首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Metals released from oxidation and weathering of sulphide minerals in mine tailings are to a high degree retained at deeper levels within the tailings themselves. To be able to predict what could happen in the future with these secondarily retained metals, it is important to understand the retention mechanisms. In this study an attempt to use laser ablation high-resolution ICP-MS (LA-ICP-SMS) to quantify enrichment of trace elements on pyrite surfaces in mine tailings was performed. Pyrite grains were collected from a profile through the pyrite-rich tailings at the Kristineberg mine in northern Sweden. At each spot hit by the laser, the surface layer was analyzed in the first shot, and a second shot on the same spot gave the chemical composition of the pyrite immediately below. The crater diameter for a laser shot was known, and by estimating the crater depth and total pyrite surface, the total enrichment on pyrite grains was calculated. Results are presented for As, Cd, Co, Cu, Ni and Zn. The results clearly show that there was an enrichment of As, Cd, Cu and Zn on the pyrite surfaces below the oxidation front in the tailings, but not of Co and Ni. Arsenic was also enriched on the pyrite grains that survived in the oxidized zone. Copper has been enriched on pyrite surfaces in unoxidized tailings in the largest amount, followed by Zn and As. However, only 1.4 to 3.1% of the Cd and Zn released by sulphide oxidation in the oxidized zone have been enriched on the pyrite surfaces in the unoxidized tailings, but for As and Cu corresponding figures are about 64 and 43%, respectively. There were many uncertainties in these calculations, and the results shall not be taken too literally but allowed the conclusion that enrichment on pyrite surfaces is an important process for retention of As and Cu below the oxidation front in pyrite rich tailings. Laser ablation is not a surface analysis technique, but more of a thin layer method, and gives no information on the type of processes resulting in enrichment on the pyrite surfaces. Although only pyrite grains that appeared to be fresh and without surface coatings were used in this study, the possibility that a thin layer of Fe-hydroxides occurred must be considered. Both adsorption to the pyrite directly or to Fe-oxyhydroxides may explain the enrichment of As, Cd, Cu and Zn on the pyrite surfaces, and, in the case of Cu, also the replacement of Fe(II) by Cu(II) in pyrite.  相似文献   

2.
Redistribution of potentially harmful metals and As was studied based on selective extractions in two active sulphide mine tailings impoundments in Finland. The Hitura tailings area contains residue from Ni ore processing, while the Luikonlahti site includes tailings from the processing of Cu–Co–Zn–Ni and talc ores. To characterize the element solid-phase speciation with respect to sulphide oxidation intensity and the water saturation level of the tailings, drill cores were collected from border zones and mid-impoundment locations. The mobility and solid-phase fractionation of Ni, Cu, Co, Zn, Cr, Fe, Ca, Al, As, and S were analysed using a 5-step non-sequential (parallel) selective extraction procedure. The results indicated that metal redistribution and sulphide oxidation intensity were largely controlled by the disposal history and strategy of the tailings (sorting, exposure of sulphides due to delayed burial), impoundment structure and water table, and reactivity of the tailings. Metal redistribution suggested sulphide weathering in the tailings surface, but also in unsaturated proximal areas beside the earthen dams, and in water-saturated bottom layers, where O2-rich infiltration is possible. Sulphide oxidation released trace metals from sulphide minerals at both locations. In the Hitura tailings, with sufficient buffering capacity, pH remained neutral and the mobilized metals were retained by secondary Fe precipitates deeper in the oxidized zone. In contrast, sulphide oxidation-induced acidity and rise in the water table after oxidation apparently remobilized the previously retained metals in Luikonlahti. In general, continuous disposal of tailings decreased the sulphide oxidation intensity in active tailings, unless there was a delay in burial and the reactive tailings were unsaturated after deposition.  相似文献   

