首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
One mechanism by which biochar application enhances soil nutrient availability is through direct nutrients release from biochar. However, factors controlling the release processes are poorly understood. In this study, the effects of pH, biochar to water ratio, temperature, ionic strength, and equilibration time on the release of PO, NO, NH, K+, Na+, Ca2+, and Mg2+ from biochar were evaluated in simulated experiments. The release of PO, K+, Ca2+, and Mg2+ was significantly affected by extraction pH, suggesting that their release from biochar was pH dependent or an H+‐consuming process. Correlation analysis indicated that PO and Ca2+, PO and Mg2+, and Ca2+ and Mg2+ were co‐solubilized with increasing soil acidity. To a lesser extent, the recovery of the nutrients was also affected by the ratio of biochar to water: more nutrients were soluble with more water supply. In contrast, the release of Na was not affected by pH while the concentration increased with decreasing biochar to water ratio. Meanwhile, other factors (temperature, ionic strength, and equilibration time) had less effect on nutrient release from biochar. Under the influence of pH, the patterns of NO and PO release from biochar were different: extractable NO concentration was not affected by the pH but more PO was released in strongly acidic conditions. Our data suggested that P was mainly retained in inorganic forms while N was in organic forms in biochar. We conclude that environmental factors have marked influences on nutrients release from biochar.  相似文献   

2.
In view of water pollutants becoming more complex, both anionic and cationic pollutants need to be removed. The multi‐pollutants simultaneous removal is paid more and more attention. Hence, development composite materials for treatment complex wastewater are the aim of this study. In this research, iron–nickel nanoparticles deposited onto aluminum oxide (α‐Al2O3) and carbon nanotubes (CNTs) to form nanocomposite materials Fe–Ni/Al2O3 and Fe–Ni/CNTs, respectively, were used as adsorbents. The adsorption capacities of Fe–Ni/Al2O3 and Fe–Ni/CNTs for AO7, HSeO, and Pb2+ were observed to be 5.46, 8.28, 27.02, and 25.6 mg/g, 15.29 and 17.12 mg/g, separately. The composite materials with negative charges were superior in adsorption of anionic pollutants. Using orthogonal experimental design and analysis of variance to co‐treat dye AO7, HSeO and Pb2+ in aqueous solutions, seven testing factors were included: (1) adsorbent types, (2) amount of iron, (3) solution pHs, (4) AO7 concentrations, (5) Pb2+ concentrations, (6) HSeO concentrations and (7) reaction time. The experimental results showed that the removal of complex pollutants AO7, HSeO, and Pb2+ on Fe–Ni/CNTs could reach up to 90% in the optimal treatment conditions. When using Fe–Ni/CNTs as the adsorbent, the sorption isothermals were well fitted in the Freundlich isotherm, and R2 could reach up to 0.98.  相似文献   

3.
Ag‐modified TiO2 nanotube arrays (Ag/TiO2 NAs) were prepared and employed as a photocatalyst for degradation of 17α‐ethinylestradiol (EE2) and inactivation of Escherichia coli. The as‐synthesized Ag/TiO2 NAs were characterized by field‐emission scanning electron microscope (FESEM), X‐ray diffraction (XRD), and X‐ray photoelectron spectroscopy (XPS). It was found that metallic Ag nanoparticles were firmly deposited on the TiO2 NAs with the pore diameter of 100 nm and the length of 550 nm. Photocatalytic degradation of EE2 and inactivation of E. coli were enhanced effectively in an analogical trend using Ag/TiO2 NAs. In particular, Ag/TiO2 NAs exhibited the antimicrobial activity even in the absence of light. The Ag acted as a disinfection agent as well as the dopant of the modified TiO2 NAs photocatalysis by forming a Schottky barrier on the surface of TiO2 NAs. Inorganic ions suppressed the rates of photocatalytic degradation of EE2, with HCO having a more pronounced effect than NO or SO. Humic acid (HA) was found to increase the rate of EE2 degradation.  相似文献   

