首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is little information on the performance of vegetative filter strips (VFS) in filtering high‐concentration sediment from subcritical overland flow. Flume experiments on simulated grass strips were conducted using combinations of three slope gradients (3°, 9° and 15°), five 1‐m‐wide slope positions (from upslope to downslope), two flow rates (60 and 20 L min‐1 m‐1) and sediment concentrations of 100–300 kg m‐3 under simulated rainfall and non‐rainfall conditions. The results showed that sediment deposition efficiency increased with VFS width as a power function. Rainfall significantly reduced sediment deposited within VFS. Higher sediment concentration corresponded to a larger sediment deposition load but reduced deposition efficiency. Flow rate had a negative effect on deposition efficiency but no effect on deposition load. Sediments were more easily deposited at the upper slope position than downslope, and the upper slope position had a higher percentage of coarse sediments. The deposited sediment had significantly greater median diameters (D50) than the inflow sediment. A greater proportion of coarse sediments larger than 25 µm in diameter were deposited, and particles smaller than 1 µm and of 10–25 µm had a better deposition performance than particles of 1–10 µm. Rainfall reduced the deposited sediment D50 at a slope gradient of 3° and had no significant influence on it at 9° or 15°. A higher sediment concentration led to a smaller D50 of the deposited sediment. Rainfall had no significant effect on overland flow velocity. Both the deposited sediment load and D50 decreased with increasing flow velocity, and flow velocity was the most sensitive factor impacting sediment deposition. The results from this study should be useful to control sediment flowing into rivers in areas with serious soil erosion. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The slope effects on sediment trapping process in vegetative filter strips (VFS) are usually neglected in current modelling practices for VFS operation, which hamper the VFS design and performance evaluation, especially on steep slopes. To fill the knowledge gap, 12 laboratory experiments of sediment trapping in VFS were conducted with three different inflow discharge (80, 100, and 120 ml s−1) and four slope angles (5,10, 15, and 20°). The experimental results show that, on steep slopes (10, 15, and 20°), a part of trapped sediment particles in VFS can be eroded again and then dragged to the downstream as bed load, whilst they do not move on gentle slope (5°). To describe the complex processes, a simple and effective modelling framework was developed for sloped VFS by coupling the slope infiltration, runoff, and modified sediment transport model. The model was tested against the experimental results and good agreements between the modelled and observed results were found in both runoff and sediment transport processes for all cases. On steep slopes, the sediment trapping performance of VFS decreases significantly because the erosion of deposited sediment particles can account for more than 60% of the sediment load in the outflow. The slope effect on sediment trapping efficiency of VFS varies greatly with soil, VFS, and slope properties. The model was compared with previous sediment transport equation and found that both methods can satisfactorily predict the sediment trapping of VFS on gentle slopes, but previous sediment transport equation is likely to overestimate the sediment trapping efficiency in VFS on steep slopes. This model is expected to provide a more realistic and accurate method for predicting runoff and sediment reduction in VFS on sloping surfaces.  相似文献   

3.