3.
Weathering of Hitura (W Finland) nickel sulphide mine tailings and release of heavy metals into pore water was studied with mineralogical (optical and electron microscopy, X-ray diffraction) and geochemical methods (selective extractions). Tailings were composed largely of serpentine, micas and amphiboles with only minor carbonates and sulphides. Sulphides, especially pyrrhotite, have oxidized intensively in the shallow tailings in 10–15 years, but a majority of the tailings have remained unchanged. Oxidation has resulted in depletion of carbonates, slightly decreased pH, and heavy metal (Ni, Zn) release in pore water as well as in the precipitation of secondary Fe precipitates. Nevertheless, in the middle of the tailings area, where the oxidation front moves primarily downward, released heavy metals have been adsorbed and immobilized with these precipitates deeper in the oxidation zone. In contrast to what was seen in pore water pH, but in accordance with static tests of the previous studies, the neutralisation potential ratio (NPR) calculated based on the mineralogical composition and the total sulphur content suggested that tailings are ‘not potentially acid mine drainage (AMD) generating’. However, the calculated buffering capacity of the tailings resulted largely from the abundant serpentine because of the low carbonate content. Despite its slow weathering rate, serpentine may buffer the acidity to some extent through ion exchange processes in fine ground tailings. Nevertheless, in practice, acid production capacity of the tailings depends primarily on the balance between Ca–Mg carbonates and iron sulphides. NPR calculation based on carbonate and sulphur contents suggested, that the Hitura tailings are ‘likely AMD generating’. The study shows that sulphide oxidation can be significant in mobilisation of heavy metals even in apparently non-acid producing, low sulphide tailings. Therefore, prevention of oxygen diffusion into tailings is also essential in this type of sulphide tailings.  相似文献   

4.
《Applied Geochemistry》2005,20(3):639-659
The oxidation of sulfide minerals from mine wastes results in the release of oxidation products to groundwater and surface water. The abandoned high-sulfide Camp tailings impoundment at Sherridon, Manitoba, wherein the tailings have undergone oxidation for more than 70 a, was investigated by hydrogeological, geochemical, and mineralogical techniques. Mineralogical analysis indicates that the unoxidized tailings contain nearly equal proportions of pyrite and pyrrhotite, which make up to 60 wt% of the total tailings, and which are accompanied by minor amounts of chalcopyrite and sphalerite, and minute amounts of galena and arsenopyrite. Extensive oxidation in the upper 50 cm of the tailings has resulted in extremely high concentrations of dissolved SO4 and metals and As in the tailings pore water (pH < 1, 129,000 mg L−1 Fe, 280,000 mg L−1 SO4, 55,000 mg L−1 Zn, 7200 mg L−1 Al, 1600 mg L−1 Cu, 260 mg L−1 Mn, 110 mg L−1 Co, 97 mg L−1 Cd, 40 mg L−1 As, 15 mg L−1 Ni, 8 mg L−1 Pb, and 3 mg L−1 Cr). The acid released from sulfide oxidation has been extensive enough to deplete carbonate minerals to 6 m depth and to partly deplete Al-silicate minerals to a 1 m depth. Below 1 m, sulfide oxidation has resulted in the formation of a continuous hardpan layer that is >1 m thick. Geochemical modeling and mineralogical analysis indicate that the hardpan layer consists of secondary melanterite, rozenite, gypsum, jarosite, and goethite. The minerals indicated mainly control the dissolved concentrations of SO4, Fe, Ca and K. The highest concentrations of dissolved metals are observed directly above and within the massive hardpan layer. Near the water table at a depth of 4 m, most metals and SO4 sharply decline in concentration. Although dissolved concentrations of metals and SO4 decrease below the water table, these concentrations remain elevated throughout the tailings, with up to 60,600 mg L−1 Fe and 91,600 mg L−1 SO4 observed in the deeper groundwater. During precipitation events, surface seeps develop along the flanks of the impoundment and discharge pore water with a geochemical composition that is similar to the composition of water directly above the hardpan. These results suggest that shallow lateral flow of water from a transient perched water table is resulting in higher contaminant loadings than would be predicted if it were assumed that discharge is derived solely from the deeper primary water table. The abundance of residual sulfide minerals, the depletion of aluminosilicate minerals in the upper meter of the tailings and the presence of a significant mass of residual sulfide minerals in this zone after 70 a of oxidation suggest that sulfide oxidation will continue to release acid, metals, and SO4 to the environment for decades to centuries.  相似文献   

