首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clay minerals, byproducts of chemical weathering, are important group of minerals found in rivers, estuaries, and marine sedimentary environments, which include mudstones, clay stones, and shales. In the present study, FTIR and SEM investigation on the clay minerals in Sundarban mangrove core sediments collected from Moipith Matla and Belamati Island are carried out. The study indicated the dominant association of kaolinite with subordinate amount of quartz, illite and chlorite. The abundance of kaolinite, illite chlorite and clay with quartz helps in increasing sediment in the islands region. The geochemical and mineralogical evolution of mangrove sediments are results of the interaction of biotic and abiotic parameters, whose balance is conditioned by the climate that governs the hydrologic regime, the sedimentation dynamics and the organic matter. This study on the charaterstation of clay provides us with substantial impact in the water holding capacity, productivity and mineralogical and chemical transformation in order to establish much more and intermediate equilibrium between marine influence and continental contribution, as part of the estuarine environment, than to the tropical climate conditions.  相似文献   

2.
Clay mineral found in rivers, estuaries, and marine sedimentary environments is an important group of minerals which is the by-product of chemical weathering. The main constituents of this fine-grained sediment include mudstones, clay stones, and shales. This is probably the first report of a Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) investigation on the clay minerals to characterize them in the Sundarban mangrove core sediments of Moipith Matla and Belamati Island. This study was carried out in the selected stretch for FTIR and SEM analyses. The study reveals the dominant association of kaolinite with subordinate amount of quartz, illite, and chlorite. The abundance of kaolinite, illite, chlorite, and clay with quartz helps in increasing the sediment in the island region. The geochemical and mineralogical evolution of mangrove sediment results in the interaction of biotic and abiotic parameters, whose balance is conditioned by the climate that governs the hydrologic regime, the sedimentation dynamics, and of the organic matter. This study on the characterization of clay provides substantial impact in the water-holding capacity, productivity, and mineralogical and chemical transformation in order to establish much more and intermediate equilibrium between marine influence and continental contribution, as a part of the estuarine environment.  相似文献   

3.
Since the Carboniferous, tropical latitudes have been the site of formation of many economic coal deposits, most of which have a restricted range of mineralogical composition as a result of their depositional environment, climatic conditions, and diagenesis. Mineralogical and microscopic investigations of tropical peats from Tasek Bera, Peninsular Malaysia, were performed in order to better understand some of these factors controlling the nature, distribution and association of inorganic matter in peat-forming environments. Distribution and nature of the inorganic fraction of peat deposits give insight into the weathering conditions and detrital input into the mire system. Because the inorganic composition of peat deposits is determined by plant communities, height of water table, and climate, the results of the quantitative and qualitative analysis can be used to reconstruct palaeoclimatic conditions.Tasek Bera is a peat-accumulating basin in humid tropical Malaysia with organic deposits of low- to high-ash yield and thus representative of many ancient peat-forming environments. Clay minerals dominate the mineralogical composition of the peat and organic-rich sediments, while quartz and clays dominate the underlying siliciclastic deposits. Kaolinite is the most abundant clay mineral in the organic deposits with minor amounts of illite and vermiculite. Particle size analyses indicate that >50% of the inorganic detrital fraction is <2 μm. Most detrital quartz grains range in size from fine silt to fine sand. The fine sand fraction accounts for a maximum of 5 wt.% of the inorganic constituents. In addition, abundant biogenic and non-biogenic, Al- and Si-rich amorphous matter occur. In the ombrotrophic (low-nutrient) environment, biogenic inorganic material contributes up to >75% of the ash constituents. As a consequence, the vegetational communities make an important contribution to the inorganic and overall ash composition of peats and coals. The ash content of the often inundated peat consists on average of 10% opaline silica from diatoms and sponge spicules, while the ash of the top deposits may have up to 50% biogenic silica. Hence, Al- and Si-hydroxides and the opaline silica from diatoms and sponges represent a large repository of Al and Si, which may form the basis of mineral transformation, neoformation and alteration processes during coalification of the peat deposits. As a result, most coal deposits from paleotropical environments are anticipated to have little to no biogenic inorganic material but high amounts of secondary clays, such as kaolinite (detrital kaolinite, resilisified kaolinite, or desilisified gibbsite) or illite, and various amounts of detrital and authigenetic quartz.  相似文献   