The impact of vegetated filter strips (VFS) on sediment removal from runoff has been studied extensively in recent years. Vegetation is believed to increase water infiltration and decrease water turbulence thus enhancing sediment deposition within filter media. In the study reported here, field experiments have been conducted to examine the efficiency of vegetated filter strips for sediment removal from cropland runoff. Twenty filters with varying length, slope and vegetated cover were used under simulated runoff conditions with an average sediment concentration of 2700 mg/L. The filters were 2, 5, 10 and 15 m long with a slope of 2·3 and 5% and three types of vegetation. Three other strips with bare soil were used as a control. The experimental results showed that the average sediment trapping efficiency of all filters was 84% and ranging from 68% in a 2‐m filter to as high as 98% in a 15‐m long filter compared with only 25% for the control. The length of filter has been found to be the predominant factor affecting sediment deposition in VFS up to 10 m. Increasing filter length to 15 m did not improve sediment trapping efficiency under the present experimental conditions. The rate of incoming flow and vegetation cover percentage has a secondary effect on sediment deposition in VFS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Restoring belts of perennial vegetation in landscapes is widely recognized as a measure of improving landscape function. While there have been many studies of the transport of pollutants through grass filter strips, few have addressed sediment related processes through restored tree belts. In order to identify these processes and quantify their relative contribution to sediment trapping, a series of rainfall simulations was conducted on a 600 m2 hillslope comprising a pasture upslope of a 15 year old tree belt. Although the simulated events were extreme (average recurrence intervals ~10 and 50 yr), the trapping efficiency of the tree belt was very high: at least 94% of the total mass of sediments was captured. All the size fractions were trapped with a minimum Sediment Trapping Ratio (STR) of 91% for the medium‐sized fragments. Fractions < 1·3 µm and > 182 µm were totally captured (STR = 100%). Through the joint analysis of sediment budgets and soil surface conditions, we identified different trapping processes. The main trapping process is the sedimentation (at least 62% of trapped sediment mass) with deposits in the backwater and as micro‐terraces within the tree belt. Modelling results show that the coarsest size fractions above 75 µm are preferentially deposited. Joint infiltration of water and sediments has also been noticed, however, this process alone cannot explain the selective trapping of the finest fractions. We suggest that the finest fractions transported by the overland flow may be trapped by adsorption on the abundant litter present within the tree belt. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Rainwater interception by leaf litter is an important part of forest hydrological processes. The objective of this study was to investigate the interception storage capacity (ISC) of woodland leaf litter for three leaf distribution patterns, one flow path, two flow paths, and three flow paths, manually simulated via one-by-one leaf connection in the top leaf litter layer. A random pattern served as the control. Three different slopes (0°, 5° and 25°, representing flat, gentle and steep slopes, respectively) and two contrasting leaf litters (needle-leaf litter, represented by P. massoniana leaves, and broad-leaf litter, represented by C. camphora leaves) with a biomass of 0.5 kg/m2 per unit area were applied, at a rainfall intensity of 50 mm/h. Results suggested that leaf distribution pattern greatly impacts litter drainage and hence affects leaf litter ISC. The delaying capacity of litter drainage initiation and ISC of broad-leaf litter were higher than those of needle-leaf litter under the same slope conditions. The maximum ISC (Cmax) and minimum ISC (Cmin) of leaf litter at flat and gentle slopes were higher than those at steep slope. Cmin of the broad-leaf litter was two times higher than that of needle-leaf litter on average. When raindrops reached the litter layer, some were temporarily intercepted by the top litter layer while others infiltrated leaf litter sublayer along leaf edges, and in the process, some rainwater flowed through litter layer and contributed to lateral litter drainage along the potential flow path formed by leaves. The lateral litter drainage of broad-leaf litter was higher than that of needle-leaf litter, and the partitioning of rainwater into lateral litter drainage increased with increases in slope. The difference in leaf litter Cmax among different slopes and leaf shapes decreased with flow path increasing. Therefore, leaf distribution pattern notably impact leaf litter ISC, which is similar to leaf shape and slope impacts. On inclined slopes, avoiding leaf accumulation to form flow path is helpful for improving ISC.  相似文献   

6.
Particle selectivity plays an important role in clarifying sediment transport processes in vegetative filter strips (VFS). 10-m long grass strips at slopes of 5° and 15° were subjected to a series of sediment-laden inflows experiments with different particle sizes to investigate the sediment transport and its response to overland flow hydraulics. The inflow sediments came from local soil, river-bed sand, and mixed, with median particle size d50 of 39.9, 207.9 and 77.4 μm, respectively. Three independent repeated experiments were carried for each treatment. The results show that when the sediment trapping lasted for a certain length of time, the re-entrainment of some small-sized particles was greater than the deposition; that is, net loss occurred, which was not erosion of the original soil. Net loss of particles is mainly determined by the particle diameter. The coarser the inflow sediment particles and/or the steeper the slope, the coarser the particles can be net lost. Deposited sediment causes the VFS bed surface to become smooth and hydraulic resistance decrease exponentially. Unit stream power P is more suitable than shear stress τ of overland flow to be used to describe the process of sediment particle transport in VFS. The relationship between P and d50 of outflow sediment is very consistent with the form of power function with a constant term. These results are helpful to understand the physical process of sediment transport on vegetation hillslopes.  相似文献   

7.
