首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The leaching behaviour of fly ash from a Co smelter situated in the Zambian Copperbelt was studied as a function of pH (5–12) using the pH-static leaching test (CEN/TS 14997). Various experimental time intervals (48 h and 168 h) were evaluated. The leaching results were combined with the ORCHESTRA modelling framework and a detailed mineralogical investigation was performed on the original FA and leached solid residues. The largest amounts of Co, Cu, Pb and Zn were leached at pH 5, generally with the lowest concentrations between pH 9 and 11 and slightly increased concentrations at pH 12. For most elements, the released concentrations were very similar after 48 h and 168 h, indicating near-equilibrium conditions in the system. Calcite, clinopyroxenes, quartz and amorphous phases predominated in the fly ash. Various metallic sulfides, alloys and the presence of Cu, Co and Zn in silicates and glass were detected using SEM/EDS and/or TEM/EDS. The leaching of metals was mainly attributed to the dissolution of metallic particles. Partial dissolution of silicate and glass fractions was assumed to significantly influence the release of Ca, Mg, Fe, K, Al and Si as well as Cu, Co and Zn. The formation of illite was suggested by the ORCHESTRA modelling to be one of the main solubility-controlling phases for major elements, whereas Co and Zn were controlled by CoO and zincite, respectively. Sorption of metals on hydrous ferric oxides was assumed to be an important attenuation mechanism, especially for the release of Pb and Cu. However, there is a high risk of Co, Cu, Pb and Zn mobility in the acidic soils around the smelter facility. Therefore, potential local options for “stabilisation” of the fly ash were evaluated on the basis of the modelling results using the PHREEQC code.  相似文献   

2.
Leaching characteristics of fly ash   总被引:6,自引:0,他引:6  
The disposal of fly ash as a byproduct of thermic power stations, results in significant environmental problems. The leaching of coal fly ash during disposal is of concern for possible contamination, especially for the aquatic environment when ash is in contact with water. The aim of this study was to investigate the leaching behaviour of fly ashes currently disposed in Kemerkoy Power Plant (Turkey) fly-ash-holding pond. The studies were conducted with fly ashes from the electrostatic precipitators (fresh fly ash) and from the fly ash pond (pre-leached fly ash). The fly ashes has alkaline in nature and pH ranges between 11.9 to 12.2. The pre-leached fly ash exhibited lower EC values (7,400 µS) than the fresh fly ash (10,300 µS). In contrast to Fe and Pb, the elements such as Cr, Cd, Cu and Co did not leach from the fly ash. The Ca and Mn concentrations decreased with increasing temperature whereas, Na and K concentrations increased. The results showed that the most important effects of fly ash leaching were pH, Na, Ca, K, Fe, Mg, Mn and Pb.  相似文献   

3.
In the present study, coal from Chakwal (Pakistan) was leached with an aqueous solutions of iodine monochloride (ICl) and diethylenetriamine pentaacetic acid (DPTA) of different concentrations. The effect of stirring time, concentration and pH was studied on the leaching of different metals from coal. The physicochemical parameters indicated that the coal was of reasonably good quality. The results indicated that with increase in time duration, the extraction of metals increased. In most of the cases, metal concentration increased in the leachate with increasing the concentration of the leaching agents. DPTA was found to be the best leaching agent for most of the metals. Higher extraction of metals from coal fly ash indicated that coal organic matter has a pronounced effect on the leaching. Higher concentration of metals was extracted from virgin coal and coal fly ash at low pH (p?>?0.00) as compared to high pH. DPTA extracted metals in higher concentration from virgin coal and coal fly ash at low pH as compared to ICl. Based on the present study, the most leached metals were Fe, Cu, Mn and the least were Pb, Ni, Cd and Cr.  相似文献   

4.
The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope results from both column and batch leaching experiments show a marked increase in 87Sr/86Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface and ground waters.  相似文献   