4.
安徽庐枞盆地酸性蚀变岩帽地质地球化学特征研究   总被引:5,自引:4,他引:1  
酸性蚀变岩帽是浅成低温热液系统演化的产物,形成于酸性高氧化性流体的化学条件下;在高硫化型浅成低温热液金矿床中广泛发育,是该类矿床的显著识别特征。通过对酸性蚀变岩帽的野外地质特征、矿物共生组合和地球化学特征研究,能较好阐明浅成低温成矿热液系统的特征、性质、发生和发展演化及成矿作用过程。庐枞矿集区是长江中下游成矿带重要的矿集区之一,盆地内广泛发育以明矾石为特征蚀变矿物的酸性蚀变岩帽,面积超过30km~2,指示盆地内高硫化浅成低温热液系统的存在。目前为止,前期工作主要针对明矾石矿床地质特征和明矾石资源储量进行,该酸性蚀变岩帽的地质地球化学特征研究尚未开展。本次工作通过对酸性蚀变岩帽系统的野外采样、全岩地球化学分析和短波红外光谱测试分析技术(PNIRS测试)分析,确定其主要赋存在砖桥组火山岩中,组成矿物为石英、明矾石、高岭石、地开石,此外有少量绢云母、伊利石、珍珠陶土、叶蜡石、褐铁矿,极少数的叶腊石和黄钾铁矾等,在钻孔深部存在浸染状和半自形粒状黄铁矿。由于受到地表风化剥蚀和不同热热中心的影响,水平方向从矾山明矾石矿床向外围发育石英+明矾石带、石英+高岭石/地开石+明矾石带、石英+高岭石/地开石带、硅化带以及最外围的泥质带即高岭石±绢云母±伊利石带。根据酸性蚀变岩帽的矿物组合和主量元素特征,可将其分为三类:硅质蚀变岩、明矾石蚀变岩和粘土蚀变岩。硅质蚀变岩中SiO_2含量发生明显的富集作用,其余主量元素(K_2O、Na_2O、Al_2O_3、Fe_2O_3、P_2O5)含量显著降低;明矾石蚀变岩和粘土蚀变岩具有相似的地球化学特征,SiO_2、Al_2O_3、Fe_2O_3、P_2O_5元素含量范围变大,K_2O和Na_2O含量降低,且Na_2O降低更加明显;而钛为不活泼元素,在岩石发生蚀变过程中TiO_2含量变化很小。矾山地区的酸性蚀变岩帽的产状、蚀变类型、地球化学特征受构造和地层的双重控制。  相似文献   

5.
The newly independent country of Timor Leste is located in the eastern half of Timor Island (Indonesian archipelago). Geological studies of the country’s mineral resources and extractive activities are practically non-existent. There is evidence of the exploitation of ceramic raw materials at outcrop level and two small brick kilns, nowadays inactive, in the Dili and Aileu areas. Near Aileu, there are light-coloured silt-rich deposits, interpreted as overbank deposits, interbedded with ancient river terraces (post-Pliocene) overlying metamorphic bedrock. These sediments are the subject of this study, which encompassed geological mapping and preliminary characterisation. Tectonically, the area is a graben, preserving alluvium and colluvium deposits. Five channel samples representative of the silt-rich deposits were collected. Semi-quantitative mineralogical analysis shows that the samples are made of illite, quartz and kaolinite clays, with accessory illite/vermiculite interstratified minerals and K-feldspar. The chemical data show agreement with the estimated mineralogical composition. The grain size distribution points to a silt-dominated assemblage. Most samples have a satisfactory extrudability but deficient moulding properties. After firing, the sampled raw materials form a final product with possible ceramic capability for whiteware production.  相似文献   