Grass buffer strips impact the hydrology of flow and consequently the fate of sediment. A complex process‐based model is developed to predict flow characteristics as well as sediment deposition and transport upstream, and within grass strips. The model is capable of estimating the proportion and amount of different sediment particle size classes in the outflow. The modified Green–Ampt equation was used to simulate infiltration. Gradually varied flow and kinematic wave approximation were used to model flow characteristics upstream and within grass strips. The GUEST model approach has been modified in order to use its basic approaches in sediment transport module in grass strips. Model predictions agree well with the results of two sets of controlled experiments. The bias, coefficient of model efficiency and the root mean squared error of the modelled efficiency of grass strips in reducing sediment concentration were 0.93–0.99, 0.58–0.99 and 8.9–12.7, respectively. The sensitivity analysis showed that the initial soil moisture and flow rate are the most sensitive parameters in predicting runoff loss. Increasing the slope steepness and flow rate dramatically decreases the efficiency of grass strips in reducing sediment concentration and mass. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Validation of a vegetated filter strip model (VFSMOD)   总被引:2,自引:0,他引:2  
Vegetated filter strips (VFS) are designed to reduce sediment load and other pollutants into water bodies. However, adaptation of VFS in the field has been limited owing to lack of data about their efficiency and performance under natural field conditions. A number of models are available that simulate sediment transport and trapping in VFS, but there is a general lack of confidence in VFS models owing to limited validation studies and model limitations that prevent correct application of these models under field conditions. The objective of this study is to test and validate a process‐based model (VFSMOD) that simulates sediment trapping in VFS. This model links three submodels: modified Green–Ampt's infiltration, Quadratic overland flow submodel based on kinematic wave approximation and University of Kentucky sediment filtration model. A total of 20 VFS, 2, 5, 10 and 15 m long and with various vegetation covers, were tested under simulated sediment and runoff conditions. The results of these field experiments were used to validate the VFS model. The model requires 25 input parameters distributed over five input files. All input parameters were either measured or calculated using experimental data. The observed sediment trapping efficiencies varied from 65% in the 2‐m long VFS to 92% in the 10‐m long filters. No increase in sediment removal efficiency was observed at higher VFS length. Application of the VFS model to experimental data was satisfactory under the condition that actual flow widths are used in the model instead of the total filter width. Predicted and observed sediment trapping efficiencies and infiltration volume fitted very well, with a coefficient of determination (R2) of 0·9 and 0·95, respectively. Regression analyses revealed that the slope and intercept of the regression lines between predicted versus observed infiltration volume and trapping efficiency were not significantly different than the line of perfect agreement with a slope of 1·0 and intercept of 0·0. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995–1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the maximum rainfall intensity and infiltration characteristics. The Aobao catchment yielded much larger runoff volume, runoff coefficient and sediment than the Wangdongguo catchment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Declining water quality on the south coast of Western Australia has been linked to current agricultural practices. Riparian buffers were identified as a tool available to farmers and catchment managers to achieve water quality improvements. This study compares 10 m wide regenerating grass and Eucalyptus globulus buffer performance. Surface and subsurface water quality were monitored over a 3‐year period. Nutrient and sediment transport were both dominated by subsurface flow, in particular through the B‐horizon, and this may seriously limit the surface‐runoff‐related functions of the riparian buffers. Riparian buffer trapping efficiencies were variable on an event basis and annual basis. The grass buffer reduced total phosphorus, filterable reactive phosphorus, total nitrogen and suspended sediment loads from surface runoff by 50 to 60%. The E. globulus buffer was not as effective, and total load reductions in surface runoff ranged between 10 and 40%. A key difference between the grass and E. globulus buffers was the seasonality of sediment and nutrient transport. Surface runoff, and therefore sediment and nutrient