首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rocks of the Ventersdorp Supergroup were deposited in a system of northeast trending grabens on the Kaapvaal Craton approximately 2.64 Ga ago contemporary with a continental collision between the Kaapvaal and Zimbabwe Cratons. We suggest that it was this collision that initiated the Ventersdorp rifting. Individual grabens strike at high angles toward the continental collision zone now exposed in the Limpopo Province where late orogenic left-lateral strike-slip faulting and anatectic granites are recognized. We relate the Ventersdorp rift province to extension in the Kaapvaal Craton associated with the collision, and see some analogy with such rifts as the Shansi and Baikal Systems associated with the current India-Asia continental collision.  相似文献   

2.
Sediment-hosted base metal sulfide deposits in the Otavi Mountain Land occur in most stratigraphic units of the Neoproterozoic Damara Supergroup, including the basal Nosib Group, the middle Otavi Group and the uppermost Mulden Group. Deposits like Tsumeb (Pb–Cu–Zn–Ge), Kombat (Cu–Pb–Zn), Berg Aukas (Zn–Pb–V), Abenab West (Pb–Zn–V) all occur in Otavi Group dolostones, whereas siliciclastic and metavolcanic rocks host Cu–(Ag) or Cu–(Au) mineralization, respectively. The Tsumeb deposit appears to have been concentrated after the peak of the Damara orogeny at around 530 Ma as indicated by radiometric age data.Volcanic hosted Cu–(Au) deposits (Neuwerk and Askevold) in the Askevold Formation may be related to ore forming processes during continental rifting around 746 Ma. The timing of carbonate-hosted Pb–Zn deposits in the Abenab Subgroup at Berg Aukas and Abenab is not well constrained, but the stable (S, O, C) and Pb isotope as well as the ore fluid characteristics are similar to the Tsumeb-type ores. Regional scale ore fluid migration typical of MVT deposits is indicated by the presence of Pb–Zn occurrences over 2500 km2 within stratabound breccias of the Elandshoek Formation. Mulden Group siliciclastic rocks host the relatively young stratiform Cu–(Ag) Tschudi resource, which is comparable to Copperbelt-type sulfide ores.  相似文献   

3.
Early Proterozoic volcanic and sedimentary rocks of the Rappen district in northern Sweden were deposited at a destructive plate margin to the south of the Archaean craton of the western Baltic Shield. The volcano-sedimentary suite was intruded by two generations of early Proterozoic granites at ca. 1.89–1.85 Ga and ca.1.82–1.78 Ga, respectively, and metamorphosed at upper amphibolite facies conditions. Small stratabound iron, copper, and zinc deposits occur in felsic to mafic tuffs and arkosic sediments. Small deposits of molybdenum, tungsten, and uranium formed during the emplacement of the younger granites. The lead isotopic compositions of sulfide trace lead from the various deposits are highly heterogeneous. In the 206Pb/204Pb–207Pb/204Pb diagram they fall on mixing arrays between little evolved early Proterozoic lead and highly radiogenic Caledonian lead. The least radiogenic lead isotopic compositions from the various deposits have a wide range of 207Pb/204Pb ratios and thus indicate variable involvement of Archaean crustal lead in the Proterozoic deposits. Deposits hosted by siliciclastic rocks have higher 207Pb/204Pb ratios than deposits hosted in mafic to felsic tuffites. The lead isotopic heterogeneity suggests that the lead in the various deposits was locally derived and, furthermore, that the sedimentary rocks in part originated from the Archaean craton to the north. Lead mixing arrays in the 206Pb/204Pb–207Pb/204Pb diagram demonstrate that in Paleozoic time radiogenic lead was mobilized and transported in the basement. Source ages calculated from the mixing arrays (ca.1.9 Ga and ca.1.8 Ga) correspond to the age of the Early Proterozoic volcanism and metamorphism respectively. One group of deposits includes lead from at least three sources and illustrates that radiogenic lead was multiply mobilized and transported in the Proterozoic basement. It occurs in deposits that occur in zones that became permeable during the reactivations of the basement.  相似文献   