5.
Previous research has shown that Cu and Fe isotopes are fractionated by dissolution and precipitation reactions driven by changing redox conditions. In this study, Cu isotope composition (65Cu/63Cu ratios) was studied in profiles through sulphide-bearing tailings at the former Cu mine at Laver and in a pilot-scale test cell at the Kristineberg mine, both in northern Sweden. The profile at Kristineberg was also analysed for Fe isotope composition (56Fe/54Fe ratios). At both sites sulphide oxidation resulted in an enrichment of the lighter Cu isotope in the oxidised zone of the tailings compared to the original isotope ratio, probably due to preferential losses of the heavier Cu isotope into the liquid phase during oxidation of sulphides. In a zone with secondary enrichment of Cu, located just below the oxidation front at Laver, δ65Cu (compared to ERM-AE633) was as low as −4.35 ± 0.02‰, which can be compared to the original value of 1.31 ± 0.03‰ in the unoxidised tailings. Precipitation of covellite in the secondary Cu enrichment zone explains this fractionation. The Fe isotopic composition in the Kristineberg profile is similar in the oxidised zone and in the unoxidised zone, with average δ56Fe values (relative to the IRMM-014) of −0.58 ± 0.06‰ and −0.49 ± 0.05‰, respectively. At the well-defined oxidation front, δ56Fe was less negative, −0.24 ± 0.01‰. Processes such as Fe(II)–Fe(III) equilibrium and precipitation of Fe-(oxy)hydroxides at the oxidation front are assumed to cause this Fe isotope fractionation. This field study provides additional support for the importance of redox processes for the isotopic composition of Cu and Fe in natural systems.  相似文献   

6.
The distribution of arsenic (As(III), As(V)) and iron (Fe(II), Fe(III)) species was monitored during 1 year in a borehole drilled in the Carnoulès tailings impoundment which contains As-rich pyrite. The concentrations of total As and Fe in subsurface waters exhibited strong variations over one year, which were controlled by dissolved oxygen concentrations. At high oxygen levels, extremely high As (up to 162 mM) and Fe (up to 364 mM) concentrations were reached in the borehole, with the oxidised species predominant. As and Fe concentrations decreased 10-fold under oxygen-deficient conditions, as a result of pH increase and subsequent precipitation of As(V) and Fe(III). From drill core sections, it appeared that at low dissolved oxygen levels, As(III) was primarily released into water by the oxidation of As-rich pyrite in the unsaturated zone. Subsequent As and Fe precipitation was promoted during transport to the saturated zone; this reaction resulted in As enrichments in the sediment below the water table compared to the original content in pyrite, together with the formation of As-rich (up to 35 wt% As) ferruginous material in the unsaturated zone. High amounts of As(V) were released from these secondary phases during leaching experiments with oxygenated acid sulfate-rich waters; this process is believed to contribute to As(V) enrichment in the subsurface waters of the Carnoulès tailings during periods of high dissolved oxygen level.  相似文献   