transport, occurred throughout the year in the E. globulus buffer, but only during the winter in the grass buffer. As a consequence of high summer nutrient and sediment concentrations, half the annual loads moving via surface runoff pathways through the E. globulus buffer were transported during intense summer storms. This study demonstrates that grass and E. globulus riparian buffers receiving runoff from pasture under natural rainfall can reduce sediment and nutrient loads from surface runoff. However, in this environment the B‐horizon subsurface flow is the dominant flowpath for nutrient transport through the riparian buffers, and this subsurface flow pathway carries contaminant loads at least three times greater than surface runoff. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Grass hedges are narrow strips of stiff‐stemmed vegetation used to control erosion and sediment delivery. When planted on the contour, the hydraulic resistance of the vegetation slows runoff, creates ponding, and promotes sediment deposition. When tillage is performed between grass hedges, soil may be thrown against the vegetation, where it settles to form a berm within the hedge. Tillage‐induced berms divert part of runoff, causing it to flow alongside the hedge without crossing it. Such flow partitioning created by grass hedges was measured on experimental plots located on silt loam loess soil near Holly Springs, Mississippi, USA, where hedges planted at the bottom of 5%, 22.1‐m‐long slopes evolved berms averaging 0.13 m in height. They diverted about 80% of the runoff for events smaller than 5 mm and about 50% for large events. A two‐dimensional model was developed to determine overland flow patterns over complex terrains, accounting for oriented roughness created by tillage corrugations, crop rows, and larger features such as berms and vegetative barriers. The model was used to reproduce the flow partition observed in the field experiments and to determine how berm height and slope steepness and length affected runoff redistribution. Numerical simulations indicated that for most runoff events, ponded runoff depths were not high enough to overtop the berm but rather crossed the berms through cracks and gaps, represented in the model as small triangular weirs. The model also was applied to a 6.0‐ha watershed in Western Iowa, USA, where nine grass hedges were planted across 12–16% slopes. Computed dynamic flow properties showed that berms increased the amount of runoff flowing laterally upslope of the hedges and that a large portion of the runoff crossed the vegetative strips at a few locations and with high flow depths, increasing the risk of development of ephemeral gullies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
To date, most studies of the effectiveness of geotextiles on soil erosion rates and processes have been conducted in laboratory experiments for less than 1 h. Hence, at Hilton (52°33′ N, 2°19′ W), UK, the effectiveness of employing palm‐mat geotextiles for soil erosion control under field conditions on arable loamy sands was investigated. Geotextile‐mats constructed from Borassus aethiopum (Borassus palm of West Africa) and Mauritia flexuosa (Buriti palm of South America) leaves are termed Borassus mats and Buriti mats, respectively. Duplicate runoff plots (10 m × 1 m on a 15° slope) had five treatments (bare, permanent grass, Borassus total plot cover, Borassus buffer strip and Buriti buffer strip). Borassus covered plots had about 72% ground cover and to differentiate between this treatment and Borassus buffer strips, the former treatment is termed Borassus completely‐covered. Runoff and eroded soil were collected from each bounded plot in a concrete gutter, leading to a receptacle. Results from 08/01/2007–23/01/2009 (total precipitation = 1776·5 mm; n = 53 time intervals) show that using Borassus buffer strips (area coverage ~10%) on bare soil decreased runoff volume by about 71% (P > 0·05) and soil erosion by 92% (P < 0·001). Bare plots had nearly 29·1 L m?2 runoff and 2·36 kg m?2 soil erosion during that period. Borassus buffer strip, Buriti buffer strip and Borassus completely‐covered plots had similar effects in decreasing runoff volume and soil erosion. Runoff volumes largely explain the variability in soil erosion rates. Although buffer strips of Borassus mats were as effective as whole plot cover of the same mats, the longevity of Borassus mats was nearly twice that of Buriti mats. Thus, use of Borassus mats as buffer strips on bare plots is highly effective for soil erosion control. The mechanisms explaining the effectiveness of buffer strips require further studies under varied pedo‐climatic conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