4.
A combined Sr, O and C isotope study has been carried out in the Pucará basin, central Peru, to compare local isotopic trends of the San Vicente and Shalipayco Zn-Pb Mississippi Valley-type (MVT) deposits with regional geochemical patterns of the sedimentary host basin. Gypsum, limestone and regional replacement dolomite yield 87Sr/86Sr ratios that fall within or slightly below the published range of seawater 87Sr/86Sr values for the Lower Jurassic and the Upper Triassic. Our data indicate that the Sr isotopic composition of seawater between the Hettangian and the Toarcian may extend to lower 87Sr/86Sr ratios than previously published values. An 87Sr-enrichment is noted in (1) carbonate rocks from the lowermost part of the Pucará basin, and (2) different carbonate generations at the MVT deposits. This indicates that host rocks at MVT deposits and in the lower-most part of the carbonate sequence interacted with 87Srenriched fluids. The fluids acquired their radiogenic nature by interaction with lithologies underlying the carbonate rocks of the Pucará basin. The San Ramón granite, similar Permo-Triassic intrusions and their clastic derivatives in the Mitu Group are likely sources of radiogenic 87Sr. The Brazilian shield and its erosion products are an additional potential source of radiogenic 87Sr. Volcanic rocks of the Mitu Group are not a significant source for radiogenic 87Sr; however, molasse-type sedimentary rocks and volcaniclastic rocks cannot be ruled out as a possible source of radiogenic 87Sr. The marked enrichment in 87Sr of carbonates toward the lower part of the Pucará Group is accompanied by only a slight decrease in 18O values and essentially no change in 13C values, whereas replacement dolomite and sparry carbonates at the MVT deposits display a coherent trend of progressive 87Sr-enrichment, and 18O- and 13C-depletion. The depletion in 18O in carbonates from the MVT deposits are likely related to a temperature increase, possibly coupled with a 18O-enrichment of the ore-forming fluids. Progressively lower 13C values throughout the paragenetic sequence at the MVT deposits are interpreted as a gradually more important contribution from organically derived carbon. Quantitative calculations show that a single fluid-rock interaction model satisfactorily reproduces the marked 87Sr-enrichment and the slight decrease in 18O values in carbonate rocks from the lower part of the Pucará Group. By contrast, the isotopic covariation trends of the MVT deposits are better reproduced by a model combining fluid mixing and fluid-rock interaction. The modelled ore-bearing fluids have a range of compositions between a hot, saline, radiogenic brine that had interacted with lithologies underlying the Pucará sequence and cooler, dilute brines possibly representing local fluids within the Pucará sequence. The composition of the local fluids varies according to the nature of the lithologies present in the neighborhood of the different MVT deposits. The proportion of the radiogenic fluid in the modelled fluid mixtures interacting with the carbonate host rocks at the MVT deposits decreases as one moves up in the stratigraphic sequence of the Pucará Group.  相似文献   

5.
The Qingchengzi orefield in northeastern China, is a concentration of several Pb–Zn, Ag, and Au ore deposits. A combination of geochronological and Pb, Sr isotopic investigations was conducted. Zircon SHRIMP U–Pb ages of 225.3 ± 1.8 Ma and 184.5 ± 1.6 Ma were obtained for the Xinling and Yaojiagou granites, respectively. By step-dissolution Rb–Sr dating, ages of 221 ± 12 Ma and 138.7 ± 4.1 Ma were obtained for the sphalerite of the Zhenzigou Zn–Pb deposit and pyrargyrite of the Ag ore in the Gaojiabaozi Ag deposit, respectively. Pb isotopic ratios of the Ag ore at Gaojiabaozi (206Pb/204Pb = 18.38 to 18.53) are higher than those of the Pb–Zn ores (206Pb/204Pb = 17.66 to 17.96; Chen et al. [Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z., Zhang, X., 2005. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China Series D 48, 467–476.]). Triassic granites show low Pb isotopic ratios (206Pb/204Pb = 17.12 to 17.41, 207Pb/204Pb = 15.47 to 15.54, 208Pb/204Pb = 37.51 to 37.89) and metamorphic rocks of the Liaohe Group have high ratios (206Pb/204Pb = 18.20 to 24.28 and 18.32 to 20.06, 207Pb/204Pb = 15.69 to 16.44 and 15.66 to 15.98, 208Pb/204Pb = 37.29 to 38.61 and 38.69 to 40.00 for the marble of the Dashiqiao Formation and schist of the Gaixian Formation, respectively).Magmatic activities at Qingchengzi and in adjacent regions took place in three stages, and each contained several magmatic pulses: ca. 220 to 225 Ma and 211 to 216 Ma in the Triassic; 179 to 185 Ma, 163 to 168 Ma, 155 Ma and 149 Ma in the Jurassic, as well as ca. 140 to 130 Ma in the Early Cretaceous. The Triassic magmatism was part of the Triassic magmatic belt along the northern margin of the North China Craton produced in a post-collisional extensional setting, and granites in it formed by crustal melting induced by mantle magma. The Jurassic and Early Cretaceous magmatism was related to the lithospheric delamination in eastern China. The Triassic is the most important metallogenic stage at Qingchengzi. The Pb–Zn deposits, the Pb–Zn–Ag ore at Gaojiabaozi, and the gold deposits were all formed in this stage. They are temporally and spatially associated with the Triassic magmatic activity. Mineralization is very weak in the Jurassic. Ag ore at Gaojiabaozi was formed in the Early Cretaceous, which is suggested by the young Rb–Sr isochron age, field relations, and significantly different Pb isotopic ratios between the Pb–Zn–Ag and Ag ores. Pb isotopic compositions of the Pb–Zn ores suggest binary mixing for the source of the deposits. The magmatic end-member is the Triassic granites and the other metamorphic rocks of the Liaohe Group. Slightly different proportions of the two end-members, or an involvement of materials from hidden Cretaceous granites with slightly different Pb isotopic ratios, is postulated to interpret the difference of Pb isotopic compositions between the Pb–Zn–(Ag) and Ag ores. Sr isotopic ratios support this conclusion. At the western part of the Qingchengzi orefield, hydrothermal fluid driven by the heat provided by the now exposed Triassic granites deposited ore-forming materials in the low and middle horizons of the marbles of the Dashiqiao Formation near the intrusions to form mesothermal Zn–Pb deposits. In the eastern part, hydrothermal fluids associated with deep, hidden Triassic intrusions moved upward along a regional fault over a long distance and then deposited the ore-forming materials to form epithermal Au and Pb–Zn–Ag ores. Young magmatic activities are all represented by dykes across the entire orefield, suggesting that the corresponding main intrusion bodies are situated in the deep part of the crust. Among these, only intrusions with age of ca. 140 Ma might have released sufficient amounts of fluid to be responsible for the formation of the Ag ore at Gaojiabaozi.Our age results support previous conclusions that sphalerite can provide a reliable Rb–Sr age as long as the fluid inclusion phase is effectively separated from the “sulfide” phase. Our work suggests that the separation can be achieved by a step-resolution technique. Moreover, we suggest that pyrargyrite is a promising mineral for Rb–Sr isochron dating.  相似文献   