7.
《Applied Geochemistry》2006,21(8):1301-1321
Low-quality pore waters containing high concentrations of dissolved H+, SO4, and metals have been generated in the East Tailings Management Area at Lynn Lake, Manitoba, as a result of sulfide-mineral oxidation. To assess the abundance, distribution, and solid-phase associations of S, Fe, and trace metals, the tailings pore water was analyzed, and investigations of the geochemical and mineralogical characteristics of the tailings solids were completed. The results were used to delineate the mechanisms that control acid neutralization, metal release, and metal attenuation. Migration of the low-pH conditions through the vadose zone is limited by acid-neutralization reactions, resulting in the development of distinct pore-water pH zones at depth; the neutralization reactions involve carbonate (pH  5.7), Al-hydroxide (pH  4.0), and aluminosilicate solids. As the zone of low-pH pore water expands, the pH will then be primarily controlled by less soluble solids, such as Fe(III) oxyhydroxides (pH < 3.5) and the relatively more recalcitrant aluminosilicates (pH  1.3). Precipitation/dissolution reactions involving secondary Fe(III) oxyhydroxides and hydroxysulfates control the concentrations of dissolved Fe(III). Concentrations of dissolved SO4 are principally controlled by the formation of gypsum and jarosite. Geochemical extractions indicate that the solid-phase concentrations of Ni, Co, and Zn are associated predominantly with reducible and acid-soluble fractions. The concentrations of dissolved trace metals are therefore primarily controlled by adsorption/complexation and (or) co-precipitation/dissolution reactions involving secondary Fe(III) oxyhydroxide and hydroxysulfate minerals. Concentrations of dissolved metals with relatively low mobility, such as Cu, are also controlled by the precipitation of discrete minerals. Because the major proportion of metals is sequestered through adsorption and (or) co-precipitation, the metals are susceptible to remobilization if low-pH or reducing conditions develop within the tailings.  相似文献   

8.
In the old mining area of Rodalquilar, mine wastes, soil and sediments were characterized and the results revealed high concentration of Au, Ag, As, Bi, Cu, Fe, Mn, Pb, Se, Sb and Zn in tailings and sediments. The contaminant of greatest environmental concern is As. The mean concentration in the tailings was 679.9, and 345 mg/kg in the sediments of Playazo creek. The groundwater samples from the alluvial aquifer showed high concentration of Al, As, Cd, Fe, Hg, Mn, Ni, Pb, Se, Sb and Zn and very high concentration of chloride and sulfate, which were above the concentration defined in the European standards for drinking water. The presence of As in groundwater may be caused by the oxidation of arsenian pyrite, the possible As desorption from goethite and ferrihydrite and the jarosite dissolution. Groundwater concentrations of Cd, Fe, Mn, and possibly Cu, were associated with low values of Eh, indicating the possible dissolution of oxy-hydroxides of Fe and Mn. The mobility of metals in the column experiments show the release of Al, Fe, Mn, Cr, Cu, Ni, V and Zn in significant concentrations but below the detected values in groundwater. However, As, Cd, Sb, Se Pb and Au, are generally mobilized in concentrations above the detected values in groundwater. The possible mass transfer processes that could explain the presence of the contaminants in the aquifer and the leachates was simulated with the PHREEQC numerical code and revealed the possible dissolution of the following mineral phases: jarosite, natrojarosite, arsenian pyrite, alunite, chlorite, kaolinite and calcite.  相似文献   

9.
The Haveri tailings area contains 1.5 Mt of sulfide-bearing waste from the Au–Cu mine that operated during 1942–1961. Geophysical and geochemical methods were used to evaluate and characterize the generation of acid mine drainage (AMD). Correlations were examined among the electrical resistivity tomography (ERT) data, the total sulfide content and concentrations of sulfide-bound metals (Cu, Co, Fe, Mn, Ni, Pb and Zn) of tailings samples, and the resistivity and geochemistry of surface water. The resulting geophysical–geochemical model defines an area in the vadose tailings, where a low resistivity anomaly (<10 Ohm m) is correlated with the highest sulfide content, extensive sulfide oxidation and low pH (average 3.1). The physical and geochemical conditions, resulting from the oxidation of the sulfide minerals, suggest that the low resistivity anomaly is associated with acidic and metal-rich porewater (i.e., AMD). The lower resistivity values in the saturated zone of the central impoundment suggest the formation of a plume of AMD. The natural subsoil layer (silt and clay) and the bedrock surface below the tailings area were well mapped from the ERT data. The detected fracture zones of the bedrock that could work as leakage pathways for AMD were consistent with previous geological studies. The integrated methodology of the study offers a promising approach to fast and reliable monitoring of areas of potential AMD generation and its subsurface movement over large areas (ca. 9 ha). This methodology could be helpful in planning drill core sampling locations for geochemical and mineralogical analysis, groundwater sampling, and choosing and monitoring remedial programs.  相似文献   