6.
The mineralogy of the high-volatile bituminous coals and associated strata from the Greta seam, Sydney Basin, Australia, has been evaluated in this study. Although the seam is not immediately overlain by marine strata, percolation of marine water into the original peat bed is indicated by the petrological, mineralogical and geochemical characteristics, which resemble those of coals with marine roof strata. The upper and lower sections of the seam have contrasting mineralogy. Pyrite typically comprises 40 to 56 wt% of the mineral assemblage in the marine-influenced upper part of the seam section. The lower part contains much less pyrite (typically <5 wt%, organic-free basis), and also relatively abundant dawsonite (up to 14 wt%, organic-free basis). The minerals within most coal plies are largely of authigenic origin. These include pyrite, siderite, clay minerals (mainly kaolinite and Na-rich mixed-layer illite/smectite), and quartz, most of which have a relatively early, syngenetic origin. Minor Ti-bearing minerals, anatase or rutile, and phosphate minerals, fluorapatite and goyazite, were probably also formed during early diagenesis. Other minerals have features that indicate late-stage precipitation. These include abundant cleat- and fracture-filling dawsonite, which may be the result of reactions between earlier-precipitated kaolinite and Na2CO3- or NaHCO3-bearing fluids. Minor albite may also be epigenetic, possibly precipitated from the same Ca–Al bearing fluids that formed the dawsonite. The most abundant detrital minerals in the Greta coals are quartz, poorly ordered kaolinite, illite and mixed-layer illite/smectite (I/S). These occur mainly in the floor, roof and other epiclastic horizons of the seam, reflecting periods of greater clastic influx into those parts of the original peat-forming environment. Detrital minerals are rare in the coals away from the epiclastic horizons, probably owing to almost complete sediment bypassing in the depositional system. Alternatively, any detrital minerals that were originally present may have been leached from the peat bed by diagenetic or post-diagenetic processes.  相似文献   

7.
With the analysis of the sources and formation mechanism of the clay minerals in the sediment core from the Dalianhai lake in the Gonghe Basin,northeastern Tibet-Qinghai Plateau,clay mineral composition proxies,grain-size and carbonate contents have been employed for high-resolution study in order to reconstruct East Asian Summer Monsoon (EASM) over the northeastern Tibet-Qinghai Plateau during the lastdeglacial.The study also extended to establish a relationship between vegetation cover changes and erosion during the last 14.5 ka with pollen record and clay mineral proxies.Smectite/kaolinite and smectite/(illite+chlorite) ratios allow us to assess hydrolysis conditions in lowlands and/or physical erosion process in highlands of the Gonghe Basin.Before 12.9 Cal ka BP,both mineralogical ratios show low values indicative of strong physical erosion in the basin with a dominant cold and dry phase.After 12.9 Cal ka BP,an increase in both mineralogical ratios indicates enhanced chemical weathering in the basin associated with a warm and humid climate.The beginning of Holocene is characterized by high smectite/(illite+chlorite) and smectite/kaolinite ratios that is synchronous as with deposition of many peat laminae,implying the best warm and humid conditions specifically between 8.0 to 5.5 Cal ka BP.The time interval after 5.0 Cai ka BP is characterized by a return to high physical erosion and low chemical weathering with dry climate conditions in the basin.Comparing variations of clay mineral assemblages with previous pollen results,we observe a rapid response in terms of chemical weathering and physical erosion intensity to a modification of the vegetation cover in the basin.  相似文献   