5.
Using a modified extraction procedure, the effect of pH on the leaching of selected elements from Ca-rich (Type C) power plant fly ash was studied. Continuous additions of acetic acid were used to maintain pH values of fly ash slurries at 4.0, 6.0 and 8.0 for 24 h and an additional set was leached at its natural pH (average 11.8) value. Analyses for Se, As, Ca, Cd, Cr, Fe, Na and Pb showed that the highest concentrations occur in the leachate at pH 4.0 and decline with increasing pH. Concentrations of Cr and Fe increased slightly between neutral and high pH. Arsenic, Cd, Cr, Pb and Se concentrations exceeded the Environmental Protection Agency's toxicity criteria at pH 4.0. Selenium was above its toxicity level at pH values near 7 but the other elements were below their respective toxicity levels near neutral pH. Because recent studies show adverse effects of Se on aquatic life at far lower concentrations than the current Environmental Protection Agency's standard, high-Ca, power plant fly ashes represent a potentially hazardous pollutant to surface and subsurface waters.  相似文献   

6.
王永旺 《世界地质》2014,33(3):730-734
为了粉煤灰的高附加值综合利用,采用酸浸法对准格尔地区循环流化床粉煤灰进行了镓的浸出实验研究,考察了多种因素对镓的浸出率的影响,包括粉煤灰粒度,酸的种类与浓度、酸浸温度与时间、固液比等。结果表明,提高镓的浸出率的适宜条件为:粉煤灰粒度200目,盐酸的浓度6 mol/L,酸浸温度应大于160℃,酸浸时间6 h,液固比在5∶1~6∶1之间为宜。在优选的工艺条件下,镓的浸出率可达80%以上。从粉煤灰中提取镓,使其作为一种资源加以利用,是提高粉煤灰综合利用价值的有效途径。  相似文献   

7.
Acid mine drainage was reacted with coal fly ash over a 24 h reaction time and species removal trends evaluated. The evolving process water chemistry was modeled by the geochemical code PHREEQC using WATEQ4 database. Mineralogical analysis of the resulting solid residues was done by X-ray diffraction analysis. Selective sequential extraction was used to evaluate the transfer of species from both acid mine drainage and fly ash to less labile mineral phases that precipitated out. The quantity of fly ash, volume of acid mine drainage in the reaction mixture and reaction time dictated whether the final solution at a given contact time will have a dominant acidic or basic character. Inorganic species removal was dependent on the pH regime generated at a specific reaction time. Sulphate concentration was controlled by precipitation of gypsum, barite, celestite and adsorption on iron-oxy-hydroxides at pH > 5.5. Increase of pH in solution with contact time caused the removal of the metal ions mainly by precipitation, co-precipitation and adsorption. PHREEQC predicted precipitation of iron, aluminium, manganese-bearing phases at pH 5.53–9.12. An amorphous fraction was observed to be the most important in retention of the major and minor species at pH > 6.32. The carbonate fraction was observed to be an important retention pathway at pH 4–5 mainly due to initial local pockets of high alkalinity on surfaces of fly ash particles. Boron was observed to have a strong retention in the carbonate fraction.  相似文献   

8.
Abstract. Oxidation and reduction processes can influence extent of leaching of elements from solid waste. Three samples of municipal solid waste combustion fly ash were subjected to oxidizing and reducing conditions in order to evaluate leaching of elements in the Milli-Q water and fly ash (liquid to solid ratio, 100) mixtures. Although the oxidizing and reducing conditions were applied for 6 hours only, elements like Cs, Li, Mg, Sb, Tl and V leached more under oxidizing condition than under reducing condition in the case of all three ash samples. Cadmium, Pb and Zn leached more from all samples under reducing condition than under oxidizing condition. Leaching of other elements like Al, Ba, Cr, Cu, Ni and Rb was inconsistent with oxidizing or reducing conditions and varied from sample to sample, suggesting that factors other than redox may be more important in controlling leaching of these elements. Strong acid neutralization capacity of the fly ash samples let the pH vary within a narrow range, and thus severely limited the extent of leaching during the course of the experiment. Lead and Zn were the most sensitive while K and Na were the least sensitive to changes in redox conditions.  相似文献   