10.
This study evaluates the pollution load on a creek based on the physicochemical and mineralogical properties of old tailings. The Sanggok mine is one of the largest lead–zinc producers in the Hwanggangri mining district, Republic of Korea. The vertical profile of the old tailings in the mine area can be divided into three units based on color change, and mineralogical and textural variations, as well as physical and chemical properties. Unit I (surface accumulation and oxidized heterogeneous tailing soil) has lower pH and higher Eh than unit II (originally unoxidized dumped tailing soil) and unit III (pebble-bearing bottom soil). The conductivity data indicates that unit I and II have very high values compared to unit III and basement. The mine area consists mainly of carbonate rocks; however, mineral constituents of tailing soil and sediments near the mine were mainly composed of quartz, mica, feldspar, amphibole, calcite, dolomite, magnesite, and clay minerals. Units I and II are characterized by high abundances of siderite, locally pyrite, and dolomite. Precipitates in the mining drainage mainly included: smectite, illite, berthierine, quartz, siderite, hexahydrite, and Ca-ferrate. Among the separated metallic minerals, tailing soils and sediments of highly concentrated toxic metals are found: some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, malachite, goethite, various hydroxide, and uncertain secondary minerals. Units I and II are characterized by relatively high concentrations of Ca, Fe, Mn and low contents of Al, Mg, K, Na, Ti, rare earth elements (REEs) that correlated with the proportion of secondary minerals. Potentially toxic elements such as Ag, As, Cd, Cu, Pb, Sb, and Zn are highly enriched in the upper two units. This metal concentration can be influenced by changes in the depth because of oxic and suboxic zonal distribution. The removal zone (unit I) has probably migrated below the elevation of the maximum enrichment layer due to deepening of the oxic/suboxic boundary. In most of the materials, the enrichment index is higher than 3.62. The highest value of 42.55 is found in the oxidation surface soils of the tailing pile. An average enrichment index of the profiles and precipitates are 27.62 and 22.62, respectively. Rocky basement soils have an average enrichment index of 6.63, which is influenced by overlying the tailing pile. The water quality and habitat of the Sanggok creek are severely polluted. Polluted surface water may also negatively impact the agricultural soil and groundwater.  相似文献   

11.
西范坪斑岩铜矿的次生富集作用研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对3000余米岩芯的观察研究。发现西范坪斑岩铜矿床存在完整的氧化带,氧化剖面由上向下可以分为氧化带,次生富集带和原生带。原生矿石的裂隙越发育,原生矿化强度越大,则其次生富集作用越发育。应用质量平均方法计算了氧化过程中铜的迁移规律,提出在次生富集作用中铜队了发生垂向(由上向下)迁移外,也存在侧向迁移(带入或带出)。在矿床中部,由于铜的垂向富集和侧向带入而形成富矿石和厚大矿体,因此次生富集对西范斑岩铜矿床富矿体的形成起到了重要的作用。  相似文献   

