首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We describe here high-field 17O magic-angle-spinning (MAS) and triple-quantum MAS (3QMAS) NMR spectra for several alkali silicate and Na, K, and Ca aluminosilicate glasses containing up to 10 wt.% water. The H2O site appears to have a large quadrupolar coupling constant, and its chemical shift increases from Na- to K- glasses, suggesting significant cation-H2O interactions. In 17O one-pulse MAS and 3QMAS and 27Al one-pulse NMR experiments, major differences were seen between spectra for anhydrous and hydrous calcium aluminosilicate glasses. The changes in the 17O MAS spectra can be explained by the addition of an H2O peak and to the disappearance of an Al-O-Al peak from the 17O NMR spectrum for the hydrous glass. The 27Al results are consistent with this interpretation.  相似文献   

2.
We have taken a systematic approach utilizing advanced solid-state NMR techniques to gain new insights into the controversial issue concerning the dissolution mechanisms of water in aluminosilicate melts (glasses). A series of quenched anhydrous and hydrous (∼2 wt% H2O) glass samples along the diopside (Di, CaMgSi2O6)—anorthite (An, CaAl2Si2O8) join with varying An components (0, 20, 38, 60, 80, and 100 mol %) have been studied. A variety of NMR techniques, including one-dimensional (1D) 1H and 27Al MAS NMR, and 27Al → 1H cross-polarization (CP) MAS NMR, as well as two-dimensional (2D) 1H double-quantum (DQ) MAS NMR, 27Al triple-quantum (3Q) MAS NMR, and 27Al → 1H heteronuclear correlation NMR (HETCOR) and 3QMAS/HETCOR NMR, have been applied. These data revealed the presence of SiOH, free OH ((Ca,Mg)OH) and AlOH species in the hydrous glasses, with the last mostly interconnected with Si and residing in the more polymerized parts of the structure. Thus, there are no fundamental differences in water dissolution mechanisms for Al-free and Al-bearing silicate melts (glasses), both involving two competing processes: the formation of SiOH/AlOH that is accompanied by the depolymerization of the network structure, and the formation of free OH that has an opposite effect. The latter is more important for depolymerized compositions corresponding to mafic and ultramafic magmas.Aluminum is dominantly present in four coordination (AlIV), but a small amount of five-coordinate Al (AlV) is also observed in all the anhydrous and hydrous glasses. Furthermore, six-coordinate Al (AlVI) is also present in most of the hydrous glasses. As Al of higher coordinations are favored by high pressure, AlVIOH and AlVOH may become major water species at higher pressures corresponding to those of the Earth’s mantle.  相似文献   

3.
Structural interaction between dissolved fluorine and silicate glass (25°C) and melt (to 1400°C) has been examined with 19F and 29Si MAS NMR and with Raman spectroscopy in the system Na2O-Al2O3-SiO2 as a function of Al2O3 content. Approximately 3 mol.% F calculated as NaF dissolved in these glasses and melts. From 19F NMR spectroscopy, four different fluoride complexes were identified. These are (1) Na-F complexes (NF), (2) Na-Al-F complexes with Al in 4-fold coordination (NAF), (3) Na-Al-F complexes with Al in 6-fold coordination with F (CF), and (4) Al-F complexes with Al in 6-fold, and possibly also 4-fold coordination (TF). The latter three types of complexes may be linked to the aluminosilicate network via Al-O-Si bridges.The abundance of sodium fluoride complexes (NF) decreases with increasing Al/(Al + Si) of the glasses and melts. The NF complexes were not detected in meta-aluminosilicate glasses and melts. The NAF, CF, and TF complexes coexist in peralkaline and meta-aluminosilicate glasses and melts.From 29Si-NMR spectra of glasses and Raman spectra of glasses and melts, the silicate structure of Al-free and Al-poor compositions becomes polymerized by dissolution of F because NF complexes scavenge network-modifying Na from the silicate. Solution of F in Al-rich peralkaline and meta-aluminous glasses and melts results in Al-F bonding and aluminosilicate depolymerization.Temperature (above that of the glass transition) affects the Qn-speciation reaction in the melts, 2Q3 ⇔ Q4 + Q2, in a manner similar to other alkali silicate and alkali aluminosilicate melts. Dissolved F at the concentration level used in this study does not affect the temperature-dependence of this speciation reaction.  相似文献   