6.
Numerous Fe-Cu deposits with mineralization styles similar to iron oxide-copper gold (IOCG) deposits form the Kangdian Fe-Cu metallogenic province, southwestern (SW) China. As one of the largest deposits in the region, the ~ 1.0 Ga Lala Fe-Cu deposit is hosted in a Paleoproterozoic volcanic-sedimentary succession named the Hekou Group which is alternately intruded by ~ 1.0 Ga doleritic plutons. This deposit has a paragenetic sequence evolving from Stage I of Na-alteration to Stage II of Fe mineralization, and finally to Stage III of Cu-(Mo, REE) mineralization, coeval with mafic-felsic intra-plate magmatism in the region. This study conducted in-situ Sr isotopic analyses on apatite and carbonate, aiming to resolve the long controversial issue regarding the origin of the Fe and Cu mineralizing fluids in the deposit. Apatite of Stage II has 87Sr/86Sr ratios varying from 0.71380 to 0.72733, much higher than those of synchronous igneous rocks in the region (0.7074 to 0.7091), but similar to the Paleoproterozoic host rocks (0.71368 to 0.71837 at ~ 1.0 Ga). This similarity indicates that radiogenic Sr of the Fe mineralizing fluid was dominantly sourced from the host rocks. Apatite and calcites of Stage III have 87Sr/86Sr ratios (0.75758–0.79293) much higher than apatite of Stage II and the host rocks but similar to the Archean basement rocks (as high as 0.80 at ~ 1.0 Ga) beneath the cover of the Yangtze Block, suggesting that the highly radiogenic Sr isotopic composition of the Cu mineralizing fluid was mainly inherited from the old basement rocks. In combination with previous C-O-S isotopic data indicating a magma-hydrothermal origin, it was suggested that the Fe mineralizing fluid was exsolved from a mafic magma that generated the ~ 1.0 Ga doleritic plutons, and inherited radiogenic Sr from the host rocks during fluid-rock interaction. By contrast, the Cu mineralizing fluid might have been sourced from another pulse of magmatic, Cu-Mo-REE- and CO2-rich fluid which have once interacted with Archean basement rocks prior to mineralization. The source of such a Cu-Mo-REE-rich fluid was not well constrained in current study but was inferred to be exsolved from a hidden felsic magma. We propose that intrusions of the bimodal magmas in Kangdian are responsible for regional hydrothermal circulation which led to Fe-Cu-(Mo, REE) mineralization in the Kangdian province.  相似文献   