12.
Mineral extraction and processing, especially metal mining, produces crushed and milled waste; such material, exposed to weathering, poses the potential threat of environmental contamination. In this study, mill tailings from inactive Pb-Zn mines in New Mexico, southwest USA, have been examined for their potential environmental impacts by means of detailed mineralogical and geochemical characterization. The principal ore minerals remaining in the tailings material are sphalerite, chalcopyrite, and very minor galena, smithsonite, and cerrusite, accompanied by the gangue minerals pyrite, pyrrhotite, magnetite, hematite, garnet, pyroxene, quartz, and calcite. White precipitate occurring on tailings surfaces is composed of gypsum and hydrated magnesium sulfates. Pyrite is mostly unaltered or shows only micron-scale rims of oxidation (goethite/hematite) in some surface samples. This iron oxide rim on pyrite is the only indication of weathering-derived minerals found by microscopy. There are variations in element concentrations with depth that reflect primary variations through time as the tailings ponds were filled. Cadmium and Zn concentrations increase with depth and Ag and Pb are low for the uppermost core samples, while Cu, Ni, and Co concentrations are generally high for the uppermost core samples. These elemental distributions indicate that little or no leaching has taken place since emplacement of the tailings because no accumulation or enrichment of these metals is observed in Hanover tailings, even in reducing portions of tailings piles. Element concentrations of surface samples surrounding the tailings reflect underlying mineralized zones rather than tailings-derived soil contamination. We observed no successive decreasing metal concentrations in prevalent wind directions away from the tailings. Stream sediment samples from Hanover Creek have somewhat elevated Zn, Cd, and Pb concentrations in areas that receive sediments from erosion of the tailings. However, input from tributaries downstream of the ponds appears to be principal source of heavy metals in Hanover Creek. The results of this study indicate that there is low risk for groundwater heavy-metal contamination from Hanover tailings. Tailings material do not show significant geochemical oxidation/alteration or metal leaching with depth. Our studies indicate that neutralizing minerals present in the tailings are sufficient to keep the tailings material chemically stable. Geochemically, however, tailings materials are being eroded and may pose a threat to Hanover Creek via siltation.  相似文献   

13.
湘西金矿尾矿—水相互作用:1.环境地球化学效应   总被引:8,自引:2,他引:8  
湘西金矿在生产过程中产生了大量的尾矿。该区尾矿-水相互作用强烈,并引起了尾矿中重金属元素的释放、迁移和对水体-土壤、蔬菜等表生环境的重金属污染。污染程度较大的元素均为Au、Sb、As、Cd、Hg、W等,与尾矿中元素的富集特征相一致。尾矿中重金属元素的水迁移能力由大到小顺序为Au、Cd、W、Sb、Pb、As、Zn、Cu。元素的生物吸收系数由大至小顺序为Cd、Au、Zn、Hg、Sb、Cu、Pb、As、W。植物中金属元素浓度主要受土壤中的浓度、植物种类和吸收的影响。  相似文献   

14.
选取黑藻(Hydrilla verticillata Royle)和水绵(Spirogyra communis,Hassall)作为研究对象,分析其对某铅锌矿尾矿库重金属废水的富集能力,综述重金属在黑藻和水绵体内的富集机制,探讨了利用黑藻和水绵进行岩溶矿山重金属污染水修复的应用前景。结果表明:黑藻和水绵体内的重金属绝对含量较高,并且植株长势良好,生物量大,说明这两种水生植物对重金属有避性或耐性。分析测试发现,在黑藻和水绵体内,重金属的富集系数较高,其中Pb最大,其后依次是As>Co>Mn>Cu>Cd>Zn>Ni>Cr,富集系数最少的是Hg,水绵体内的富集系数要大于黑藻。对比研究发现,这两类藻类体内的重金属含量和富集系数均高于非岩溶区。黑藻对重金属的富集机制主要有3种,即重金属作用下抗氧化酶活性增强、被动吸收和离子交换作用,而水绵特殊的分子生物结构可能是其吸附重金属的重要机制。黑藻和水绵在南方岩溶区广泛分布,利用黑藻和水绵修复重金属污染的岩溶水具有较好前景。   相似文献   