8.
重庆南川-武隆铝土矿属于渝南-黔北铝土矿成矿带,为喀斯特型铝土矿床。经显微镜、X射线粉晶衍射、矿物自动分析仪(MLA)、扫面电子显微镜等方法对该矿床矿物学的研究,发现组成铝土矿的主要矿物为一水硬铝石、高岭石、绿泥石,次要矿物为伊利石、一水软铝石、三水铝石、鲕绿泥石、菱铁矿、赤铁矿、针铁矿、黄铁矿、锐钛矿、金红石、磷灰石、石英、锆石、方解石、长石及稀土矿物等。矿石组构及矿物组合表明形成铝土矿的沉积/成岩环境为接近于潜流的环境。矿石结构和锆石形态指示成矿物质经过了短距离的搬运。地球化学研究结果显示,组成铝土矿的主要化学成分为Al2O3、TFeO、SiO2和TiO2,铝土矿化过程中REE、Zr、Hf、Nb、Ta、Th、Sc、Li和Ga发生富集。形成铝土矿的母岩物质主要来自下伏页岩的风化作用,灰岩和酸性火山岩对铝土矿的形成也有一定的贡献。结合稳定同位素资料,认为铝土矿的形成可能与生物作用有关。  相似文献   

9.
The coal of the Miocene Bukit Asam deposit in south Sumatra is mostly sub-bituminous in rank, consistent with regional trends due to burial processes. However, effects associated with Plio–Pleistocene igneous intrusions have produced coal with vitrinite reflectance up to at least 4.17% (anthracite) in different parts of the deposit. The un-metamorphosed to slightly metamorphosed coals, with Rvmax values of 0.45–0.65%, contain a mineral assemblage made up almost entirely of well-ordered kaolinite and quartz. The more strongly heat-affected coals, with Rvmax values of more than 1.0%, are dominated by irregularly and regularly interstratified illite/smectite, poorly crystallized kaolinite and paragonite (Na mica), with chlorite in some of the anthracite materials. Kaolinite is abundant in the partings of the lower-rank coals, but is absent from the partings in the higher-rank areas, even at similar horizons in the same coal seam. Regularly interstratified illite/smectite, which is totally absent from the partings in the lower-rank coals, dominates the mineralogy in the partings associated with the higher-rank coal beds. A number of reactions involving the alteration of silicate minerals appear to have occurred in both the coal and the associated non-coal lithologies during the thermal metamorphism generated by the intrusions. The most prominent involve the disappearance of kaolinite, the appearance of irregularly interstratified illite/smectite, and the formation of regular I/S, paragonite and chlorite. Although regular I/S is identified in all of the non-coal partings associated with the higher-rank coals, illite/smectite with an ordered structure is only recognised in the coal samples collected from near the bases of the seams. The I/S in the coal samples adjacent to the floor of the highest rank seam also appears to have a greater proportion of illitic components. The availability of sodium and other non-mineral inorganic elements in the original coal to interact with the kaolinite, under different thermal and geochemical conditions, appears to be the significant factor in the formation of these new minerals, and distinguishes the mineralogical changes at Bukit Asam from those developed more generally with rank increases due to burial, and from the effects of intrusions into coals that were already at higher rank levels.  相似文献   

10.
During the Middle Ordovician to Late Carboniferous period,the North China Craton(NCC)was exposed and experienced prolonged weathering that resulted in the formation of large-scale iron,clay and bauxite deposits. The source of ore-forming material has always been a research focus,in particular,whether the sources of the iron ore and the Fe-bearing clay at the bottom of Benxi Formation are the same as the upper bauxite and clay deposit is still unclear. In this study,the Da'an bauxite and clay deposit at the southern margin of the NCC was chosen to carry out a detailed analysis of the micro-region mineral composition and elemental geochemical characteristics for further exploring the sources of iron,bauxite and clay deposits. The composition of the ore-bearing rocks in the Da'an bauxite deposit from the bottom to top includes Fe-bearing clay(locally iron ore),bauxite,and bauxitic clay;locally,in karstic uplift,bauxitic clay layer is directly overlying on the Fe-bearing clay. The Fe-bearing clay is dominated by siderite,pyrite,and illite in the karstic depression,and hematite,illite,and kaolinite in the uplift. Bauxite is mainly composed of diaspore,illite,and anatase,while bauxitic clay is mainly composed of illite. Mineral microanalysis revealed the development of large amounts of moissanite and small amounts of natural silica,silicalite,and chromite at the bottom of bauxitic clay layer. Regional comparison and correlation reveal that the ophiolite in the Shangdan suture zone and Erlangping Group in the North Qinling orogenic belt(NQOB)likely provides source materials for bauxite and clay deposits. The obvious differences in immobile element ratios (e.g., Zr/TiO2,Hf/TiO2,Nb/TiO2,Ta/TiO2)between the bottom Fe-bearing clay layer and the upper bauxite and clay layer in Da'an deposit,revealing that they are from different sources. The bottom Fe-bearing clay and iron ore layers are the products of in-situ weathering of underlying carbonates,while the top bauxite and clay are allochthonous. The regional uplift of the NQOB during the Late Carboniferous period provided important ore-forming materials for the formation of the NCC bauxite and clay deposits.  相似文献   

