Their properties, inferred from the X-ray emission, offer a coherent picture, pointing towards thermally emitting, cooling neutron stars. Received: April 1, 1996  相似文献   

11.
We present results of a population synthesis study of radio-loud and radio-quiet γ-ray pulsars from the Galactic plane and the Gould Belt. The simulation includes the Parkes multibeam pulsar survey, realistic beam geometries for radio and γ-ray emission from neutron stars and the new electron density model of Cordes and Lazio. Normalizing to the number of radio pulsars observed by a set of nine radio surveys, the simulation suggests a neutron star birth rate of 1.4 neutron stars per century in the Galactic plane. In addition, the simulation predicts 19 radio-loud and 7 radio-quiet γ-ray pulsars from the plane that EGRET should have observed as point sources. Assuming that during the last 5 Myr the Gould Belt produced 100 neutron stars, only 10 of these would be observed as radio pulsars with three radio-loud and four radio-quiet γ-ray pulsars observed by EGRET. These results are in general agreement with the recent number of about 25 EGRET error boxes that contain Parkes radio pulsars. Since the Gould Belt pulsars are relatively close by, the selection of EGRET radio-quiet γ-ray pulsars strongly favors large impact angles, β, in the viewing geometry where the off-beam emission from curvature radiation provides the γ-ray flux. Therefore, the simulated EGRET radio-quiet γ-ray pulsars, being young and nearby, most closely reflect the current shape of the Gould Belt suggesting that such sources may significantly contribute to the EGRET unidentified γ-ray sources correlated with the Gould Belt.  相似文献   

12.
The equilibrium composition of neutron star matter is achieved through weak interactions (direct and inverse beta decays), which proceed on relatively long time scales. If the density of a matter element is perturbed, it will relax to the new chemical equilibrium through non-equilibrium reactions, which produce entropy that is partly released through neutrino emission, while a similar fraction heats the matter and is eventually radiated as thermal photons. We examined two possible mechanisms causing such density perturbations: (1) the reduction in centrifugal force caused by spin-down (particularly in millisecond pulsars), leading to rotochemical heating, and (2) a hypothetical time-variation of the gravitational constant, as predicted by some theories of gravity and current cosmological models, leading to gravitochemical heating. If only slow weak interactions are allowed in the neutron star (modified Urca reactions, with or without Cooper pairing), rotochemical heating can account for the observed ultraviolet emission from the closest millisecond pulsar, PSR J0437-4715, which also provides a constraint on |dG/dt| of the same order as the best available in the literature. This work made use of NASA’s Astrophysics Data System Service, and received financial support from FONDECYT through regular grants 1020840 and 1060644.  相似文献   

13.
We find that in general relativity slow down of the pulsar rotation due to the magnetodipolar radiation is more faster for the strange star with comparison to that for the ordinary neutron star of the same mass. Comparison with astrophysical observations on pulsars spindown data may provide an evidence for the strange star existence and, thus, serve as a test for distinguishing it from the neutron star.  相似文献   

14.
在中子星磁轴吸积柱的上部,少数高能电子通过磁镜点反射,可使部份电子的速度分布形成非热分布,由此激发激射(Maser)不稳定性。波被放大,发射出频率近似为电子迴旋频率及其倍频的相干辐射。用此模型计算了HerX-1的迴旋线发射。发现不稳定性增长率与吸积柱中电子数密度成正比,因而比非相干散射产生的连续辐射随电子数密度增长更快;而且发射线的强度和能量均与脉冲相位关联。这个理论可解释近期的HerX-1观测结果。  相似文献   

15.
It is expected that specific globular clusters (GCs) can contain up to a hundred of millisecond pulsars. These pulsars can accelerate leptons at the shock waves originated in collisions of the pulsar winds and/or inside the pulsar magnetospheres. Energetic leptons diffuse gradually through the GC Comptonizing stellar and microwave background radiation. We calculate the GeV–TeV γ-ray spectra for different models of injection of leptons and parameters of the GCs assuming reasonable, of the order of 1 per cent, efficiency of energy conversion from the pulsar winds into the relativistic leptons. It is concluded that leptons accelerated in the GC cores should produce well localized γ-ray sources which are concentric with these GCs. The results are shown for four specific GCs (47 Tuc, Ter 5, M13 and M15), in which significant population of millisecond pulsars have been already discovered. We argue that the best candidates, which might be potentially detected by the present Cherenkov telescopes and the planned satellite telescopes (AGILE, GLAST), are 47 Tuc on the Southern hemisphere, and M13 on the Northern hemisphere. We conclude that detection (or non-detection) of GeV–TeV γ-ray emission from GCs by these instruments put important constraints on the models of acceleration of leptons by millisecond pulsars.  相似文献   