9.
《Applied Geochemistry》1994,9(4):403-412
To improve our understanding of As and Se leaching from fly ash it is necessary to know the underlying geochemical processes. It has been previously suggested that sorption processes may control the partitioning of these trace elements during leaching of fly ash. In natural systems, such as soils and sediments, As and Se have been shown to interact with iron oxides at acidic pH, with CaCO3 at alkaline pH and with clay-minerals at neutral pH. By analogy, we compared the leaching of As and Se from fly ash with the sorption of arsenate and selenite on hematite, portlandite and mullite. It was possible to describe the leaching of As and Se from acidic fly ash with a simplified model of surface complexation with iron oxides. The apparent adsorption constants calculated from the leaching experiments resembled those calculated from our sorption experiments with hematite and values published for amorphous iron oxide. The leaching of As and Se from alkaline fly ash was compared with the sorption of arsenate and selenite on portlandite. A Ca-phase was shown to control the leaching process. Portlandite was shown to be an important sorbent for arsenate and to a lesser extent for selenite, at pH > 12.4. The affinity of arsenate and selenite for mullite was low. Maximum sorption was reached in the neutral pH ranges, similar to the interactions of oxyanions with kaolinite. Sorption reversibility of arsenate on all three minerals considered in this study was less, or at least slower, than that of selenite. This feature may partly explain that the fraction of As available for leaching from fly ash is generally lower.  相似文献   

10.
Abstract. Municipal solid waste combustion leads to concentration of various metals in the solid residue (fly ash) remaining after combustion. These metals pose serious environmental hazard and require proper handling and monitoring in order to control their harmful effects. Leachability of some metals from fly ash was examined in fly ash and Milli-Q water mixture (liquid-to-solid ratio, 100) under various temperature and pH conditions in the laboratory. The leaching experiments conducted for 24 hours showed that pH was generally more important than temperature in controlling the amount of metals leached out of the fly ash. However, at a given pH, rise in temperature led to different degree of (usually one to two fold) enhanced or reduced leaching of metals. Owing to amphoteric nature of oxides of Al, Cr, Pb and Zn, these metals often yielded typical pattern of increase and decrease in their concentrations with change in pH. The extent of leaching of Cr and Pb in our experiments suggests that decrease of pH to acidic range in the case of Pb and to neutral to acidic range for Cr over a long period of storage of fly ash at solid waste dumping site may facilitate leaching of these metals from fly ash, leading to contamination of groundwater to the level that exceeds beyond the level permitted by the environmental laws.  相似文献   

11.
Portland cement has been suggested as an effective stabilization (physico-chemical) method for hazardous waste. This research explored the immobilization of metals in various mixtures of Portland cement and fly ash waste sampled from coal power plant in the province of Lodz, central Poland. The stabilization of fly ash in Portland cement was investigated under a wide range of pH conditions (3–12). Leachability tests were used to determine the efficiency of the encapsulation by studying the dissolution of alkaline metals (sodium, potassium) and alkaline earth metals (calcium, magnesium). The lowest value of leached metals was obtained for ratio of ash to cement of 1:10 in a case of sodium and calcium, while ratio 1.5 gave the lowest leached effects for potassium and magnesium. The high effectiveness of solidification/stabilization process was gained in high pH values (9–11).  相似文献   

12.
 In 1995, the central heating plant Draken in Kalmar, Sweden, started manufacturing a granular ash product for nutrient recycling to forest soil, instead of dumping the ash in landfills. Chemical composition, leaching and dissolution characteristics were determined for the Draken wood ash, the dolomite used in granule manufacturing and the final granule product. The heavy metal concentrations in fly ash were within the limit values recommended by the Swedish National Board of Forestry for ash recycling, except for Cd and As levels which occasionally exceeded the limit values. The Ca, Mn and P levels were too low for nutrient recycling at the time. Adding dolomite insures that the levels of the important nutrients Ca and Mg are sufficient in the granules. After 7 months in the field, about 60 % of Na and K was leached out from granules. Between 20 and 60% of trace elements Mo, Sc, V, Y and Zr were leached out after 7 months. The release of Ca and Mg was low, 1–5% during 7 months. Received: 12 July 1999 · Accepted: 31 August 1999  相似文献   