It is important to evaluate the impacts of grasses on soil erosion process so as to use them effectively to control soil and water losses on the Loess Plateau. Laboratory-simulated rainfall experiments were conducted to investigate the runoff and sediment processes on sloped loess surfaces with and without the aboveground parts of grasses and moss (GAM: grass and moss; NGAM: no grass and moss) under slope gradients of 5°, 10°, 15°, 20°, 25° and 30°. The results show that runoff from GAM and NGAM plots increased up to a slope gradient of 10° and decreased thereafter, whereas the runoff coefficients increased with gradient. The average runoff rates and runoff coefficients of NGAM plots were less than those of GAM plots except for the 5° slope. This behaviour may be due to the reduction in water infiltration under moss. The difference between GAM and NGAM plots in average runoff rates varied from 1·4 to 8%. At the same gradients, NGAM plots yielded significantly (α = 0·05) more sediment than GAM plots. Average sediment deliveries for different slopes varied from 0·119 to 3·794 g m−2 min−1 from GAM plots, and from 0·765 to 16·128 g m−2 min−1 from NGAM plots. Sediment yields from GAM plots were reduced by 45 to 85%, compared with those from the NGAM plots. Plots at 30° yielded significantly higher sediments than at the other gradients. Total sediments S increased with slope gradients G in a linear form, i.e. S = 9·25G − 39·6 with R2 = 0·77*, for the GAM plots, and in an exponential model, i.e. S = 40·4 exp(0·1042G) with R2 = 0·93**, for the NGAM plots. In all cases, sediment deliveries decreased with time, and reached a relative steady state at a rainfall duration of 14 min. Compared with NGAM plots, the final percentage reductions in sediment delivery from GAM plots were higher than those at the initial time of rainfall at all slopes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Accurate prediction of soil detachment capacity is fundamental to establish process-based erosion models and improve soil loss assessment. Few studies were conducted to reveal the mechanism of detachment process for yellow soil on steep cropland in the subtropical region of China using field experiments. This study was performed to determine soil detachment characteristics and explore the relationships between soil detachment capacity (D c) and flow rate, slope gradient, mean velocity, shear stress, stream power and unit stream power. Field experiments were conducted on intact soil with flow rates ranging from 0.2 × 10−3 to 0.5 × 10−3 m−3 s−1 and slope gradients varying from 8.8 to 42.4%. The results showed the following. (a) D c of yellow soil was smaller than other soils because of its high clay content. (b) D c was more susceptible to flow than to slope gradient. Power functions were derived to depict the relationship between D c and the flow rate and slope gradient (R2 = 0.91). (c) D c was better simulated by power functions of the stream power (R2 = 0.83) than functions of the shear stress or the unit stream power. (d) Considering its accuracy, simplicity and accessibility, the power function based on flow rate and slope gradient is recommended to predict D c of yellow soil in the field. The results of this study provide useful support for revealing soil detachment mechanism and developing process-based soil erosion models for the subtropical region of China.  相似文献   

15.
Longshan Zhao  Rui Hou  Faqi Wu 《水文研究》2019,33(22):2918-2925
Reservoir tillage (RT) improves the soil rainwater harvesting capacity and reduces soil erosion on cropland, but there is some debate regarding its effectiveness. The objective of this study was to further verify the effect of RT on soil erosion and explore the reasons for this effect by analysing microrelief changes during rainfall. Rainfall intensities of 60, 90, and 120 mm/hr and three slope degrees (5, 15, and 25°, representing gentle, medium, and steep slopes) were considered. A smooth surface (SS) served as the control. The microrelief changes were determined based on digital elevation models, which were measured using a laser scanner with a 2‐cm grid before and after rainfall events. The results showed that compared with the values for the SS, RT reduced both the runoff and sediment by approximately 10‐20% on the gentle slope; on the medium slope, although RT also reduced the runoff in the 90‐ and 120‐mm/hr intensity rainfall events, the sediment increased by 158.90% and 246.08%; on the steep slope, the sediment increased by 92.33 to 296.47%. Overall, when the runoff control benefit of RT was lower than 5%, there was no sediment control benefit. RT was effective at controlling soil loss on the gentle slopes but was not effective on the medium and steep slopes. This is because the surface depressions created by RT were filled in with sediment that eroded from the upslopes, and the surface microrelief became smoother, which then caused greater soil and water loss than that on an SS at the later rainfall stage.  相似文献   

16.