4.
Ultrafiltration (UF) can remove natural organic matter (NOM) effectively. Moreover, chlorine dioxide (ClO2) has been an alternative disinfectant as it forms fewer disinfection by‐products with NOM than chlorination does. Therefore, combining ClO2 with UF may improve conventional purification processes. In this study, feed water containing humic acid with 4.07 mg/L total organic carbon (TOC) was dosed directly with various amounts of ClO2 (0, 2, 5, 10, and 15 mg/L) before being filtered through a 5‐kDa UF membrane. With a low dose (2 mg/L ClO2), UF removed humic acid effectively, as TOC was not detected in the permeate, and the permeate flux increased to about 80% of the initial permeate flux by cross flow. Moreover, the concentrations of ClO, ClO, and trihalomethanes in the permeate were below the United States Environmental Protection Agency guidelines.  相似文献   

5.
Contamination of water due to bromate is a severe health hazard. The aim of the present study was to remove bromate from water using a crosslinked polystyrene based strongly basic anion exchange resin De‐Acidite FF‐IP. Batch experiments were performed to study the influence of various experimental parameters such as effect of pH, contact time, temperature, and effect of competing anions on bromate removal by De‐Acidite FF‐IP resin. At optimum parameters, the removal rate of bromate was very fast and 90% removal took place in 5 min and equilibrium was established within 10 min. The presence of competitive anions reduced the bromate adsorption in the order of Cl? > F? > CO > SO > NO > PO. The practical utility of this resin has been demonstrated by removing bromate in some of the commercial bottled water from Saudi Arabia. The level of bromate was determined using a very sensitive, precise and rapid method based on ultra‐performance liquid chromatography‐tendem mass spectrometry (UPLC‐MS/MS).  相似文献   

6.
To compare water quality in rivers of developed and developing countries, a study based on physicochemical parameters and dissolved metals levels was conducted. Water samples were collected from selected sites in Dhaka, Bangladesh; Hokkaido and Osaka, Japan; Erdenet, Mongolia and West Java, Indonesia. Analysis of least significant differences revealed that most water quality parameters were within comparable low levels in both developed and developing countries. The dissolved metals concentrations were found to be similar and below those of water standards except for manganese and cadmium at every sampling point, and lead in Erdenet, Mongolia. Some metals showed high enrichment factors in the rivers of Osaka, Japan and Erdenet, Mongolia, indicating accumulation possibility of metals in the river‐bed sediments. High concentrations of dissolved organic carbon, Escherichia coli and dissolved metals suggested greater water pollution in some rivers of developing countries than in the rivers of Japan. Principal component analysis showed strong correlations between “dissolved organic carbon and chemical oxygen demand” and “conductivity and total dissolved solids” at each sampling point, and E. coli, nitrate (NO), nitrite (NO), and pH levels were found to be higher in the rivers of Dhaka and Erdenet. In addition, there were high levels of Al and Zn in West Java, Pb in Erdenet, and Mn, Fe, and Cr in the rivers of Dhaka and Japan. Based on pressures and impacts, it is evident that dissolved metal, organic, and fecal pollution in the rivers of developing countries are in somewhat dreadful condition in comparison with the rivers of developed country.  相似文献   

7.
Source apportionment of particulate matter <10 µm in diameter (PM10), having considerable impacts on human health and the environment, is of high priority in air quality management. The present study, therefore, aimed at identifying the potential sources of PM10 in an arid area of Ahvaz located in southwest of Iran. For this purpose, we collected 24‐h PM10 samples by a high volume air sampler. The samples were then analyzed for their elemental (Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, Se, Si, Sn, Sr, Li, Ti, V, Zn, Mo, and Sb) and ionic (NH, Cl?, NO, and SO) components using inductively coupled plasma optical emission spectrometry and ion chromatography instruments, respectively. Eight factors were identified by positive matrix factorization: crustal dust (41.5%), road dust (5.5%), motor vehicles (11.5%), marine aerosol (8.0%), secondary aerosol (9.5%), metallurgical plants (6.0%), petrochemical industries and fossil fuel combustion (13.0%), and vegetative burning (5.0%). Result of this study suggested that the natural sources contribute most to PM10 particles in the area, followed closely by the anthropogenic sources.  相似文献   