15.
 The oxidation and the subsequent dissolution of sulfide minerals within the Copper Cliff tailings area have led to the release of heavy metals such as Fe, Ni, and Co to the tailings pore water. Dissolved concentrations in excess of 10 g/l Fe and 2.2 g/l Ni have been detected within the shallow pore water of the tailings, with increasing depth these concentrations decrease to or near analytical detection limits. Geochemical modelling of the pore-water chemistry suggests that pH-buffering reactions are occurring within the shallow oxidized zones, and that secondary phases are precipitating at or near the underlying hardpan and transition zones. Mineralogical study of the tailings confirmed the presence of goethite, jarosite, gypsum, native sulfur, and a vermiculite-type clay mineral. Goethite, jarosite, and native sulfur form alteration rims and pseudo-morphs of the sulfide minerals. Interstitial cements, composed of goethite, jarosite, and gypsum, locally bind the tailings particles, forming hardpan layers. Microprobe analyses of the goethite indicate that it contains up to 0.6 weight % Ni, suggesting that the goethite is a repository for Ni. Other sinks detected for heavy metals include jarosite and a vemiculite-type clay mineral which locally contains up to 1.6 weight % Ni. To estimate the mass and distribution of heavy metals associated with the secondary phases within the shallow tailings, a series of chemical extractions was completed. The experimental design permitted four fractions of the tailings to be evaluated independently. These four fractions consisted of a water-soluble, an acid-leachable, and a reducible fraction, as well as the whole-rock total. Twenty-five percent of the total mass of heavy metals was removed in the acid-leaching experiments, and 100% of the same components were removed in the reduction experiments. The data suggest that precipitation/coprecipitation reactions are providing an effective sink for most of the heavy metals released by sulfide mineral oxidation. In light of these results, potential decommissioning strategies should be evaluated with the recognition that changing the geochemical conditions may alter the stability of the secondary phases within the shallow tailings. Received: 9 April 1997 · Accepted: 21 July 1997  相似文献   

16.
《Applied Geochemistry》1997,12(4):447-464
The controls on metal concentrations in a plume of acidic (pH 3.29–5.55) groundwater in the Moon Creek watershed in Idaho, U.S.A., were investigated with the use of property-property plots. A plot of Ca vs S demonstrated that a plume of contaminated groundwater was being diluted by infiltration of rain and creek water at shallow depths and by ambient groundwater near bedrock. The small amount of dissolved Fe (2.1 mg/l) was removed while dissolved Pb was added, reaching a maximum concentration of 0.37 mg/l. The other metals (Zn ≤ 16, Al ≤ 6.2, Cu ≤ 2.1 and Cd ≤ 0.077 mg/l) in the shallow groundwater were essentially conserved until they emerged as a seep along the creek bank. Upon mixing with the creek water, groundwater was diluted by factors between 11 and 50, and the pH of the mixture became neutral. Metals originating from the contaminated groundwater were removed in the creek in the following order: Fe > Al > Pb ≫ Cu > Mn > Zn = Cd.Pb and Cu continued to be removed from solution even as the creek passed adjacent to a tailings pile. In contrast, Zn concentrations in the creek increased adjacent to the tailings area, presumably as a result of the reemergence of the upgradient plume as the creek lost elevation.Below the tailings dam, contaminated creek water (400–800 μg Zn/l) was diluted by both smaller side streams and a creek of equal flow. The presence of 3 distinctive water masses required the use of two tracers (dissolved Si and S) to distinguish between mixing and geochemical reactions. The removal of metals was greater during low flow conditions. Pb was removed to the greatest extent, falling below detection limits (0.5 μ/l) at the first sampling location. Copper and Mn were removed to a lesser extent during low flow conditions and approached conservative behavior during high flow conditions. During a 5-km journey through two hydrological regimes, less than 10% of the dissolved Zn and Cd was lost.  相似文献   

17.
Mining and milling of base metal ore deposits can result in the release of metals to the environment. When sulfide minerals contained in mine tailings are exposed to oxygen and water, they oxidize and dissolve. Two principal antagonistic geochemical processes affect the migration of dissolved metals in tailings impoundments: sulfide oxidation and acid neutralization. This study focuses on acid neutralization reactions occurring in the saturated zone of tailings impoundments. To simulate conditions prevailing in many tailings impoundments, 0.1 mol/L sulfuric acid was passed continuously through columns containing fresh, unoxidized tailings, collected at Kidd Creek metallurgical site. The results of this column experiment represent a detailed temporal observation of pH, Eh, and metal concentrations. The results are consistent with previous field observations, which suggest that a series of mineral dissolution-precipitation reactions control pH and metal mobility. Typically, the series consists of carbonate minerals, Al and Fe(III) hydroxides, and aluminosilicates. In the case of Kidd Creek tailings, the dissolution series consists of ankerite-dolomite, siderite, gibbsite, and aluminosilicates. In the column experiment, three distinct pH plateaus were observed: 5.7, 4.0, and 1.3. The releases of trace elements such as Cd, Co, Cr, Cu, Li, Ni, Pb, V, and Zn were observed to be related to the pH buffering zones. High concentrations of Zn, Ni, and Co were observed at the first pH plateau (pH 5.7), whereas Cd, Cr, Pb, As, V, and Al were released as the pH of the pore water decreased to 4.0 or less.  相似文献   