The structure and dynamics of vegetation in valley bottoms are both strongly associated with fluvial processes and landform dynamics. All of these associations are disrupted by the installation of engineering control works. We use survey and analysis methods developed previously to investigate the impact of the installation of check‐dams within the confined headwaters of steep seasonally‐flowing streams (fiumaras) in Calabria, southern Italy, on active channel form, sediment calibre, and the richness, cover and development of riparian vegetation. Based on detailed field measurements along transects across the active channel, estimates of indices of vegetation extent (GCC), development (WCH) and their cross‐sectional variability (coefficients of variation of both indices at each survey site CVGCC, CVWCH), the number of species present (Ns), channel shape (w/d – the width/depth ratio), cross‐sectional area (CSA), downstream gradient (slope), surface bed sediment calibre (D50) and subsurface fine sediment content (percentage less than 250 µm by weight) were obtained for 60 transects located immediately upstream (U), downstream (D) and at intermediate sites (I) around 20 check‐dams located in four different headwater catchments. Analysis of this data set suggests that statistically significant changes in channel form and sediment calibre upstream of check‐dams are associated with more consistent vegetation development across the active channel, including an increase in species richness relative to other transects, but notable increases in vegetation cover and development only arise where the physical characteristics of the channel are notably different from intermediate and downstream channels. Because of the naturally steep profile of the study torrents, intermediate sections between check‐dams tend to be more similar in form to channels located immediately downstream of check‐dams than those located upstream, leading to similar structural properties in the riparian vegetation. The intermediate transects support considerably more species than downstream reaches, but the conditions upstream of the check‐dams appear to be so favourable for riparian vegetation development that species richness exceeds that found in intermediate reaches. Despite the confined headwater locations, these contrasts in form, sediment and vegetation development around check‐dams are strong and consistent across the study catchments, over‐riding more subtle contrasts in species richness and sediment calibre between catchments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
For interrill erosion, raindrop‐induced detachment and transport of sediment by rainfall‐disturbed sheet flow are the predominant processes, while detachment by sheet flow and transport by raindrop impact are negligible. In general, interrill subprocesses are inter‐actively affected by rainfall, soil and surface properties. The objective of this work was to study the relationships among interrill runoff and sediment loss and some selected para‐meters, for cultivated soils in central Greece, and also the development of a formula for predicting single storm sediment delivery. Runoff and soil loss measurement field experiments have been conducted for a 3·5‐year period, under natural storms. The soils studied were developed on Tertiary calcareous materials and Quaternary alluvial deposits and were textured from sandy loam to clay. The second group of soils showed greater susceptibility to sealing and erosion than the first group. Single storm sediment loss was mainly affected by rain and runoff erosivity, being significantly correlated with rain kinetic energy (r = 0·64***), its maximum 30‐minute intensity (r = 0·64***) and runoff amount (r = 0·56***). Runoff had the greatest correlation with rain kinetic energy (r = 0·64***). A complementary effect on soil loss was detected between rain kinetic energy and its maximum 30‐minute intensity. The same was true for rain kinetic energy and topsoil aggregate instability, on surface seal formation and thus on infiltration characteristics and overland flow rate. Empirical analysis showed that the following formula can be used for the successful prediction of sediment delivery (Di): Di = 0·638βEI30tan(θ) (R2 = 0·893***), where β is a topsoil aggregate instability index, E the rain kinetic energy, I30 the maximum 30‐minute rain intensity and θ the slope angle. It describes soil erodibility using a topsoil aggregate instability index, which can be determined easily by a simple laboratory technique, and runoff through the product of this index and rain kinetic energy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