11.
华北克拉通在中奥陶世至晚石炭世期间一直出露地表,经历了长期的风化作用,形成大规模的铁-铝黏土矿,其成矿物源一直是研究的热点,尤其是本溪组底部铁矿和铁质黏土矿与上部铝黏土矿是否为同一来源尚未查清。本研究选取克拉通南缘大安铝黏土矿床作为研究对象,展开微区矿物及元素地球化学组成分析,进一步探讨铁-铝黏土矿物质来源。大安矿床内含矿岩系自下而上包括铁质黏土岩、铝土矿、铝质黏土矿;局部喀斯特高地缺失铝土矿,铝质黏土矿直接覆盖于铁质黏土岩之上。铁质黏土岩在洼地以菱铁矿、黄铁矿和伊利石为主,在隆起区以赤铁矿、伊利石和高岭石为主。铝土矿以硬水铝石、伊利石和锐钛矿为主;铝质黏土矿主要矿物为伊利石。矿物微区分析在黏土矿底部发现大量的碳化硅和少量自然硅、硅铁矿、铬铁矿;区域对比揭示北秦岭造山带内商丹缝合带和二郎坪群中的蛇绿岩为铝黏土矿形成提供了成矿物质。本溪组底部铁质黏土与上部铝黏土矿稳定元素比率(例如Zr/TiO2、Hf/TiO2、Nb/TiO2、Ta/TiO2)存在明显差异,揭示二者为不同来源: 底部铁质黏土岩和铁矿层为底板碳酸盐岩原地风化的产物;而上部铝黏土矿是异地搬运物,北秦岭造山带在晚石炭世的整体抬升为华北铝黏土矿形成提供了重要的成矿物质。  相似文献   

12.
This paper presents mineralogical and geochemical data from several continental sequences located in Central (Ain Ghréwiss and Kébar) and Central-Southern Tunisia (Selja, Kef Schefeir, Shib, Oum El Kcheb and Haidoudi). These sequences vary in age from Late Palaeocene to Early Oligocene and contain considerable quantities of fibrous clays (up to 75% palygorskite and 90% sepiolite). These clays appear in assocation with carbonates (mainly dolomite), detrital aluminosilicates (illite, Al smectites, mixed-layers illite–smectite and kaolinite), quartz and lesser quantities of gypsum and halite. The textural characteristics observed by electron microscopy, the trace and rare earth elements contents and their distribution in the various mineral phases, together with the isotopic composition of dolomite and fibrous clays, provide good clues as to the genesis of the neoformed minerals. Thus, the sepiolite would have precipitated directly in lacustrine, playa-lake or sebka environments under alkaline conditions, high Si and Mg and low Al activity, and arid to semiarid climate. On the other hand, the palygorskite would have formed by transformation of already existing illite and/or smectite type aluminosilicates in solutions in equilibrium with isotopically heavier and, therefore, more evaporated solutions than the sepiolite.  相似文献   