4.
We examined aluminosilicate glasses containing a variety of network modifying to intermediate cations (Li, La, Sc, and Fe), quenched from melts at 1 atm to 8 GPa, to further investigate the role of cation field strength in Al coordination changes and densification. 27Al Nuclear Magnetic Resonance Spectroscopy (NMR) reveals that the mean Al coordination increases with increasing pressure in the Li-containing glasses, which can be explained by a linear dependence of fractional change in Al coordination number on cation field strengths in similar K-, Na-, and Ca-containing aluminosilicate glasses (K < Na < Li < Ca). Measured recovered densities follow a similar linear trend. In contrast, the La-containing glasses have significantly lower mean Al coordination numbers at given pressures than the cation field strength of La and glass density would predict. La L3 X-ray absorption fine structure (XAFS) spectroscopy results indicate a significant increase with pressure in average La-O bond distances, suggesting that La and Al may be “competing” for higher coordinated sites and hence that both play a significant role in the densification of these glasses, especially in the lower pressure range. However, in Na aluminosilicate glasses with small amounts of Sc, 45Sc NMR reveals only modest Sc coordination changes, which do not seem to significantly affect the mean Al coordination values. For a Li aluminosilicate glass, 17O MAS and multiple quantum magic angle spinning (3QMAS) NMR data are consistent with generation of more highly coordinated Al at the expense of non-bridging oxygen (NBO), whereas La aluminosilicate glasses have roughly constant O environments, even up to 8 GPa. Finally, we demonstrate that useful 23Na and 27Al MAS NMR spectra can be collected for Ca-Na aluminosilicate glasses containing up to 5 wt.% Fe oxide. We discuss the types of structural changes that may accompany density increases with pressure and how these structural changes are affected by the presence of different cations.  相似文献   

5.
Chlorine-35 magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra were collected at 14.1 and 18.8 Tesla fields to determine the atomic scale structural environments of the chloride ions in anhydrous and hydrous silicate and aluminosilicate glasses containing 0.2 to 0.7 wt% Cl. NMR peaks are broad and featureless, but are much narrower than the total chemical shift range for the nuclide in inorganic chlorides. Peak widths are primarily due to quadrupole interactions and to a lesser extent to chemical shift distributions. Peak positions are quite different for the Na- and Ca-containing glasses, suggesting that most Cl coordination environments contain network modifier cations. Comparison of peak positions and shapes for silicate and aluminosilicate glasses containing either Na or Ca suggests that there is no obvious contribution from Cl bonded to Al, and relative quantitation of peak areas indicates that there is no systematic undercounting of 35Cl spins in the aluminous vs. the Al-free samples. In Ca-Na silicate glasses with varying Ca/(Ca + Na), the mixed-cation glasses have intermediate chemical shifts between those of the end members, implying that there is not a strong preference of either Ca2+ or of Na+ around Cl. Hydrous Na-aluminosilicate glasses with H2O contents up to 5.9 wt% show a shift to higher frequency NMR signal with increasing H2O content, while the quadrupole coupling constant (CQ) remains constant at ∼3.3 MHz. However, the change in frequency is much smaller than that expected if H2O systematically replaced Na+ in the first-neighbor coordination shell around Cl. A series of hydrous Ca-aluminosilicate glasses with H2O contents up to 5.5 wt% show no shift in NMR signal with increasing H2O content. The CQ remains constant at ∼4.4 MHz, again suggesting no direct interaction between Cl and H2O in these samples.  相似文献   

6.
29Si MAS NMR experiments have been carried out to determine the silica species distribution (Q distribution) in albite, NaAlSi3O8, and anorthite, CaAl2Si2O8, composition glasses (designated albite and anorthite glass). Our results indicate that the Q distribution of albite glass contains all five possible silica species and shows a tendency towards high Q3 and Q4 concentrations, whereas anorthite glass does not contain Q4 and has a high Q0 concentration. Rationalizations are made in terms of the observed Q distributions to explain differences in devitrification behavior of these two glasses. 27Al MAS NMR data for these glasses suggest that differences in devitrification behavior between these two glasses should be ascribed to small growth rates rather than small nucleation rates of crystalline albite from albite glass.  相似文献   