13.
This paper examines the difference in the geophysical and chemical characteristic of the volcanic ash and thermal fly ash to evaluate environmental pollution. Natural volcanic ash (VA) samples from Sagirelu, Cuddapah dist., Andhra Pradesh and thermal fly ash (FA) samples from the Thermal Power Station, Ennore, Chennai, were collected, analysed and compared. The particle sizes of the ash samples were determined using the laser particle size analyzer and the different surface morphological characters were studied using SEM analyses. The chemical components such as pH, major oxides, trace metals and mineral compositions were determined using pH metre, XRF and XRD methods. pH value of the volcanic ash varies from 8.5 to 8.9 indicating its alkalinity (8.5 to 9) in volcanic ash, while the thermal ash is neutral to mildly alkaline with pH varying from 6 to 7.5. Both the ash samples have higher concentration value in SiO2 (VA - 69.25%, FA - 46%) in major oxides and Cl (VA - 0.8%, FA - 0.1%) in trace elements. Quartz is the dominant mineral in both the types of ash, however, the volcanic ash has amorphous silica, while the fly ash contains crystalline quartz.  相似文献   

14.
In the mining environments of the Iberian Pyrite Belt (IPB), the oxidation of sulphide wastes generates acid drainage with high concentrations of SO4, metals and metalloids (Acid Mine Drainage, AMD). These acid and extremely contaminated discharges are drained by the fluvial courses of the Huelva province (SW Spain) which deliver high concentrations of potentially toxic elements into the Gulf of Cádiz. In this work, the oxidation process of mine tailings in the IPB, the generation of AMD and the potential use of coal combustion fly ash as a possible alkaline treatment for neutralization of and metal removal from AMD, was studied in non-saturated column experiments. The laboratory column tests were conducted on a mine residue (71.6 wt% pyrite) with artificial rainfall or irrigation. A non-saturated column filled solely with the pyrite residue leached solutions with an acid pH (approx. 2) and high concentrations of SO4 and metals. These leachates have the same composition as typical AMD, and the oxidation process can be compared with the natural oxidation of mine tailings in the IPB. However, the application of fly ash to the same amount of mine residue in another two non-saturated columns significantly increased the pH and decreased the SO4 and metal concentrations in the leaching solutions. The improvement in the quality of leachates by fly ash addition in the laboratory was so effective that the leachate reached the pre-potability requirements of water for human consumption under EU regulations. The extrapolation of these experiments to the field is a promising solution for the decontamination of the fluvial courses of the IPB, and therefore, the decrease of pollutant loads discharging to the Gulf of Cádiz.  相似文献   

15.
薄煜琳  于博伟  杜延军  魏明俐 《岩土力学》2015,36(10):2877-2891
以粒化高炉矿渣粉-氧化镁(GGBS-MgO)固化铅污染黏土为研究对象,通过半动态淋滤试验,对GGBS-MgO在酸雨作用下的强度特性及溶出特性进行研究。通过对GGBS-MgO固化铅污染黏土半动态淋滤后pH值、针刺深度、无侧限抗压强度及浸出液中[Pb]、[Ca]、[Mg]元素浓度的测试,分析淋滤液初始pH值、掺量以及含铅不含铅对GGBS-MgO固化土强度特性的影响,讨论了初始淋滤液pH值、固化剂掺量对GGBS-MgO固化铅污染土累积铅、钙、镁溶出质量以及铅有效扩散系数的影响规律。结果表明,半动态淋滤试验使试样无侧限抗压强度qu较标准养护39 d试样降低了2%~53%,且淋滤液初始pH=2对试样qu影响最大;在相同掺量、相同淋滤液初始pH值时,GGBS-MgO固化未污染土半动态淋滤后qu较水泥固化未污染土qu提高了12%~43%;且当固化剂掺量为18%时,固化铅污染土强度特性较水泥有明显优势,约为水泥固化铅污染土强度的1.3~1.8倍;且相同配比时,淋滤液初始pH=2表层的pH值约为pH=3、4、5、7的1/2;随着淋滤液初始pH值、半动态淋滤后qu及内部pH值的增加,针刺深度减小;针贯入阻力与qu存在幂指数关系。此外,累积铅、钙、镁溶出质量随着初始淋滤液pH值、固化剂掺量的增加而减少,在初始淋滤液pH=2时,Ai,Pb、Ai,Ca、Ai,Mg分别约为pH=3、4、5和7的29~222倍、1.7~4.4倍和12.0~80.3倍;固化剂掺量为12%时的累积溶出质量约是18%掺量时的1.1~2.0倍;铅有效扩散系数De随着初始淋滤液pH值的增加而降低,初始淋滤液pH=2时的De比pH=3~7的De高约3~5个数量级;且低于水泥固化铅污染土De,当初始淋滤液pH=7时,GGBS-MgO固化土De相比于水泥固化土低1~2个数量级。  相似文献   