8.
The present study deals with the application of the hierarchical cluster analysis and non‐parametric tests in order to interpret the Gdańsk Beltway impact range. The data set represents concentration values for major inorganic ions (Na+, NH, K+, Mg2+, Ca2+, F, Cl, NO, and SO) as well as electrolytic conductivity and pH measured in various water samples [precipitation, throughfall water, road runoff, and surface water (drainage ditches, surface water reservoirs, and spring water)] collected in the vicinity of the beltway. Several similarity groups were discovered both in the objects and in the variables modes according to the water sample. In the majority of cases clear anthropogenic (fertilizers usage and transport, road salting in winter) and semi‐natural (sea salt aerosols, erosion of construction materials) impacts were discovered. Spatial variation was discovered for road runoff samples and samples collected from surface water reservoirs and springs. Surprisingly no clear seasonal variability was discovered for precipitation chemistry, while some evidences for existing of summer and winter specific chemical profile was discovered for road runoff samples. In general, limited range of the Gdańsk Beltway impact was proven.  相似文献   

9.
Groundwater is a major source of water supply for domestic and irrigation uses in semiarid, remote but rapidly developing Kilasaifullah district part of Zhob River Basin, located at Pakistan–Afghanistan Border. Zhob River is among few major rivers of perennial nature in Balochistan, which flows from WSW to ENE and falls in Gomal River, a tributary of Indus River. Keeping in view the important geopolitical position and rapid development of the region, this study is primarily focused on groundwater chemistry for contamination sources as well as agriculture development. Water samples from open and tube wells are analyzed and calculated for electrical conductivity (EC), total dissolved solids (TDS), turbidity, pH, K+, Na+, Ca2+, Mg2+, HCO, Cl?, NO, SO, PO, sodium percent (Na%), sodium adsorption ratio (SAR), Kelly's index (KI), and heavy metals (Fe, Cu, Cr, Zn, Pb, and Mn). On the basis of the chemical constituents two zones within the study area are identified and possible causes of the contaminants are pointed out. Two recharge areas were responsible for the different chemical results in groundwater, e.g., zone A was recharged from NNW saline geological formations (Nisai, Khojak, Multana, Bostan formations, and Muslim Bagh ophiolites), which are concentrated with high sodium and chloride. On the other hand Zone B was sourced from SSW from carbonate rich rocks (Alozai, Loralai, Parh formations, and Muslim Bagh ophiolites). The groundwater is classified as C2–S1, C3–S1, C3–S2, C4–S2 on the basis of EC and SAR values which indicate that most of the water of both zones can be used for irrigation safely except the samples plotted in C3–S2 and C4–S2 categories which could be dangerous for soil and crops. Groundwater samples are plotted in good to permissible limits with some samples excellent to good and few samples belong to doubtful category based on sodium percent. Groundwater of zone A is unsuitable for irrigation use due to higher values of KI (more than one) but water of zone B are good for irrigation based on KI. In general, water of both zones is suitable for irrigation but care should be taken during the selection of crops which are sensitive to alkalinity or sodium hazards particularly in zone A.  相似文献   

10.
The present investigation aims to optimize dose and pattern of distillery effluent for sugarcane irrigation. The postmethanated distillery effluent (PMDE) was recorded to have significant amount of micro‐ (Na, Zn, Fe) and macro‐ (Ca, Mg, N‐NO3, P, K, S–SO) nutrients and so was utilized for sugarcane irrigation. Lysimetric studies were conducted to assess the impact of PMDE on sugarcane productivity with different concentrations (50 and 75%) and irrigation patterns (intermittent and pre‐sowing). The intermittent pattern of ferti‐irrigation with 50 and 75% effluent dose for sugarcane crop was found to enhance the growth and quality parameters of crop without impairing the groundwater quality. Results were more pronounced with 75% intermittent irrigation as the percent increase with respect to control for plant length, cane girth, cane weight, number of internodes per cane, dry matter accumulation, juice extraction, sucrose content, and available sugar were 28.0, 42.5, 14.6, 40.2, 54.4, 18.9, 44.9, 57.9, and 50.0%, respectively. It is suggested that PMDE can be used as an alternative of fresh water irrigation and also as a fertilizer for sugarcane, provided that the effluent quality and sugarcane quality is continuously monitored to avoid any contamination.  相似文献   