This paper discusses aspects of grass vegetation in relation to soil erosion control. By means of a literature research, four options for using grass vegetation were recognized, each having its own requirements concerning maintenance, vegetation characteristics and field layout. The main filter mechanisms, application in the field and effects on runoff and soil loss are discussed. Field experiments on filter strips were carried out to determine whether literature data for water and sediment retention by vegetation can be applied to sloping loess soils in South Limburg (The Netherlands). The field experiments simulated a situation in which surface runoff carrying loess sediment from an upslope field enters a grass strip. The retention of water and sediment by grass strips was determined by measuring runoff discharge and the sediment concentration at the inflow and outflow points from bordered plots. Two locations with different grass age and agricultural management were studied. Results show that grass strips are effective in filtering sediment from surface runoff as long as concentrated flow is absent. Outflow sediment concentrations could be described as a function of inflow concentrations and strip width. Reductions of sediment discharge varied between 50–60, 60–90 and 90–99% for strips of 1, 4–5 and 10 m width, respectively. Old grass, extensively used as pasture, is more effective in reducing erosion than the younger grass which was often accessed by tractors for mowing. Differences in water retention between both grass locations appear to be caused mainly by differences in grass density.  相似文献   

19.
The study of bedload transport processes is constrained by an inability to monitor the mass, volume and grain size distribution of sediment in transport at high temporal frequencies. Building upon a previously published design, we have integrated a high‐resolution (1392 × 1024 pixels) video camera with a light table to continuously capture images of 2–181 mm material exiting a flume. The images are continuously recorded at a rate of 15 to 20 frames per second and are post‐processed using LabView(?) software, yielding continuous grain‐size‐specific transport information on a per second basis. The video capture rate is sufficient to record multiple images of each grain leaving the flume so that particle velocities can be measured automatically. No manual image processing is required. After calibration the method is accurate and precise for sediment in the 2 mm through to 45 mm grain size classes compared with other means of measuring bedload. Based on a set of validation samples, no statistically significant difference existed between the D10, D16, D25, D50, D75, D84, D90 and D95 determined by sieving captured samples and the Di values determined with the system. On average the system overpredicted transport by 4 per cent (n = 206, SD = 42%). This error can be corrected easily by simply weighing the mass of sediment that leaves the flume. The technology is relatively inexpensive and provides high‐resolution data on coarse sediment transport out of a flume. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Phosphorus (P) export from agricultural lands above known threshold levels can result in adverse impacts to receiving water quality. Phosphorus loss occurs in dissolved and sediment‐bound, or particulate phosphorous (PP), forms, with the latter often dominating losses from row‐cropped systems. To target practices, land managers need good computer models and model developers need good monitoring data. Sediment monitoring data (e.g. radiometric finger printing and sediment P sorption capacity) can help identify sediment source areas and improve models, but require more sediment mass than is typically obtained by automatic sampling. This study compares a simple suspended sediment sampler developed at the University of Exeter (UE) with automatic sampling in intermittent channels draining corn and alfalfa fields. The corn field had a greater runoff coefficient (27%) than alfalfa (11%). No differences were found in enrichment ratios (sediment constituent/soil constituent) in PP (PPER) or percent loss on ignition (LOIER) between paired UE samplers on corn. The median LOIER for the UE samplers (1·9%) did not differ significantly (p > 0·13) from the automatic sampler (2·0%). The PPER from the UE samplers was on average 20% lower than the automatic samplers. A correlation (r2 = 0·75) was found between sediment PP and % LOI from automatic samplers and UE samplers for particles < 50 µm, while for > 50 µm PP concentration did not change with changes in % LOI. Sediment ammonium‐oxalate extractable metals were similarly related to LOI, with the strongest correlation for iron (r2 = 0·71) and magnesium (r2 = 0·70). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号