7.
Ab initio, molecular orbital (MO) calculations were performed on model systems of SiO2, NaAlSi3O8 (albite), H2O-SiO2 and H2O-NaAlSi3O8 glasses. Model nuclear magnetic resonance (NMR) isotropic chemical shifts (δiso) for 1H, 17O, 27Al and 29Si are consistent with experimental data for the SiO2, NaAlSi3O8, H2O-SiO2 systems where structural interpretations of the NMR peak assignments are accepted. For H2O-NaSi3AlO8 glass, controversy has surrounded the interpretation of NMR and infrared (IR) spectra. Calculated δiso1H, δiso17O, δiso27Al and δiso29Si are consistent with the interpretation of Kohn et al. (1992) that Si-(OH)-Al linkages are responsible for the observed peaks in hydrous Na-aluminosilicate glasses. In addition, a theoretical vibrational frequency associated with the Kohn et al. (1992) model agrees well with the observed shoulder near 900 cm−1 in the IR and Raman spectra of hydrous albite glasses. MO calculations suggest that breaking this Si-(OH)-Al linkage requires ∼+56 to +82 kJ/mol which is comparable to the activation energies for viscous flow in hydrous aluminosilicate melts.  相似文献   

8.
The local configurations around sodium ions in silicate glasses and melts and their distributions have strong implications for the dynamic and static properties of melts and thus may play important roles in magmatic processes. The quantification of distributions among charge-balancing cations, including Na+ in aluminosilicate glasses and melts, however, remains a difficult problem that is relevant to high-temperature geochemistry as well as glass science.Here, we explore the local environment around Na+ in charge-balanced aluminosilicate glasses (the NaAlO2-SiO2 join) and its distribution using 23Na magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy at varying magnetic fields of 9.4, 14.1, and 18.8 T, as well as triple-quantum (3Q)MAS NMR spectroscopy at 9.4 T, to achieve better understanding of the extent of disorder around this cation. We quantify the extent of this disorder in terms of changes in Na-O distance (d[Na-O]) distributions with composition and present a structural model favoring a somewhat ordered Na distribution, called a “perturbed” Na distribution model. The peak position in 23Na MAS spectra of aluminosilicate glasses moves toward lower frequencies with increasing Si/Al ratios, implying that the average d(Na-O) increases with increasing R. The peak width is significantly reduced at higher fields (14.1 and 18.8 T) because of the reduced effect of second-order quadrupolar interaction, and 23Na MAS NMR spectra thus provide relatively directly the Na chemical shift distribution and changes in atomic environment with composition. Chemical shift distributions obtained from 23Na 3Q MAS spectra are consistent with MAS NMR data, in which deshielding decreases with R. The average distances between Na and the three types of bridging oxygens (BOs) (Na-{Al-O-Al}, Na-{Si-O-Al}, and Na-{Si-O-Si}) were obtained from the correlation between d(Na-O) and isotropic chemical shift. The calculated d(Na-{Al-O-Al}) of 2.52 Å is shorter than the d(Na-{Si-O-Si}) of 2.81 Å, and d(Na-{Al-O-Al}) shows a much narrower distribution than the other types of BOs. 23Na chemical shifts in binary (Al-free) sodium silicate glasses are more deshielded and have ranges distinct from those of aluminosilicate glasses, implying that d(Na-NBO) (nonbridging oxygen) is shorter than d(Na-BO) and that d(Na-{Si-O-Si}) in binary silicates can be shorter than that in aluminosilicate glasses. The results given here demonstrate that high-field 23Na NMR is an effective probe of the Na+ environment, providing not only average structural information but also chemically and topologically distinct chemical shift ranges (distributions) and their variation with composition and their effects on static and dynamic properties.  相似文献   