7.
The Rhodope Massif in southern Bulgaria and northern Greece hosts a range of Pb–Zn–Ag, Cu–Mo and Au–Ag deposits in high-grade metamorphic, continental sedimentary and igneous rocks. Following a protracted thrusting history as part of the Alpine–Himalayan collision, major late orogenic extension led to the formation of metamorphic core complexes, block faulting, sedimentary basin formation, acid to basic magmatism and hydrothermal activity within a relatively short period of time during the Early Tertiary. Large vein and carbonate replacement Pb–Zn deposits hosted by high-grade metamorphic rocks in the Central Rhodopean Dome (e.g., the Madan ore field) are spatially associated with low-angle detachment faults as well as local silicic dyke swarms and/or ignimbrites. Ore formation is essentially synchronous with post-extensional dome uplift and magmatism, which has a dominant crustal magma component according to Pb and Sr isotope data. Intermediate- and high-sulphidation Pb–Zn–Ag–Au deposits and minor porphyry Cu–Mo mineralization in the Eastern Rhodopes are predominantly hosted by veins in shoshonitic to high-K calc-alkaline volcanic rocks of closely similar age. Base-metal-poor, high-grade gold deposits of low sulphidation character occurring in continental sedimentary rocks of synextensional basins (e.g., Ada Tepe) show a close spatial and temporal relation to detachment faulting prior and during metamorphic core complex formation. Their formation predates local magmatism but may involve fluids from deep mantle magmas.The change in geochemical signatures of Palaeogene magmatic rocks, from predominantly silicic types in the Central Rhodopes to strongly fractionated shoshonitic (Bulgaria) to calc-alkaline and high-K calc-alkaline (Greece) magmas in the Eastern Rhodopes, coincides with the enrichment in Cu and Au relative to Pb and Zn of the associated ore deposits. This trend also correlates with a decrease in the radiogenic Pb and Sr isotope components of the magmatic rocks from west to east, reflecting a reduced crustal contamination of mantle magmas, which in turn correlates with a decreasing crustal thickness that can be observed today. Hydrogen and oxygen isotopic compositions of the related hydrothermal systems show a concomitant increase of magmatic relative to meteoric fluids, from the Pb–Zn–Ag deposits of the Central Rhodopes to the magmatic rock-hosted polymetallic gold deposits of the Eastern Rhodopes.  相似文献   

8.
The Neoproterozoic Vazante Group at the western border of the São Francisco Craton, Brazil, hosts the largest Zn–Pb district in South America. Several authors have classified this mineral district as Mississippi Valley-type (MVT), based on the intimate association with carbonates and the epigenetic character of most ore bodies. In this paper, we present 47 new lead isotope data from four deposits located along the 300 km N–S Vazante–Paracatu–Unai linear trend. Pb isotope ratios indicate sources with relatively high U/Pb and Th/Pb ratios. Considering the 206Pb/204Pb and 208Pb/204Pb ratios as indicative parameters for the source, we suggest an upper crustal source for the metals. The small variation on the Pb isotope ratios compared to those observed in the classical MVT deposits, and other geological, fluid inclusion and sulphur isotopic data indicates a metallogenic event of long duration. It was characterized by focused circulation of hydrothermal fluids carrying metals from the basement rocks and from the sedimentary pile. The data obtained are more compatible with an evolution model similar to that of IRISH-type deposits. The existence of three Pb isotopic populations could be the result of regional differences in composition of the source rocks and in the fluid–rock interaction since the mineralization is a long-term process.  相似文献   

9.
Nd model ages using depleted mantle (TDM) values for the sedimentary rocks in the Inner Zone of the SW Japan and western area of Tanakura Tectonic Line in the NE Japan allow classification into five categories: 2.6–2.45, 2.3–2.05, 1.9–1.55, 1.45–1.25, and 1.2–0.85 Ga. The provenance of each terrane/belt/district is interpreted on the basis of the TDMs, 147Sm / 144Nd vs. 143Nd / 144Nd relation, Nd isotopic evolution of the source rocks in East China and U–Pb zircon ages. The provenance of 2.6–1.8 Ga rocks, which are reported from Hida–Oki and Renge belts and Kamiaso conglomerates, is inferred to be the Sino–Korean Craton (SKC). The 2.3–1.55 Ga rocks, mostly from Ryoke, Mino and Ashio belts, are originally related with the SKC and/or Yangtze Craton (YC). The provenances of the sedimentary rocks with 1.45–0.85 Ga, from the Suo belt, Higo and some districts in the Mino and Ashio belts, are different from the SKC and YC. Especially, the Higo with 1.2–0.85 Ga is considered as a fragment of collision zone in East China. Akiyoshi belt probably belongs to the youngest age category of 1.2–0.85 Ga.Some metasedimentary rocks from the Ryoke belt have extremely high 147Sm / 144Nd and 143Nd / 144Nd ratios, whose main components are probably derived from mafic igneous rocks within the Ryoke belt itself and from the adjacent Tamba belt.  相似文献   