13.
叶太平  韩雪  陈仁  王敏 《地球学报》2021,42(6):945-958
滇黔桂地区代表性锰矿包括贵州松桃大塘坡锰矿、广西大新下雷锰矿、遵义铜锣井锰矿和云南砚山斗南锰矿.本文利用显微镜、X衍射仪、扫描电镜等仪器,通过研究滇黔桂地区典型锰矿矿相学特征,结合碳酸盐岩研究方法,查明产于南华系大塘坡组第一段(Nh1d1)贵州松桃大塘坡锰矿矿物组合包括菱锰矿、钙菱锰矿、锰白云石、锰方解石、石英、伊利石,微相为SMF2、沉积相FZ1(盆地相),形成于沉积环境伸展阶段;产于上泥盆统五指山组(D3w)广西大新下雷锰矿矿物组合包括褐锰矿、锰钾矿、菱锰矿、钙菱锰矿、蔷薇辉石、透闪石、石英,微相为SMF2和SMF15-M、沉积相FZ7(台地相),形成于沉积环境伸展阶段;产于中二叠统茅口组第二段(P2m2)遵义铜锣井锰矿矿物组合包括菱锰矿、钙菱锰矿、锰方解石、锰白云石、硫锰矿、黄铁矿、闪锌矿、高岭石、伊利石、菱铁矿,微相为SMF15-C和SMF17、沉积相FZ7(台地相),形成于沉积环境收缩阶段;产于中三叠统法郎组(T2f)其矿物成分包括云南砚山斗南锰矿矿物组合包括褐锰矿、水锰矿、钙菱锰矿、含锰方解石、方解石、石英,微相为SMF4和SMF13、沉积相FZ4(斜坡相),形成于沉积环境伸展阶段.  相似文献   

14.
The chemical and mineralogical composition of the Sidi Aïch Formation sandstones in central and southwestern Tunisia has been investigated in order to infer the provenance and tectonic setting, as well as to appraise the influence of weathering. The sixteen studied samples are mainly composed of quartz, feldspar, kaolinite and/or illite. Sidi Aïch sandstones are mainly arkosic, potassic feldspar-rich and immature. Much of the feldspar was transformed to kaolinite. Concerning the relation between sandstone detrital composition and their depositional setting, the Sidi Aïch Formation sandstone in the major studied localities, probably accumulated in relatively proximal small basins within the continental interior. However, for the Khanguet El Ouara study site, sandstones may have been deposited in a foreland basin which received recycled sediments from an adjacent orogenic belt.The source area may have included quartzose sedimentary rocks. The dominance of quartz and enrichment in immobile elements suggest that the depositional basins were associated with a passive margin. The petrography and geochemistry reflect a stable continental margin and sediments were derived from granitic and pegmatitic sources located in the southern parts of the Gafsa basin. High values for the chemical index of alteration (CIA) indicate that recycling processes might have been important. Particularly high CIA values in the Garet Hadid locality indicate more intense chemical alteration, either due to weathering processes or tectonic control.  相似文献   

15.
The mineralogy and geochemical studies of the coal-mine shale collected from the Tirap opencast coal-mine (Makum coalfield, Northeast India) are reported in this paper. Thermo-chemical conversion (pyrolysis) of coal-mine shale has been studied to see its hydrocarbon potential. A combined approach using X-Ray diffraction (LTA-XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectrophotometer (EDS), X-ray fluorescence spectrometry (XRF), thermogravimetry-derivative and differential thermogravimetric (TG-DTG and DTA) analysis is made to obtain new information on the mineralogical and geochemical studies of a coal-mine shale (CMS) sample. Gas chromatography-mass spectrometry (GC-MS) analysis is performed to evaluate the quality of the liquid fraction (tar) obtained after pyrolysis at 600°C. The shale sample is dominated by quartz, clay minerals (kaolinite and illite), sulphate bearing phase like gypsum with minor proportion of anatase, probably as artifacts of the plasma-ashing process. GC-MS analysis illustrates the presence of highly oxygenated organic components (M.W. around 94-108) and high molecular weight (M.W. 256) cyclic sulphur (e.g. octathiocane with molecular formula S8) compounds along with the complex N-containing organic sulphur compounds (M.W. around 255-486) in the tar produced.  相似文献   