11.
Evapotranspiration (ET) can cause diel fluctuations in the elevation of the water table and the stage in adjacent streams. The diel fluctuations of water levels change head gradients throughout the day, causing specific discharge through near‐stream sediment to fluctuate at the same time scale. In a previous study, we showed that specific discharge controls the residence time of groundwater in streambed sediment that, in turn, exerted the primary control on removal from groundwater passing through the streambed. In this study, we examine the magnitude of diel specific discharge patterns through the streambed driven by ET in the riparian zone with a transient numerical saturated–unsaturated groundwater flow model. On the basis of a first‐order kinetic model for removal, we predicted diel fluctuations in stream concentrations. Model results indicated that ET drove a diel pattern in specific discharge through the streambed and riparian zone (the removal zones). Because specific discharge is inversely proportional to groundwater travel time through the removal zones and travel time determines the extent of removal, diel changes in ET can result in a diel pattern in concentration in the stream. The model predictions generally matched observations made during summertime base‐flow conditions in a small coastal plain stream in Virginia. A more complicated pattern was observed following a seasonal drawdown period, where source components to the stream changed during the receding limb of the hydrograph and resulted in diel fluctuations being superimposed over a multi‐day trend in concentrations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A study was performed in two submerged, pilot‐scale biofilm bioreactors operated under different conditions to determine the relationship between the operating parameters and H2S emission. H2S was always detected in the exhaust air at concentrations varying from 1 to 353 ppmv. The specific aeration rate was the most influencing parameter, with As < 30 kg COD (dissolved oxygen concentrations <4 mg L?1) increasing noticeably the H2S production. The periodical removal of the accumulated sludge reduced H2S emissions by ~14%.  相似文献   

13.
The nonlinearity of the seismic amplitude‐variation‐with‐offset response is investigated with physical modelling data. Nonlinearity in amplitude‐variation‐with‐offset becomes important in the presence of large relative changes in acoustic and elastic medium properties. A procedure for pre‐processing physical modelling reflection data is enacted on the reflection from a water‐plexiglas boundary. The resulting picked and processed amplitudes are compared with the exact solutions of the plane‐wave Zoeppritz equations, as well as approximations that are first, second, and third order in , , and . In the low angle range of 0°–20°, the third‐order plane‐wave approximation is sufficient to capture the nonlinearity of the amplitude‐variation‐with‐offset response of a liquid‐solid boundary with , , and ρ contrasts of 1485–2745 m/s, 0–1380 m/s, and 1.00–1.19 gm/cc respectively, to an accuracy value of roughly 1%. This is in contrast to the linear Aki–Richards approximation, which is in error by as much as 25% in the same angle range. Even‐order nonlinear corrective terms are observed to be primarily involved in correcting the angle dependence of , whereas the odd‐order nonlinear terms are involved in determining the absolute amplitude‐variation‐with‐offset magnitudes.  相似文献   

14.
A study of the changes in the ionic loads of NO, NH, SO and H+ in a boreal forest snowpack at Lake Laflamme, Québec was carried out using hydrological and chemical data from field lysimeters. The results showed that depletion of the N-containing species occurs periodically in the snowpack during meltwater discharge. Rain-on-snow events led to in-pack losses of NO and NH at a rate of 130 μeq m?2 day?1 and 101·3 μeq m?2day?1 respectively. On dry days, however, dry deposition and deposition of organic debris from the canopy resulted in increases of 183·3 μeq m?2day?1 for NO and 4·5 μeq m?2day?1 for NH in the pack. In contrast, SO42? showed continual in-pack increases due to deposition of 5·0 μeq m?2day?1 for wet days and 92·6 μeq m?2day?1 for dry days. The depletion of NO and NH is due to microbiological uptake of these nutrients during periods when the free water content of the pack is high. Controlled melts in a laboratory snowmelt simulator containing snow and organic matter from the forest canopy at Lake Laflamme showed losses of NO and NH similar to those observed in the field. As the microbiological uptake proceeds at a rate comparable to that of ionic load increases in the pack by dry deposition, models of the chemical dynamics of snowmelt should take the former into account in any system where organic content of the snowpack is appreciable.  相似文献   