9.
A multinuclear solid-state NMR investigation of the structure of the amorphous alteration products (so called gels) that form during the aqueous alteration of silicate glasses is reported. The studied glass compositions are of increasing complexity, with addition of aluminum, calcium, and zirconium to a sodium borosilicate glass. Two series of gels were obtained, in acidic and in basic solutions, and were analyzed using 1H, 29Si, and 27Al MAS NMR spectroscopy. Advanced NMR techniques have been employed such as 1H-29Si and 1H-27Al cross-polarization (CP) MAS NMR, 1H double quantum (DQ) MAS NMR and 27Al multiple quantum (MQ) MAS NMR. Under acidic conditions, 29Si CP MAS NMR data show that the repolymerized silicate networks have similar configuration. Zirconium as a second nearest neighbor increases the 29Si isotropic chemical shift. The gel porosity is influenced by the pristine glass composition, modifying the silicon-proton interactions. From 1H DQ and 1H-29Si CP MAS NMR experiments, it was possible to discriminate between silanol groups (isolated or not) and physisorbed molecular water near Si (Q2), Si (Q3), and Si (Q4) sites, as well as to gain insight into the hydrogen-bonding interaction and the mobility of the proton species. These experiments were also carried out on heated samples (180 °C) to evidence hydrogen bonds between hydroxyl groups on molecular water. Alteration in basic media resulted in a gel structure that is more dependent on the initial glass composition. 27Al MQMAS NMR data revealed an exchange of charge compensating cations of the [AlO4] groups during glass alteration. 1H-27Al CP MAS NMR data provide information about the proximities of these two nuclei and two aluminum environments have been distinguished. The availability of these new structural data should provide a better understanding of the impact of glass composition on the gel structure depending on the nature of the alteration solution.  相似文献   

10.
A suite of six hydrous (7 wt.% H2O) sodium silicate glasses spanning sodium octasilicate to sodium disilicate in composition were analyzed using 29Si single pulse (SP) magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, 1H-29Si cross polarization (CP) MAS NMR, and fast MAS 1H-NMR. From the 29Si SPMAS data it is observed that at low sodium compositions dissolved water significantly depolymerizes the silicate network. At higher sodium contents, however, dissolved H2O does not affect a significant increase in depolymerization over that predicted based on the Na/Si ratio alone. The fast MAS 1H-NMR data reveal considerable complexity in proton environments in each of the glasses studied. The fast MAS 1H-NMR spectra of the highest sodium concentration glasses do not exhibit evidence of signficantly greater fractions of dissolved water as molecular H2O than the lower sodium concentration glasses requiring that the decrease in polymerization at high sodium contents involves a change in sodium solution mechanism. Variable contact time 1H-29Si cross polarization (CP) MAS NMR data reveal an increase in the rotating frame spin lattice relaxation rate constant (T*) for various Qn species with increasing sodium content that correlates with a reduction in the average 1H-29Si coupling strength. At the highest sodium concentration, however, T* drops significantly, consistent with a change in the Na2O solution mechanism.  相似文献   

11.
Dissolution of water in magmas significantly affects phase relations and physical properties. To shed new light on the this issue, we have applied 1H and 29Si nuclear magnetic resonance (NMR) spectroscopic techniques to hydrous silicate glasses (quenched melts) in the CaO-MgO-SiO2 (CMS), Na2O-SiO2, Na2O-CaO-SiO2 and Li2O-SiO2 systems. We have also carried out ab initio molecular orbital calculations on representative clusters to gain insight into the experimental results.The most prominent result is the identification of a major peak at ∼1.1 to 1.7 ppm in the 1H MAS NMR spectra for all the hydrous CMS glasses. On the basis of experimental NMR data for crystalline phases and ab initio calculation results, this peak can be unambiguously attributed to (Ca,Mg)OH groups. Such OH groups, like free oxygens, are only linked to metal cations, but not part of the silicate network, and are thus referred to as free hydroxyls in the paper. This represents the first direct evidence for a substantial proportion (∼13∼29%) of the dissolved water as free hydroxyl groups in quenched hydrous silicate melts. We have found that free hydroxyls are favored by (1) more depolymerized melts and (2) network-modifying cations of higher field strength (Z/R2: Z: charge, R: cation-oxygen bond length) in the order Mg > Ca > Na. Their formation is expected to cause an increase in the melt polymerization, contrary to the effect of SiOH formation. The 29Si MAS NMR results are consistent with such an interpretation. This water dissolution mechanism could be particularly important for ultramafic and mafic magmas.The 1H MAS NMR spectra for glasses of all the studied compositions contain peaks in the 4 to 17 ppm region, attributable to SiOH of a range of strength of hydrogen bonding and molecular H2O. The relative population of SiOH with strong hydrogen bonding grows with decreasing field strength of the network-modifying cations. Ab initio calculations confirmed that this trend largely reflects hydrogen bonding with nonbridging oxygens.  相似文献   