16.
《Applied Geochemistry》1999,14(2):159-171
For a proper assessment of the environmental impact of the utilisation and disposal of Municipal Solid Waste Incinerator (MSWI) bottom ash it is necessary to understand weathering processes and their effects on (trace) element leaching. The authors have investigated the processes that control the leaching of Cd, Pb, Zn, Cu, and Mo from 3 categories of bottom ash: (A) unweathered bottom ash (grate siftings and unquenched samples), (B) quenched/non-carbonated bottom ash (freshly quenched and 6-week-old samples), and (C) weathered bottom ash (1.5- and 12-year-old samples). Leaching experiments were performed in a pH-stat at a large range of pH values. The speciation code MINTEQA2 was used for subsequent modelling of precipitation/dissolution processes. The speciation of trace elements in weathered bottom ash was also investigated by microanalytical techniques. In A- and B-type bottom ash the general controlling processes are thought to be precipitation/dissolution of relatively soluble minerals or, in the case of Cu in particular, extensive complexation with dissolved organic C. At the “natural” pH of the samples, the leaching of Cd, Pb, Cu, Zn and Mo is generally significantly lower from C-type bottom ash than from less weathered types of bottom ash. This reduction in leaching is due to the neutralisation of bottom ash pH and the formation of less soluble species of these elements as weathering continues. In the more weathered (C-type) bottom ash trace element leaching does not seem to be solubility-controlled; although slow precipitation reactions cannot be totally excluded, it is hypothesised that the controlling mechanism in those samples is sorption to neoformed minerals.  相似文献   

17.
The laterite nickel (Ni) ore smelting operation in Niquelândia (Goiás state, Brazil) produced large amounts of smelting wastes, stockpiled on dumps (slags) and in settling ponds (fly ash). In this study we present data on the chemistry, mineralogy and pH-dependent leaching behaviours of these two waste materials.Bulk chemical analyses indicated that both wastes contained significant amounts of potentially toxic elements (PTEs), with substantially higher concentrations in the case of the fly ash (up to 2.51 wt% Ni, 1870 mg/kg Cr and 488 mg/kg Co). The mineralogical investigations carried out using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and electron microprobe (EPMA) indicated that the slag was mainly composed of silicate glass, olivine and pyroxene. In contrast, the fly ash was composed of Ni-bearing serpentine-like phases (originating from the furnace feed), Ni-bearing glass, olivine, pyroxene and spinel. The pH-dependent leaching behaviour was performed according the EU standard experimental protocol (CEN/TS 14997) in the pH range of 3–12. The leaching was highly pH-dependent for both materials, and the highest releases of PTEs occurred at pH 3. The slag generally exhibited an U-shaped leaching behaviour of the PTEs as a function of pH, and was found to release up to 48.0 mg/kg Ni, 25.6 mg/kg Cr, and 1.42 mg/kg Co. The fly ash was significantly more reactive, and exhibited its highest leaching level of PTEs between pH 3 and 7. The maximum observed release corresponded to 5750 mg/kg Ni, 4.35 mg/kg Cr, and 112 mg/kg Co. The leached Ni concentrations after 24 h of leaching in deionized water exceeded the limit for hazardous waste by more than 100x according to the EU legislation (40 mg/kg Ni). X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structures (EXAFS) spectra indicated that Ni in the fly ash is predominantly bound in a serpentine-like phase, and during the fly ash experimental alteration it was mainly released from the second shell (corresponding to the atomic distances between Ni and Si, Mg, Fe in high-temperature silicates, glass, and partially dissolved serpentine). This study shows that disposal sites for the fly ash can represent a significant source of local pollution, and direct recycling of the fly ash in the smelting technology (as currently adopted at the Barro Alto new smelter and since few years also at the Niquelândia smelter) is the best environment-friendly option for handling of fly ash in the future.  相似文献   