15.
In this study, 5,17‐bis‐[(4‐benzylpiperidine)methyl]‐25,26,27,28‐tetrahydroxy‐calix[4]arene ( 3 ) has been prepared by the treatment of calix[4]arene with a secondary amine (4‐benzylpiperidine) and formaldehyde by means of Mannich reaction. The prepared Mannich base ( 3 ) has been grafted onto [3‐(2,3‐epoxypropoxy)‐propyl]‐trimethoxysilane‐modified Fe3O4 magnetite nanoparticles (EPPTMS‐MN) in order to obtain 5,17‐bis‐[(4‐benzylpiperidine)methyl]‐25,26,27,28‐tetrahydroxy calix[4]arene‐grafted EPPTMS‐MN (BP‐calix[4]arene‐grafted Fe3O4). All new compounds were characterized by a combination of FTIR and 1H‐NMR analyses. The morphology of the magnetic nanoparticles was examined by transmission electron microscopy. Moreover, the studies regarding the removal of arsenate and dichromate ions from the aqueous solutions were also carried out by using 5,17‐bis‐[(4‐benzylpiperidine)methyl]‐25,26,27,28‐tetrahydroxy‐calix[4]arene in liquid–liquid extraction and BP‐calix[4]arene‐grafted Fe3O4 ( 4 ) in solid–liquid extraction experiments. The extraction results indicated that 3 is protonated at proton‐switchable binding sites in acidic conditions. Hence, facilitating binding of arsenate and dichromate is resulted from both electrostatic interactions and hydrogen bonding. To understand the selectivity of 3 , the retention of dichromate anions in the presence of Cl, NO, and SO anions at pH 1.5 was also examined.  相似文献   

16.
Pre‐stack seismic data are indicative of subsurface elastic properties within the amplitude versus offset characteristic and can be used to detect elastic rock property changes caused by injection. We perform time‐lapse pre‐stack 3‐D seismic data analysis for monitoring sequestration at Cranfield. The time‐lapse amplitude differences of Cranfield datasets are found entangled with time‐shifts. To disentangle these two characters, we apply a local‐correlation‐based warping method to register the time‐lapse pre‐stack datasets, which can effectively separate the time‐shift from the time‐lapse seismic amplitude difference without changing the original amplitudes. We demonstrate the effectiveness of our registration method by evaluating the inverted elastic properties. These inverted time‐lapse elastic properties can be reliably used for monitoring plumes.  相似文献   

17.
Release of nitrogen compounds into groundwater, particularly those compounds from excessive agricultural fertilization, is a major concern in an aquifer recharge. Among the nitrogen compounds, ammonium ( ) is a common one. In order to assess the risk of agricultural fertilizer contamination to an aquifer through infiltration, adsorption onto a loamy agricultural soil profile (0–0.60 m depth) was studied using a soil column experiment and modelling simulation. The soil used in the experiment was drawn from an agricultural field in Xinzhen, Fangshan district, Beijing, China, and reconstituted in laboratory soil columns. Column experiments were conducted using bromide (conservative tracer) and ‐bearing aqueous solutions. The ammonium concentrations in the soil water samples were measured, and their values were plotted as the breakthrough curves. The chemical's soil–water distribution coefficients (Kd) were calculated using breakthrough curves. Then the retardation factor (R) in saturated soil was calculated. For the ‐bearing aqueous solutions, the strongest adsorption occurred at the soil depth of 0.30–0.45 m. The convection–dispersion equation model and chemical non‐equilibrium model in Hydrus‐1D were used to simulate transport in the loamy soil. The two‐site chemical non‐equilibrium model in Hydrus‐1D was best to simulate transport through the soil column. Parameter sensitivity study was conducted to investigate the influences of solute transport by Kd, the fraction of exchange sites assuming to be in equilibrium with the solution phase (f), the longitudinal dispersivity (λ), and the first‐order rate coefficients (ω). The sensitivity analysis results indicate Kd is the most critical parameter.  相似文献   