10.
The Proterozoic sediment-hosted Zn–(Pb) sulfide and non-sulfide deposits of the São Francisco Craton, Brazil, are partially syn-diagenetic and epigenetic and were probably formed during extensional events. The majority of the deposits occur within shallow water dolomites. The Pb isotopic data of sulfides are relatively homogeneous for individual deposits and plot above the upper crust evolution curve of the Plumbotectonic model. Some of the deposits are characterized by highly radiogenic lead (206Pb/204Pb ≥ 21) originating from the highly radioactive crust of the São Francisco Craton. Pb and S isotopic data suggest the sources of metal and sulfur for the deposits to be the basement rocks and seawater sulfates in the sediments, respectively. The relatively high temperatures of formation (100 to 250 °C) and moderate salinity (3% to 20% NaCl equiv.) of the primary fluid inclusions in the sphalerite crystals suggest the participation of basinal mineralizing fluids in ore formation. The steep paleo-geothermal gradient generated by the radioactively enriched basement rocks probably assisted in heating up the circulating mineralizing fluids.  相似文献   

11.
Following terrane amalgamation of early oceanic lithosphere, the southern and central parts of the Kaapvaal Craton were a coherent unit by 3.1 Ga. Juxta-position of the northern and western granitoid-greenstone terranes including the Murchison Island Arc was the result of terrane accretion that started at 3.1 Ga. The culmination of these events was the collision of the Kaapvaal Craton, the pre-cratonic Zimbabwe block and the Central Zone to generate the Limpopo granulite gneiss terrane. Coeval with these orogenic events the central Kaapvaal Craton underwent extension to accommodate the development of the Dominion, Witwatersrand/Pongola and Ventersdorp basins. The craton scale Thabazimbi-Murchison Lineament development during the 3.1 Ga accretion event and continued to influence the tectonic evolution of the Kaapvaal block throughout the period under review as indicated by the syn-sedimentary tectonics of the > 2.64 Ga Wolkberg Group, overlying Black Reef Formation and the Transvaal Sequence. The Transvaal and Griqualand West basins developed in the Late Archaean (> 2.55 Ga) with basin dynamics influenced by far field stresses related to the Limpopo Orogeny. During this period the Thabazimbi-Murchison Lineament lay close to the northern margin of the depository. Reactivation of the Lineament between 2.4 and 2.2 Ga resulted in inversion of the Transvaal Basin and formation of the northward verging Mhlapitsi fold and thrust belt. The half-graben setting envisaged for the deposition of the Pretoria Group was influenced by the Thabazimbi-Murchison Lineament as was the emplacement and subsequent deformation of the Bushveld Complex.  相似文献   

12.
The Huize Zn–Pb–(Ag) district, in the Sichuan–Yunnan–Guizhou Zn–Pb–(Ag) metallogenic region, contains significant high-grade, Zn–Pb–(Ag) deposits. The total metal reserve of Zn and Pb exceeds 5 Mt. The district has the following geological characteristics: (1) high ore grade (Zn + Pb ≥ 25 wt.%); (2) enrichment in Ag and a range of other trace elements (Ge, In, Ga, Cd, and Tl), with galena, sphalerite, and pyrite being the major carriers of Ag, Ge, Cd and Tl; (3) ore distribution controlled by both structural and lithological features; (4) simple and limited wall-rock alteration; (5) mineral zonation within the orebodies; and (6) the presence of evaporite layers in the ore-hosting wall rocks of the Early Carboniferous Baizuo Formation and the underlying basement.Fluid-inclusion and isotope geochemical data indicate that the ore fluid has homogenisation temperatures of 165–220 °C, and salinities of 6.6–12 wt.% NaCl equiv., and that the ore-forming fluids and metals were predominantly derived from the Kunyang Group basement rocks and the evaporite-bearing rocks of the cover strata. Ores were deposited along favourable, specific ore-controlling structures. The new laboratory and field studies indicate that the Huize Zn–Pb–(Ag) district is not a carbonate-replacement deposit containing massive sulphides, but rather the deposits can be designated as deformed, carbonate-hosted, MVT-type deposits. Detailed study of the deposits has provided new clues to the localisation of concealed orebodies in the Huize Zn–Pb–(Ag) district and of the potential for similar carbonate-hosted sulphide deposits elsewhere in NE Yunnan Province, as well as the Sichuan–Yunnan–Guizhou Zn–Pb–(Ag) metallogenic region.  相似文献   

13.
The ca. 2.2–2.1 Ga Magondi Supergroup on the Zimbabwe Craton in Southern Africa is mainly composed of sedimentary rocks deposited in a rift basin/passive continental margin, which record a unique episode in carbon isotope perturbation called the Lomagundi–Jatuli Event (LJE). This study reports new U–Pb ages of detrital zircons from the Deweras and Lomagundi groups of the Magondi Supergroup, and of igneous zircons from underlying granitoids, to constrain the timing of the LJE and to identify the provenance of the Magondi Supergroup. Most analysed detrital zircon grains range in ages between ca. 2.9 and 2.6 Ga. Three ca. 2.3–2.2 Ga detrital zircons from sandstone of the Deweras Group, with the youngest 207Pb‐206Pb age of 2,216 ± 22 Ma, indicate the onset of LJE in the Zimbabwe Craton was almost simultaneous to that in Fennoscandia and the Superior Craton, supporting the global synchronicity of the LJE.  相似文献   