16.
A previous study briefly described the occurrence of a new type of Nb(Ta)-Zr(Hf)-REY-Ga (REY: rare earth elements and yttrium) polymetallic mineralization in eastern Yunnan, southwest China. In this paper, the mineralogical and geochemical features have been further advanced through a study of two regionally extensive and relatively flat-lying mineralized layers from No. XW drill core. The layers are clay-altered volcanic ash and tuffaceous clay, and are dominated by clay minerals (mixed layer illite/smectite, kaolinite, berthierine, and chamosite); with lesser amounts of quartz and variable amounts of anatase, siderite and calcite; along with trace pyrite, barite, zircon, ilmenite, galena, chalcopyrite, and REE-bearing minerals. The mineralized samples have higher Al2O3/TiO2 values (13.7–41.4) and abundant rare metal elements (Nb, Ta, Zr, Hf, REE, Ga, Th, and U) whereas less mineralized samples are rich in V, Cr, Co, and Ni and have lower Al2O3/TiO2 values (2.32–7.67). The mineralized samples also have strong negative δEu in chondrite-normalized REE patterns. Two processes are most likely responsible for the geochemical and mineralogical anomalies of the mineralized samples: airborne volcanic ash and multi-stage injection of low-temperature hydrothermal fluids. Based on paragenetic analysis, this polymetallic mineralization is derived from the interaction between alkaline volcanic ashes and subsequent percolation of low-temperature fluids. The intense and extensive alkaline volcanism of the early Late Permian inferred from this study possibly originated from the coeval Emeishan large igneous province (ELIP). This unique Nb(Ta)-Zr(Hf)-REE-Ga mineralization style has significant economic and geological potential for the study of mineralization of the lowest Xuanwei Formation.  相似文献   

17.
河南铝土矿矿物成因及其演化序列   总被引:2,自引:0,他引:2  
刘学飞 《地质与勘探》2012,48(3):449-459
[摘 要]豫西铝土矿是我国喀斯特型铝土矿的典型代表。本文选取豫西典型的喀斯特型铝土矿为研究对象,通过XRD 分析、扫描电镜-能谱分析、电子探针分析和差热分析多种手段,探测铝土矿的物质组成及其赋存状态,并且分析其矿物成因,总结矿物演化序列。研究显示,豫西铝土矿的主要矿物成分包括硬水铝石、伊利石、锐钛矿、高岭石、针铁矿、赤铁矿、金红石等。硬水铝石主体为简单结晶成因。伊利石主体为风化过程中产物,部分为后期硬水铝石硅质交代的结果。锐钛矿和硬水铝石同期结晶形成于还原环境下。大部分高岭石形成于陆源期风化阶段,少部分为后期硬水铝石硅化转变形成。针铁矿和赤铁矿形成于两个阶段,第一阶段为成矿前风化作用形成的铁质风化壳;第二阶段为铝土矿成岩晚期出现了一期铁质流体活动形成了大量的赤铁矿和针铁矿。重砂矿物金红石和锆石等主要是母岩风化作用的残留物。豫西铝土矿中矿物形成演化可归纳为如下五个阶段:陆源期、同生期、成矿期、成矿后期和表生期。  相似文献   

18.
This work reports, for the first time, the mineralogical and geochemical characteristics of the Cretaceous sedimentary kaolin deposits in the Red Sea area, Egypt and sheds the light on their source. Mineralogical and geochemical analyses of both bulk deposits and the sand and clay fractions of these deposits indicated that they are composed of kaolinite (average of 75 wt.%) and quartz (average of 22 wt.%). Traces of anatase (average of 1 wt.%) were identified in all kaolin samples, while traces of halite (average of 2 wt.%) and hematite (average of 1 wt.%) were reported in the majority of the analyzed samples. The clay fractions show relatively high contents of TiO2 (average of 2.1%), Ni (average of 103 ppm), Nb (average of 98 ppm), Y (average of 67 ppm), and Zr (average of 630 ppm). Sum of the rare earth elements (ΣREE) in the clay fractions varies between 193 and 352 ppm. Chondrite-normalized REE patterns show enrichment of the light REE relative to the heavy REE ((La/Yb)N = 9) and negative Eu anomaly (Eu*/Eu = 0.67).  相似文献   