18.
The impact assessment of molasses‐based distillery‐effluent irrigation on groundwater quality around village Gajraula in the district of Jyotiba Phule Nagar, Uttar Pradesh, India was studied by sampling groundwater on monthly intervals consecutively for summer, winter and monsoon seasons during 2006–2007 and water quality parameters, viz. pH, electrical conductivity (EC), chloride (Cl?), sulphate (SO), nitrate (NO), chemical oxygen demand (COD), total solids (TS), total dissolved solids (TDS), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), zinc (Zn2+), iron (Fe3+), and total coliforms (TC) were monitored. Results depicted that the values of all parameters decreased with increasing depth of water table. Sulphate, nitrate and potassium contents were maximal in agricultural site during monsoon while EC, Cl?, TS, TDS, Na+, Ca2+, Mg2+, Zn, and Fe were maximal in industrial sites during summer. Groundwater samples of residential site harboured maximum coliforms especially during monsoon, highlighting threat to groundwater. Significant positive correlation matrix between coliforms with nitrate, sulphate and potassium ions explained their survival on these nutrients. To overcome this, important measures emphasizing improvement in effluent treatment technology matching site‐specific characteristics are recommended for eco‐friendly ferti‐irrigation.  相似文献   

19.
Although changes in rainfall characteristics have been noted across the world, few studies have reported those in mountainous areas. This study was undertaken to clarify spatial and temporal variations in rainfall characteristics such as annual rainfall amount (Pr), mean daily rainfall intensity (η), and ratio of rain days (λ) in mountainous and lowland areas in Taiwan. To this aim, we examined spatial and year‐to‐year variations and marginal long‐term trends in Pr, η, and λ, based on rainfall data from 120 stations during the period 1978–2008. The period mean rainfall () at the lowland stations had strong relationships with the period mean daily rainfall intensity () and the period mean ratio of rain days () during those 31 years. Meanwhile, was only strongly related to at mountainous stations, indicating that influences on spatial variations in were different between lowland and mountainous stations. Year‐to‐year variations in Pr at each station were primarily determined from the variation in η at most stations for both lowland and mountainous stations. Long‐term trend analysis showed that Pr and η increased significantly at 10% and 31% of the total 120 stations, respectively, and λ decreased significantly at 6% of the total. The increases in Pr were mostly accompanied by increases in η. Although stations with significant η increases were slightly biased toward the western lowland area, increases or decreases in Pr and λ were not common. These results contribute to understanding the impacts of possible climate changes on terrestrial hydrological cycles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
D. Markovic  M. Koch 《水文研究》2015,29(7):1806-1816
Hydrological processes commonly exhibit long‐term persistence, also known as the ‘Hurst phenomenon’. Here, we examine long‐term precipitation and streamflow time series from the Elbe River Basin to quantify differences in the spectral properties and in the Hurst parameter estimates () of the individual hydrological cycle components. Precipitation‐runoff modelling is performed for the Elbe River sub‐catchment Striegis using the Soil and Water Assessment Tool (SWAT). For 38 daily 50 years long streamflow time series from the Elbe River Basin, baseflow separation and spectral analysis is performed. The results show a spectral shift towards low‐frequency scales (>2 years) from precipitation to baseflow, with a parallel increase of from 0.52 (precipitation) to 0.65 (baseflow). The SWAT model is able to reproduce both, the main low‐frequency mode (≈7 yr.) and the (0.62) of the observed Striegis River flow time series. The baseflow appears to be the main component which shapes the low‐frequency response and of streamflow in the Elbe River Basin to the input precipitation. This conclusion is further confirmed through PMWIN‐MODFLOW groundwater modelling of a hypothetic phreatic stream‐connected aquifer system that consists of various soils (sand, loamy sand and silt). A power shift towards lower frequencies and an increase of for the hydraulic heads is obtained, as the aquifer's lateral dimensions increase and its hydraulic conductivity decreases. The average of the groundwater heads is 0.80, 0.90 and 1.0 for sand, loamy sand and silt aquifers, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号