14.
Neodymium, Sr and Pb isotopic compositions, along with rare earth element (REE) concentrations were determined for twelve black ores and one yellow ore from twelve localities of the Kuroko deposits, Japan. The ores were generated by submarine hydrothermal activity during the Miocene age. Neodymium isotopic compositions of the ores (Nd: –4.9 to +6.5) mostly overlap with spatially associated igneous rocks. On a Nd versus Sr isotopic correlation diagram, however, 87Sr/86Sr ratios are shifted from the associated igneous rocks towards the higher contemporaneous seawater ratio. REE patterns are highly variable, ranging from light REE enriched to depleted, and show no Ce anomalies, as would be expected if they were derived from seawater. These results suggest that the REEs contained in ores were mainly derived from the associated igneous rocks, but that the ore Sr is a mixture derived from both seawater and the igneous rocks. Most Pb isotopic compositions fall within the range defined by the associated igneous rocks (206Pb/204Pb=18.35–18.84, 207Pb/204Pb=15.59–15.97 and 208Pb/204Pb=38.53–39.90), although several samples have very radiogenic compositions that were most likely derived from basement rocks. Our new Pb isotopic results display greater variation, and have a larger range of more radiogenic compositions than has been noted previously for these ores. In addition, the black ore with the most radiogenic Pb isotopic composition also has the least radiogenic Nd isotopic composition. This suggests that at least some of the Pb contained in the ores was derived mainly from older basement rocks. The large positive Eu anomalies for some black ores are consistent with a high-temperature origin for the parental fluids, irrespective of the source rock. The single yellow ore examined, however, has a small negative Eu anomaly, which may indicate derivation from a lower temperature fluid. Previous studies suggested that the Kuroko ores were formed in the presence of organic materials in an anoxic basin. Combined Nd, Sr, Pb and Os isotopic and REE abundance data indicate that multiple sources were involved in the genesis of Kuroko ores.  相似文献   

15.
The Eastern Qinling Molybdenum Belt (EQMB) in central China represents the largest Mo province in the world. Located at the southern margin of the North China Craton, this Mo province is largely associated with Mesozoic granitoids. Here we report Re–Os isochron age of 1761 ± 33 Ma (2σ, MSWD = 2.9) from molybdenite in the recently discovered Zhaiwa porphyry Mo–Cu system within the EQMB. This age coincides with the peak eruption period (1.78−1.75 Ga) of the Xiong'er Group volcanic rocks which unconformably overlie the Taihua Supergroup and are interpreted to have developed on a continental arc. The Re concentrations (1 to 43 ppm) of the Zhaiwa molybdenites are similar to those of typical porphyry Cu–Mo–Au systems developed on continental arcs. The δ34S values of the Zhaiwa ores (2.7–7.3‰, average 5.2‰) suggest that the sulfur was mainly sourced from a magmatic system. The sulfides from the ores yield Sri average of 0.70533, similar to that of the Xiong'er Group (0.70547), albeit higher than that of the Kuanping Group (0.70334) and lower than the Taihua Supergroup (0.70763), suggesting a mixed source. The average εNd(1.76 Ga) of the sulfides from the ores (0.9) falls between the averages of the Taihua Supergroup (ca. − 6.8) and the Kuanping Group (ca. 7.4). The Pb isotope ratios of the ores are similar to, but slightly higher than those of the Taihua Supergroup, reflecting preferential leaching of radiogenic Pb from the Taihua Supergroup by magmatic fluids. Integrated data and interpretations constrain the Zhaiwa Mo–Cu deposit to be a porphyry mineral system developed within a ca. 1.76 Ga continental arc related to oceanic plate subduction beneath the southern margin of the North China Craton. A correlation between tectonic settings and metallogenic types clearly indicate that the Xiong'er Group was formed in a volcanic arc, confirming Paleo-Mesoproterozoic continental outgrowth along the margins of the Columbia supercontinent. The isotopic characterization of the Zhaiwa deposit provides new insights into the enigma of the widespread distribution of large and super-large Mo deposits of EQMB along the southern margin of the North China Craton.  相似文献   