18.
金川镍矿浮选尾矿数量巨大,含有相当可观的有价金属,其中有价金属的回收受到越来越多的关注。金川老尾矿库尾矿砂中Ni和Cu赋存状态复杂,水溶性矿物态、可交换离子态、碳酸盐态、结晶度较差的Fe氧化物态、结晶度较好的Fe氧化物态、硫化物态和残渣态中都含有数量不等的有价金属Ni和Cu;尾矿砂风化作用释放的金属阳离子大多数在发生氧化的硫化物位置原位发生水解沉淀形成次生矿物,有价金属Ni和Cu在尾矿库中没有发生明显的富集。金川镍矿尾矿砂中Ni和Cu适于用化学酸溶浸出的方法进行二次回收。  相似文献   

19.
Nearly half a century after mine closure, release of As from the Ylöjärvi Cu–W–As mine tailings in groundwater and surface water run-off was observed. Investigations by scanning electron microscopy (SEM), electron microprobe analysis (EMPA), synchrotron-based micro-X-ray diffraction (μ-XRD), micro-X-ray absorption near edge structure (μ-XANES) and micro-extended X-ray absorption fine structure (μ-EXAFS) spectroscopy, and a sequential extraction procedure were performed to assess As attenuation mechanisms in the vadose zone of this tailings deposit. Results of SEM, EMPA, and sequential extractions indicated that the precipitation of As bearing Fe(III) (oxy)hydroxides (up to 18.4 wt.% As2O5) and Fe(III) arsenates were important secondary controls on As mobility. The μ-XRD, μ-XANES and μ-EXAFS analyses suggested that these phases correspond to poorly crystalline and disordered As-bearing precipitates, including arsenical ferrihydrite, scorodite, kaňkite, and hydrous ferric arsenate (HFA). The pH within 200 cm of the tailings surface averaged 5.7, conditions which favor the precipitation of ferrihydrite. Poorly crystalline Fe(III) arsenates are potentially unstable over time, and their transformation to ferrihydrite, which contributes to As uptake, has potential to increase the As adsorption capacity of the tailings. Arsenic mobility in tailings pore water at the Ylöjärvi mine will depend on continued arsenopyrite oxidation, dissolution or transformation of secondary Fe(III) arsenates, and the As adsorption capacity of Fe(III) (oxy)hydroxides within this tailings deposit.  相似文献   

20.
In northern France, the weathering and oxidation of pyrite-containing coal mine spoils can lead to sulphate enrichment of the underlying chalk aquifer. Two sites have been studied: in a free water-table zone and in a confined-aquifer zone. Solid-fraction analyses have shown a release of carbon and sulphur from the waste dump surfaces. The groundwater isotopic analysis (notably 34S) showed the existence of two sulphate sources (mine spoils and gypsum contained in Cenozoic formations). This study also saw evidence of bacterial sulphate reduction in the confined zone as a result of the release of carbon from mine spoils. The effects of acid mine drainage were the presence of secondary minerals as small jarosite dots (cm) present at depth, gypsum or ferrihydrite present on the bottom of temporary ponds, and an increase in sulphate content of groundwaters sampled downstream of the waste dumps. This acid mine drainage is buffered during its infiltration into the chalk aquifer. This is evidenced by the increase in magnesium, calcium, bicarbonate or strontium, resulting of carbonate digestion downstream of the sites. No significant leaching of metals, even those associated with the sulphide fraction, was seen at the two studied sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号