16.
We suggest a model for the millisecond pulsar 1937+214, according to which the immediate progenitor of the pulsar was a binary consisting of two neutron stars of unequal mass. The heavier neutron star was spun up by the transfer of angular momentum from the orbit, and the lighter neutron star was tidally disrupted, leaving behind a millisecond pulsar.  相似文献   

17.
I analyze the properties of the pulsed emission from the accreting millisecond pulsar SAX J1808.4-3658 in observations of its 1998 April outburst by the Rossi X-Ray Timing Explorer. Pulse phase spectroscopy shows that the emission evolves from a hard spectrum (power law with photon index of 2.39+/-0.06) to a soft spectrum (index of 3.39+/-0.24). This softening is also observable as a phase lag in the fundamental of low-energy photons with respect to high-energy photons. I show that this lag is roughly constant over 10 days of the outburst. I fit these data with a model in which the pulse emission is from a hot spot on the rotating neutron star and the flux as a function of phase is determined in a calculation which includes the effects of general relativity. The energy-dependent lags are very well described by this model. The harder spectra at earlier phases (i.e., as the spot approaches) are the result of larger Doppler-boosting factors that are important for this fast pulsar. Since this model is sensitive to the equatorial speed as an independent parameter and since the spin frequency is known, this offers us a new means of measuring the neutron star radius, which is notoriously difficult to determine.  相似文献   

18.
It is shown that knowing the energy flux density of the radio emission, the rate of increase in the period, and the distance of a pulsar enables one to calculate all the rest of its most important characteristics (the solid angle of the radio emission beam, the radio luminosity, the solid angle of the beam of γ rays, the energy flux density of the g-ray emission, and the magnetic moment, moment of inertia, and mass of the neutron star). Equations from which these pulsar characteristics can be calculated are given at the end of the paper. The results of calculations for a number of pulsars are given in Tables 2 and 3 as an illustration. Translated from Astrofizika, Vol. 43, No. 2, pp. 277-291, April–June, 2000.  相似文献   

19.
Traditionally, studies aimed at inferring the distribution of birth periods of neutron stars are based on radio surveys. Here we propose an independent method to constrain the pulsar spin periods at birth based on their X-ray luminosities. In particular, the observed luminosity distribution of supernovae (SNe) poses a constraint on the initial rotational energy of the embedded pulsars, via the     correlation found for radio pulsars, and under the assumption that this relation continues to hold beyond the observed range. We have extracted X-ray luminosities (or limits) for a large sample of historical SNe observed with Chandra , XMM and Swift , which have been firmly classified as core-collapse SNe. We have then compared these observational limits with the results of Monte Carlo simulations of the pulsar X-ray luminosity distribution for a range of values of the birth parameters. We find that a pulsar population dominated by millisecond periods at birth is ruled out by the data.  相似文献   

20.
Many radio pulsars exhibit glitches wherein the star's spin rate increases fractionally by ∼10−10–10−6. Glitches are ascribed to variable coupling between the neutron star crust and its superfluid interior. With the aim of distinguishing among different theoretical explanations for the glitch phenomenon, we study the response of a neutron star to two types of perturbations to the vortex array that exists in the superfluid interior: (1) thermal motion of vortices pinned to inner crust nuclei, initiated by sudden heating of the crust, (e.g., a starquake), and (2) mechanical motion of vortices (e.g., from crust cracking by superfluid stresses). Both mechanisms produce acceptable fits to glitch observations in four pulsars, with the exception of the 1989 glitch in the Crab pulsar, which is best fitted by the thermal excitation model. The two models make different predictions for the generation of internal heat and subsequent enhancement of surface emission. The mechanical glitch model predicts a negligible temperature increase. For a pure and highly conductive crust, the thermal glitch model predicts a surface temperature increase of as much as ∼2 per cent, occurring several weeks after the glitch. If the thermal conductivity of the crust is lowered by a high concentration of impurities, however, the surface temperature increases by ∼10 per cent about a decade after a thermal glitch. A thermal glitch in an impure crust is consistent with the surface emission limits following the 2000 January glitch in the Vela pulsar. Future surface emission measurements coordinated with radio observations will constrain glitch mechanisms and the conductivity of the crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号