16.
The Palaeoproterozoic Transvaal Supergroup floor to the Bushveld complex comprises protobasinal successions overlain by the Black Reef Formation, Chuniespoort Group and the uppermost Pretoria Group. The protobasinal successions comprise predominantly mafic lavas and pyroclastic rocks, immature alluvial-fluvial braidplain deposits and finer-grained basinal rocks. These thick, laterally restricted protobasinal sequences reflect either strike-slip or small extensional basins formed during the impactogenal rifting and southeasterly-directed tectonic escape, which accompanied collision of the Zimbabwe and Kaapvaal cratons during Ventersdorp times. The erosively-based sheet sandstones of the succeeding Black Reef Formation reflect northwand-directed compression in the south of the basin. Thermal subsidence along the Ventersdorp Supergroup and Transvaal protobasinal fault systems led to shallow epeiric marine deposition of the sheet-like Chuniespoort Group carbonate-BIF platform succession. After an estimated 80 Ma hiatus, characterized by uplift and karstic weathering of the Chuniespoort dolomites, slower thermal subsidence is thought to have formed the Pretoria Group basin. Widespread, closed basin alluvial fan, fluvial braidplain and lacustrine sedimentation, as well as laterally extensive, subaerial andesitic volcanism (Rooihoogte to Strubenkop Formations), gave way to a marine transgression, which laid down the tuffaceous mudrocks, relatively mature sandstones and subordinate subaqueous volcanic rocks of the succeeding Daspoort, Silverton and Magaliesberg Formations. Poorly preserved post-Magaliesberg formations in the Upper Pretoria Group point to possible compressive deformation and concomitant rapid deposition of largely feldspathic detritus within smaller closed basins.  相似文献   

17.
The Anna's Rust Sheet (ARS) and a suite of mineralogically and chemically related intrusions in the core and collar of the Vredefort Dome (in particular, the Vredefort Mafic Complex: VMC) represent a newly recognised type of high Ti gabbro in this central part of the Kaapvaal Craton. This lithology, referred to as the Vredefort Type IV mafic intrusion, is distinguished from chemically similar Type V intrusions (the Karoo dolerites) by the presence of glomeroporphyritic plagioclase and higher Th content and from Type III intrusions (≈ 1600 Ma gabbro) by the lack of cross-cutting pseudotachylitic breccia veinlets. Petrographic features and both major and trace element compositions of all Type IV intrusions are very similar. Based on its Rb-Sr isotope age and character, a gabbroic intrusion from Majuba Colliery (Mpumalanga Province) is also thought to belong to the ARS (Type IV) suite of tholeiitic intrusions. Rb-Sr isotopic analysis resulted in a preferred age of 1052±11 Ma (2ω) for biotite and plagioclase data for ARS, VMC and Majuba samples. The Rb-Sr age for the ARS is further supported by 40Ar-39Ar stepheating ages for plagioclase and pyroxene separates from two ARS and VMC samples, which favour formation of this gabbroic intrusion at ca 1000 Ma ago. These results suggest that an ≈ 120 m thick sheet intrusion may be present throughout a major part of the Vredefort Dome. While Kibaran-age (ca 1–1.2 Ga) alkaline, both mafic and felsic, magmatism, as well as tectonic and hydrothermal activity at that time, have been known in the central Kaapvaal Craton, a widespread tholeiitic magmatic component has now been added to this record. There is a strong likelihood that this magmatic event occurred throughout the southern African subcontinent and perhaps into Antarctica.  相似文献   

18.
The Archean Wyoming Craton is flanked on the south and east by belts of Paleoproterozoic supracrustal successions whose correlation is complicated by lack of geochronologic constraints and continuous outcrop. However, carbonate units in these successions may be correlated by integrating carbon isotope stratigraphy with lithostratigraphy. The 10 km thick Paleoproterozoic Snowy Pass Supergroup in the Medicine Bow Mountains was deposited on the present-day southern flank of the Wyoming Craton; it contains three discrete levels of glacial diamictite correlative with those in the Huronian Supergroup, on the southern margin of the Superior Craton. The Nash Fork Formation of the upper Snowy Pass Supergroup is significantly younger than the uppermost diamictite and was deposited after the end of the Paleoproterozoic glacial epoch. Carbonates at the base of the Nash Fork Formation record remarkable 13C-enrichment, up to +28‰ (V-PDB), whereas those from overlying members of the lower Nash Fork Formation have δ13C values between +6 and +8‰. Carbonates from the upper Nash Fork Formation above the carbonaceous shale have carbon isotope values ranging between 0 and +2.5‰. The transition from high carbon isotope values to those near 0‰ in the Nash Fork Formation is similar to that at the end of the ca. 2.2–2.1 Ga carbon isotope excursion in Fennoscandia. This chemostratigraphic trend and deposition of BIFs, Mn-rich lithologies, carbonaceous shales and phosphorites at the end of the global ca. 2.2–2.1 Ga carbon isotope excursion are likely related to ocean overturn associated with the final breakup of the Kenorland supercontinent. Correlative carbonates from the Slaughterhouse Formation in the Sierra Madre, WY, and from the Whalen Group in the Rawhide Creek area in the Hartville Uplift, WY, have highly positive carbon isotope values. In contrast, carbonates from other exposures of the Whalen Group in the Hartville Uplift and all carbonate units in the Black Hills, SD, have carbon isotope values close to 0‰. Combined with existing geochronologic and stratigraphic constraints, these data suggest that the Slaughterhouse Formation and the succession exposed in the Rawhide Creek area of the Hartville Uplift are correlative with the lower and middle Nash Fork Formation and were deposited during the ca. 2.2–2.1 Ga carbon isotope excursion. The Estes and Roberts Draw formations in the Black Hills and carbonates from other exposures in the Hartville Uplift postdate the ca. 2.2–2.1 Ga positive carbon isotope excursion and are most likely correlative with the upper Nash Fork Formation. The passive margin, on which the carbonates with highly positive carbon isotope values were deposited, extended around the southern flank of the Wyoming Craton through the Sierra Madre, Medicine Bow Mountains and Hartville Uplift. The presence of carbonates with carbon isotope values close to 0‰ in the upper Nash Fork Formation and the Whalen Group indicates that the passive margin persisted on the southern flank of the Wyoming Craton after the carbon isotope excursion. Rifting in the Black Hills, likely related to the final breakup of the Kenorland, succeeded the carbon isotope excursion, since the Estes and Roberts Draw formations, deposited during rifting and ocean opening on the eastern flank of the Wyoming Craton, postdate the carbon isotope excursion.  相似文献   