12.
We studied uptake mechanisms for dissolved Al on amorphous silica by combining bulk-solution chemistry experiments with solid-state Nuclear Magnetic Resonance techniques (27Al magic-angle spinning (MAS) NMR, 27Al{1H} cross-polarization (CP) MAS NMR and 29Si{1H} CP-MAS NMR). We find that reaction of Al (1 mM) with amorphous silica consists of at least three reaction pathways; (1) adsorption of Al to surface silanol sites, (2) surface-enhanced precipitation of an aluminum hydroxide, and (3) bulk precipitation of an aluminosilicate phase. From the NMR speciation and water chemistry data, we calculate that 0.20 (±0.04) tetrahedral Al atoms nm−2 sorb to the silica surface. Once the surface has sorbed roughly half of the total dissolved Al (∼8% site coverage), aluminum hydroxides and aluminosilicates precipitate from solution. These precipitation reactions are dependent upon solution pH and total dissolved silica concentration. We find that the Si:Al stoichiometry of the aluminosilicate precipitate is roughly 1:1 and suggest a chemical formula of NaAlSiO4 in which Na+ acts as the charge compensating cation. For the adsorption of Al, we propose a surface-controlled reaction mechanism where Al sorbs as an inner-sphere coordination complex at the silica surface. Analogous to the hydrolysis of , we suggest that rapid deprotonation by surface hydroxyls followed by dehydration of ligated waters results in four-coordinate (>SiOH)2Al(OH)2 sites at the surface of amorphous silica.  相似文献   

13.
Thermal transformations of kaolinite of different degree of crystallinity have been monitored by 27Al and 29Si high-resolution NMR with magic-angle spinning (MAS NMR), X-ray diffraction, Fourier transform infrared, atomic absorption spectrophotometry and thermogravimetric analysis. NMR shows differences in the dehydroxylation process of kaolinites with different degree of crystallinity and reveals the presence of short-range order in metakaolinite. 29Si NMR spectra acquired with a 30 s recycle delay of poorly and highly crystalline samples heated at 480 and 500° C, respectively, contain three distinct signals; we discuss their assignment in the light of experiments involving leaching of the samples with aqueous KOH. Ca. 40% of Si sites retain their original Q 3 symmetry just above the onset of dehydroxylation and the Q 4 environment is present showing that a small amount of amorphous silica has already segregated. The spectrum of samples treated at 1000° C contains a signal at -110ppm (from Q 4 silicons) and a faint resonance, from mullite, at ca. -87 ppm. 29Si NMR also shows that cristobalite germs are already present at 950–1000° C. The 27Al MAS NMR spectra of metakaolinite reveal the presence of 4-, 5-and 6-coordinated Al. Changes in the three Al populations as a function of temperature have been monitored quantitatively. Below 800° C, 4-and 5-coordinated Al appears at the expense of 6-coordinated Al, but above 800° C the amount of 6-coordinated Al increases again. We suggest a dehydroxylation scheme which accounts for the presence of 4-and 5 coordinated Al. Above 900–950° C the latter signal is no longer present in the 27Al NMR spectra and new 4-and 6-coordinated Al species (mullite and γ-alumina) appear. We propose new ideas for the structure of metakaolinite.  相似文献   