19.
The clay fractions of saprolites from granites, basalt, and schists in Egypt were subjected to mineralogical and geochemical investigations to examine the effect of source rock on the composition of the saprolites and the possibilities of these saprolites as a source of the nearby sedimentary kaolin deposits. The clay fractions of the studied saprolites show mineralogical and geochemical variations. Saprolites from the granites consist of kaolinite, while saprolites from the basalts are composed entirely of smectite. Schists-derived saprolites are composed of kaolinite in some cases and of a mixture of kaolinite, illite, and chlorite in the other. Saprolite from the basalt is characterized by relatively higher contents of TiO2 and Ni compared to the saprolites from granites. Saprolites from granites have higher contents of Ba, Li, Pb, Sr, Th, Y, and Zr compared to those of the saprolites from the basalts and schists. Saprolites from different schists show variations in the distributions of many constituents, such as TiO2, Cr, Ni, Ba, Y, and Zr. Although chondrite-normalized rare earth elements (REE) patterns are characterized by relative enrichments in the light rare earth elements (LREE) compared to the heavy rare earth elements (HREE) in all saprolites, granitic saprolites show negative Eu anomalies, while saprolite from basalt has no Eu anomaly. REE patterns of the saprolites from schists exhibit slight positive Ce anomalies and slight to moderate negative Eu anomalies. Weathering of saprolites from the basalt and metasediments is classified as the bisiallitization type, while weathering of saprolite from the granite is allitization type. Saprolites from schists vary from the bisiallitization (Aswan and Abu Natash) and allitization (Khaboba) types. Saprolites from the Khaboba schist can be considered the possible source of the Carboniferous kaolin deposits in the Hasber and Khaboba areas of Sinai, based on the similarity in the mineralogy and geochemistry of major, trace, and REE between the saprolites and the deposits. On the other hand, Carboniferous sedimentary kaolin deposits in the Abu Natash area, as well as the Cretaceous kaolin deposits in all areas of Sinai, might have been derived from the nearby schist saprolites, based on the similarity in the mineralogy and geochemistry between the saprolites and the kaolin deposits. Granites from the Arabian-Nubian Shield (ANS) and East Sahara Craton (ESC) are the possible sources of the pisolitic and plastic kaolin deposits in the Kalabsha area (Aswan), as indicated by the similarity in the mineralogy and geochemistry of the granitic saprolites and the kaolin deposits.  相似文献   

20.
十红滩砂岩型铀矿床是我国大型层间氧化带型砂岩铀矿床之一。层间氧化带型砂岩铀矿含矿砂层在含氧含铀水的渗入径流过程中,由于水介质性状的变化,在与砂体发生水岩作用时形成了完全氧化带、不完全氧化带、还原带和原生带等不同地球化学亚带及其相对应的蚀变矿物群,即完全氧化带为褐铁矿(针铁矿、水针铁矿)、伊利石、蒙脱石、少量黄钾铁矾的蚀变矿物群;不完全氧化带为褐铁矿(针铁矿、水针铁矿)、黄钾铁矾、蒙脱石、伊利石、少量绿泥石、高岭石的蚀变矿物群;还原带为沥青铀矿、黄铁矿、高岭石、绿泥石、少量蒙脱石、伊蒙混层粘土、伊利石和碳酸盐等新生蚀变矿物群;原生带的新生蚀变矿物群以黄铁矿、绿泥石、高岭石为主,有时出现少量碳酸盐、蒙脱石和伊利石等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号