19.
Geochemical analyses were interpreted on the dominant lithological units and on a deep crustal fluid from the Continental Deep Drilling Project (KTB) Pilot Hole, situated at the western margin of the Variscan Bohemian Massif. The biotite gneiss (from 384 m depth) shows a rare earth element pattern very similar to the European shale composite with Nd model ages of 940 Ma (CHUR) and 1.4 Ga (DM). The lamprophyre dike in the upper profile (1549 m), a nepheline and olivine normative basalt, is geochemically and isotopically similar to rocks from the Tertiary Central European Volcanic Province. The lower metabasite sequence (3575–4000 m), with an intrusion age of approximately 500 Ma, is made up primarily of highly metamorphosed subalkalic olivine basalts. The geochemical characteristics of the metabasites are a (La/Yb)N of 5–10, an La concentration of 20–50 times chondrite as well as (87Sr/86Sr)i of 0.7035–0.7038 and Nd(T) of 4–6. These values suggest a depleted mantle source for the igneous precursors, evolving by assimilation-fractional crystallization processes with up to 25% of upper crust into the ultramafic, basaltic, and intermediate rock types of the metabasite sequence. The strong geochemical and chronological similarities between the KTB metabasites and rocks from the Münchberg Massif suggest that these units belong to the same lithological complex. The high salinity as well as the radiogenic 87Sr/86Sr ratio of 0.709413 in the KTB fluid from 4000 m depth might be the result of migrating fluids reacting with the regional Permo-Mesozoic evaporite deposits, followed by extensive Sr isotopic exchange with the upper crust.  相似文献   

20.
Geochemical and isotopic data for Cretaceous mafic rocks (basalt, gabbro, and diorite) from the Lower Yangtze region, northern Yangtze block, constrain the evolution of the lithospheric mantle. The mafic rocks, separated into the northeast and southwest groups, are alkaline and evolved, with low Mg# values (44–58) and variable SiO2 contents (47.6–57.4 wt%). Enriched LREEs, LILEs, and Pb, together with depleted Nb, Zr, and Ti, suggest that the mantle sources were metasomatized by slab-derived fluid/melt. All samples show high radiogenic 207Pb/204Pb(t) (15.41–15.65) and 208Pb/204Pb(t) (37.66–38.51) ratios at given 206Pb/204Pb(t) (17.65–19.00) ratios, consistent with the mantle sources having been metasomatized by ancient slab-derived material. Mafic rocks of the southwest group show enriched Sr–Nd isotopic characteristics, with 87Sr/86Sr(t) ranging from 0.7056 to 0.7071 and εNd(t) ranging from −5.3 to −8.3, indicating an origin from enriched lithospheric mantle. Mafic rocks of the northeast group, which record 87Sr/86Sr(t) ratios of between 0.7044 and 0.7050 and εNd(t) of −2.8 to −0.7, possibly formed by the mixing of melts from isotopically enriched lithospheric mantle and isotopically depleted asthenospheric mantle. Taking into consideration the geochemical and isotopic characteristics of Cretaceous mafic rocks, Cenozoic basalts, and basalt-hosted peridotite xenoliths from the Lower Yangtze region, we propose that an isotopically enriched, subduction-modified lithospheric mantle was replaced by or transformed into an isotopically depleted “oceanic-type” mantle. Such a process appears to have occurred in the eastern North China Craton as well as the eastern Yangtze block, probably in response to subduction of the paleo-Pacific plate beneath East Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号