14.
Hartree-Fock and B3LYP NMR calculations were performed at the 6-311+G(2df,p) level on cluster models representing albite glasses using B3LYP/6 to 31G* optimized geometries. Calculation results on several well-known crystalline materials, such as low albite and KHSi2O5, were used to check the accuracy of the calculation methods.Calculated 29Si-NMR results on clusters that model protonation of Al-O-Si linkages and the replacement of Na+ by H+ indicate a major increase in Si-O(H) bond length and a 5 ppm difference in δiso for 29Si compared to that for anhydrous albite glass. The calculated δiso of 27Al in such linkages agrees with the experimental data, but shows an increase in Cq that cannot be fully diminished by H-bonding to additional water molecules. This protonation model is consistent with both experimental 17O NMR data and the major peak of 1H-NMR spectra. It cannot readily explain the existence of the small peak in the experimental 1H spectra around 1.5 ppm. Production of the depolymerized units Al [Q3]-O-H upon the dissolution of water is not consistent with 27Al, 1H, or 17O NMR experimental results. Production of Si [Q3]-O-H is consistent with all of the experimental 17O and 1H-NMR data; such units can produce both the major peak at 3.5 ppm and the small peak at 1.5 ppm in 1H spectra, either with or without hydrogen bonding. This species, however, cannot produce the main features of 29Si spectra.It is concluded that although neither protonation nor the production of Si [Q3]-O-H alone is consistent with the available experimental data, the combination of these two processes is consistent with available experimental NMR data.  相似文献   

15.
Short and medium range order of silica and sodium silicate glasses have been investigated from a quantitative analysis of 29Si MAS NMR and 23Na, 17O MQMAS NMR spectra. The method described enables the extraction of the underlying 17O NMR parameter distributions of bridging oxygens (BOs) and non-bridging oxygens (NBOs), and yields site populations which are confirmed by 29Si NMR data. The extracted NMR parameter distributions and their variations with respect to the glass chemical composition can then be analyzed in terms of local structural features (bond angles and bond lengths, coordination numbers) with the help of molecular dynamics simulations combined with first-principles calculations of NMR parameters. Correlations of relevant structural parameters with 23Na, 29Si and 17O NMR interactions (isotropic chemical shift δiso, quadrupolar coupling constant CQ and quadrupolar asymmetry parameter ηQ) are re-examined and their applicability is discussed. These data offer better insights into the structural organization of the glass network, including both chemical and topological disorder. Adding sodium to pure silica significantly diminishes the Si-O-Si bond angles and leads to a longer mean Si-O bond length with a slight decrease of the mean Na-O bond length. Moreover, the present data are in favor of a homogeneous distribution of Na around both oxygen species in the silicate network. Finally, our approach was found to be sensitive enough to investigate the effect of addition of a small quantity of molybdenum oxide (about 1 mol%) on the 17O MAS spectrum, opening new possibilities for investigating the Mo environment in silicate glasses.  相似文献   

16.
The combined results of 27Al-1H and 1H-29Si-1H cross polarization NMR experiments for hydrous glasses (containing 0.5-2 wt% water) along the SiO2-NaAlSiO4 join confirm that the dissolution mechanism of water in aluminosilicate glasses is fundamentally the same as for Al-free systems, i.e. the dissolved water ruptures oxygen bridges and creates Si-OH and Al-OH groups, in addition to forming molecular water (H2Omol). The fraction of Al-OH increases non-linearly as the Al content increases with up to half of the OH groups as Al-OH for compositions close to NaAlSiO4. The relative abundances of the different species are controlled by the degree of Al-avoidance and the relative tendency of hydrolysis of the different types of oxygen bridges, Si-O-Si, Si-O-Al and Al-O-Al. A set of homogeneous reactions is derived to model the measured Al-OH/Si-OH speciation, and the obtained equilibrium constants are in agreement with literature data on the degree of Al-avoidance. With these equilibrium constants, the abundance of the different oxygen species, i.e. Si-O-Si, Si-O-Al, Al-O-Al, Si-OH, Al-OH and H2Omol, can be predicted for the entire range of water and Al contents.  相似文献   

17.
In order to decipher information about the local coordination environments of Na in anhydrous silicates from 23Na nuclear magnetic resonance spectroscopy (NMR), we have collected 23Na magic angle spinning (MAS) NMR spectra on several sodium-bearing silicate and aluminosilicate crystals with known structures. These data, together with those from the literature, suggest that the 23Na isotropic chemical shift correlates well with both the Na coordination and the degree of polymerization (characterized by NBO/T) of the material. The presence of a dissimilar network modifier also affects the 23Na isotropic chemical shift. From these relations, we found that the average Na coordinations in sodium silicate and aluminosilicate liquids of a range of compositions at 1 bar are nearly constant at around 6–7. The average Na coordinations in glasses of similar compositions also vary little with Na content (degree of polymerization). However, limited data on ternary alkali silicate and aluminosilicate glasses seem to suggest that the introduction of another network-modifier, such as K or Cs, does cause variations in the average local Na coordination. Thus it appears that the average Na coordination environments in silicate glasses are more sensitive to the presence of other network-modifiers than to the variations in the topology of the silicate tetrahedral network. Further studies on silicate glasses containing mixed cations are necessary to confirm this conclusion.  相似文献   