18.
The maximum concentration of the majority of the trace metals in the leachates from shake and column test of lignite fly ash (LFA) was within the prescribed limits; however, total dissolved solids, total hardness, cations and anions (except K+), being above the prescribed limits, may lead to the increase in the hardness and salinity in the soil on the disposal of LFA. Present generation of huge amount of fly ash from thermal power plants (TPPs) is a big challenge concerning contamination of soil, crop produce and surface and ground water bodies due to the presence of some of the toxic trace metals in it. The leaching behavior of alkaline LFA (pH, 10.94), from TPP of Neyveli Lignite Corporation (NLC), India, was investigated by shake and column tests using water and sodium acetate buffer. The leaching of trace metals from LFA was governed by their concentrations, association with the ash particles, leaching duration and pH of the leachate (most influencing parameter). The leaching of metals followed the order: buffer column > aqueous column > aqueous shake > buffer shake test.  相似文献   

19.
In Flanders, recycling of bottom ash is mainly inhibited by the high leaching of Cu. Although it has been proved that dissolved organic C plays a major role in the Cu leaching, the possible role of inorganic Cu mineral speciation has never been experimentally examined. In this study the speciation of Cu is investigated using a combination of optical microscopy and electron microprobe –WDX/EDX. Several Cu species were determined. Metallic Cu (with or without an oxide shell), CuO and Cu2O were the most abundant. These particles were most likely present in wire-like structures. Copper also occurred as alloy (brass, bronze, zamak), and was found frequently together with typical elements such as Ca, Cl and S. Finally, small metallic Cu particles seemed to be trapped in or precipitated on oxides and silicates. Based on this Cu speciation study, pure Cu minerals were selected and leached as a function of time. The solubility after equilibrium of all studied Cu minerals never exceeded 20 μg/L (which equals 10% of the total Cu leaching).The effect of heating (2 h at 400 °C) on the speciation of Cu was investigated using the same combination of techniques. Results show that metallic Cu seemed to be converted to Cu oxide (mostly CuO) and that the particles were more porous after heating. These conclusions were verified by XRD analysis of the heated pure Cu minerals. After heating, the Cu minerals were also leached as a function of time, to study the impact on Cu leaching. Results indicate that their leaching had slightly increased in comparison with the non-heated Cu minerals. However, the major decrease in Cu leaching in heated bottom ash, more than neutralizes this effect and thus can be attributed to the destruction of organic matter and not to the (small) change in Cu speciation.  相似文献   

20.
The potential to use the alkaline residue products fly ash, green liquor dregs, and lime mud originating from paper mills as dry cover materials to seal tailings has been investigated. Metals concentration in lime mud and fly ash had the lowest and highest contents, respectively. The tailings (<1 % sulfur content, primarily pyrite) were disposed about 50 years ago and originated from the former Rönnskär mine site in Sweden. The results of chemical composition analysis show that the raw unoxidized tailings are active toward oxidation, while the components of the adjacent oxidized tailings are not. To quantify the release of metals from the tailings and to evaluate the effect of a sealing layer on oxidation and weathering of the tailings, batch leaching tests were conducted in which leachate from alkaline residue materials was fed to the tailings. The results show that a higher concentration of most trace elements is leached from the unoxidized tailings than from the oxidized tailings. Except As and Cr, the rest of analyzed metals (Cd, Cu, Ni, Pb) became immobilized in response to the increased pH as a consequence of the amendment. The three tested alkaline amendments show a similar potential for preventing the release of metals (with the exception of As and Cr) from the tailings. Under either aerobic or anaerobic conditions, microbial activity was found to be of minor importance. XRD analysis of the field samples revealed that it was feasible to use alkaline residue products in covering tailings, and that it was advantageous to use ash as a cover material more than dregs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号