18.
Reduction of octahedral Fe in the crystalline structure of smectites influences, possibly controls, surface-sensitive physical and chemical properties. The purpose of this study was to investigate if reduction of structural Fe by Na-dithionite or bacteria affects the chemical environment of constituent cations in montmorillonite, employing solid state multinuclear (29Si and 27Al) magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. Reduction of structural Fe resulted in a positive (down field) chemical shift of the main Si Q3 (Q3(0Al)) site which was strongly correlated with Fe(II) content and inferred that distortions in Si-OT (T=Si, Al) bond angles and Si-O bond lengths occur with increasing layer charge. The line width (W) of the 29Si Q3 signal also increased with increasing levels of reduction. No change occurred in the position of the peak maximum for the octahedral Al (27AlVI) signal; however, an increased W was observed for this peak with increasing Fe(II) content. These results are attributed to decreases in Si-O-T bond angles and Si-O bond distances, corresponding to a better fit between the tetrahedral and octahedral sheets brought about by the presence of Fe(II) in the clay structure. The increased 27AlVI signal width (W) may also be due to a lessening of the paramagnetic influence of Fe(III) nuclei and enhancement of 27AlVI signals with different quadrupole coupling constants (QCC). Multinuclear MAS NMR analyses of dithioniteand microbially-reduced montmorillonite indicate that reduction of structural Fe caused reversible changes in the smectite structure, at least as far as this method could discern.  相似文献   

19.
We have obtained high quality Raman spectra for two H/D isotopically substituted hydrous aluminosilicate glasses with compositions along the NaAlSi3O8-SiO2 join. Consistent with the results of previous studies, the isotope shift for the band near 900 cm–1, whose intensity grows with increasing water content, is extremely small: v h /v d = 1.004 ± 0.004. The lack of a definite H/D isotope shift for this band does not, however, preclude its association with a vibration of a hydrous species in the glass, because of likely strong coupling between different vibrational modes of hydrated framework species. The 900 cm–1 band could well be due to a T — OH (T = Si, Al) stretching or bending vibration in the hydrous glass, as required by the presence of a combination band near 4500 cm–1 in near-infrared spectra.  相似文献   

20.
Ab initio molecular orbital calculations were performed, and 27Al CP MAS-NMR spectra were evaluated in order to investigate the possible tetrahedral to octahedral coordination change of Al at the feldspar-water interface under acidic conditions. Aluminum coordination is octahedral in solution, and tetrahedral in feldspar crystals. Whether this change in coordination can occur on feldspar surfaces as part of the dissolution mechanism has been debated. Molecular orbital calculations were performed on aluminosilicate clusters with a few surrounding water molecules to partially account for solvation effects at the feldspar-water interface. The calculations on both fully-relaxed and partially-constrained clusters suggest that the energy difference between [4]Al and [6]Al where both are linked to three Si-tetrahedra (i.e., Q3 Al) in the feldspar structure, is small enough to allow for the conversion of Q3[4]Al to Q3[6]Al in a hydrated layer of feldspar, prior to the release of Al ions to the aqueous solution. The introduction of a few water molecules to the clusters introduced the possibility of multiple optimized geometries for each Al coordination, with energy differences on the order of several hydrogen bonds. The calculation of activation energies and transition states between Q3[4]Al, Q3[5]Al, and Q3[6]Al was complicated by the introduction of water molecules and the use of fully-relaxed aluminosilicate clusters. Calculated isotropic shifts for Q1[6]Al, Q2[6]Al, and Q3[6]Al suggest that the [6]Al observed on aluminosilicate glass surfaces using 27Al CP MAS-NMR is Q1[6]Al and therefore formed as part of the dissolution process. The formation of [6]Al in situ on a feldspar surface (as opposed to re-precipitation from solution) has significant implications for the dissolution mechanism and surface chemistry of feldspars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号