首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The removal of heavy metals such as Ni(II), Zn(II), Al(III), and Sb(III) from aqueous metal solutions was investigated using novel, cost effective, seaweed derived sorbents. Studies with a laboratory scale fixed‐bed sorption column, using a seaweed waste material (referred to as waste Ascophyllum product (WAP)) from the processing of Ascophyllum nodosum as biosorbent, demonstrated high removal efficiencies (RE) for a variety of heavy metals including Ni(II), Zn(II) and Al(III), with 90, 90 and 74% RE achieved from initial 10 mg/L metal solutions, respectively. The presence of Sb(III) in multi component metal solutions suppressed the removal of Ni(II), Zn(II) and Al(III), reducing the RE to 28, 17 and 24%, respectively. The use of Polysiphonia lanosa as a biosorbent showed a 67% RE for Sb(III), both alone and in combination with other metals. Potentiometric and conductometric titrations, X‐ray photoelectron and mid‐infrared spectroscopic analysis demonstrated that carboxyl, alcohol, sulfonate and ether groups were heavily involved in Sb(III) binding by P. lanosa. Only carboxyl and sulfonate groups were involved in Sb(III) binding by WAP. Furthermore, a greater amount of weak acidic groups (mainly carboxylic functions) were involved in Sb(III) binding by P. lanosa, compared to WAP which involved a greater concentration of strong acidic groups (mainly sulfonates).  相似文献   

2.
An eco‐friendly and inexpensive technique for wastewater treatment originated from inductively coupled plasma‐optical emission spectrometry (ICP‐OES) is presented within this paper. The proposed process comprised of loading waste crab shells in packed column for adsorption of heavy metal ions, followed by desorption using 0.01 M HCl. An exhaustive physical and chemical characterization of ICP‐OES wastewater revealed the complex nature of effluent, including the presence of 15 different metals and metalloid under strong acidic condition (pH 1.3). Based on the preliminary batch experiments, it was identified that solution pH played a major role in metal sequestration by crab shell with pH 3.5 identified as optimum pH. Rapid metal biosorption kinetics along with complete desorption and subsequent reuse for three cycles was possible with crab shell‐based treatment process. Continuous flow‐through column experiments confirmed the high performance of crab shell towards multiple metal ions with the column able to operate for 22 h at a flow rate of 10 mL/min before outlet concentration of arsenic reached 0.25 times of its inlet concentration. Other metal ions such as Cu, Cd, Co, Cr, Pb, Ni, Zn, Mn, Al, and Fe were only in trace levels in the treated water until 22 h. The performance of the treatment process was compared with trade effluent discharge standards, and the process flow diagram along with cost analysis was suggested.  相似文献   

3.
A stable extractor of metal ions was synthesized through azo linking of o‐hydroxybenzamide (HBAM) with Amberlite XAD‐4 (AXAD‐4) and was characterized by elemental analyses, IR spectral, and thermal studies. Its water regain value and hydrogen ion capacity were found to be 12.93 and 7.68 mmol g?1, respectively. The optimum pH range (with the half‐loading time [min], t1/2) for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) ions were 2.0–4.0 (5.5), 2.0–4.0 (7.0), 2.0–4.0 (8.0), 4.0–6.0 (9.0), 4.0–6.0 (12.0), and 2.0–4.0 (15.0), respectively. Comparison of breakthrough and overall capacities of the metals ascertains the high degree of column utilization (>70%). The overall sorption capacities for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) ions were found to be 0.29, 0.22, 0.20, 0.16, 0.13, and 0.11 mmol g?1 with the corresponding preconcentration factor of 400, 380, 380, 360, 320, and 320, respectively. The limit of preconcentration was in the range of 5.0–6.3 ng mL?1. The detection limit for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) were found to be 0.39, 0.49, 0.42, 0.59, 0.71, and 1.10 ng mL?1, respectively. The AXAD‐4‐HBAM has been successfully applied for the analysis of natural water, multivitamin formulation, infant milk substitute, hydrogenated oil, urine, and fish.  相似文献   

4.
A multi‐element ion‐pair extraction method was described for the preconcentration of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), and Zn(II) ions in environmental samples prior to their determinations by flame atomic absorption spectrometry (FAAS). As an ion‐pair ligand 2‐(4‐methoxybenzoyl)‐N′‐benzylidene‐3‐(4‐methoxyphenyl)‐3‐oxo‐N‐phenyl‐propono hydrazide (MBMP) was used. Some analytical parameters such as pH of sample solution, amount of MBMP, shaking time, sample volume, and type of counter ion were investigated to establish optimum experimental conditions. No interferences due to major components and some metal ions of the samples were observed. The detection limits of the proposed method were found in the range of 0.33–0.9 µg L?1 for the analyte ions. Recoveries were found to be higher than 95% and the relative standard deviation (RSD) was less than 4%. The accuracy of the procedure was estimated by analyzing the two certified reference materials, LGC6019 river water and RTC‐CRM044 soil. The developed method was applied to several matrices such as water, hair, and food samples.  相似文献   

5.
Soil‐mix technology is effective for the construction of permeable reactive barriers (PRBs) for in situ groundwater treatment. The objective of this study was to perform initial experiments for the design of soil‐mix technology PRBs according to (i) sorption isotherm, (ii) reaction kinetics and (iii) mass balance of the contaminants. The four tested reactive systems were: (i) a granular zeolite (clinoptilolite–GZ), (ii) a granular organoclay (GO), (iii) a 1:1‐mixture GZ and model sandy clayey soil and (iv) a 1:1:1‐mixture of GZ, GO and model soil. The laboratory experiments consisted of batch tests (volume 900 mL and sorbent mass 18 g) with a multimetal solution of Pb, Cu, Zn, Cd and Ni. For the adsorption experiment, the initial concentrations ranged from 0.01 to 0.5 mM (2.5 to 30 mg/L). The maximum metal retention was measured in a batch test (300 mg/L for each metal, volume 900 mL, sorbent mass 90–4.5 g). The reactive material efficiency order was found to be GZ > GZ‐soil mix > GZ‐soil‐GO mix > GO. Langmuir isotherms modelled the adsorption, even in presence of a mixed cations solution. Adsorption was energetically favourable and spontaneous in all cases. Metals were removed according to the second order reaction kinetics; GZ and the 1:1‐mix were very similar. The maximum retention capacity was 0.1–0.2 mmol/g for Pb in the presence of clinoptilolite; for Cu, Zn, Cd and Ni, it was below 0.05 mmol/g for the four reactive systems. Mixing granular zeolite, organoclay and model soil increased the chemisorption. Providing that GZ is reactive enough for the specific conditions, GZ can be mixed to obtain the required sorption. Granular clinoptilolite addition to soil is recommended for PRBs for metal contaminated groundwater.  相似文献   

6.
Leachate derived from bioleaching process contains high amount of metals that must be removed before discharging the water. Aspergillus fumigatus was isolated from a gold mine tailings and its ability to remove of As, Fe, Mn, Pb, and Zn from aqueous solutions and leachate of bioleaching processes was assessed. Batch sorption experiments were carried out to characterize the capability of fungal biomass (FB) and iron coated fungal biomass (ICFB) to remove metal ions in single and multi‐solute systems. The maximum sorption capacity of FB for As(III), As(V), Fe, Mn, Pb, and Zn were 11.2, 8.57, 94.33, 53.47, 43.66, and 70.4 mg/g, respectively, at pH 6. For ICFB, these values were 88.5, 81.3, 98.03, 66.2, 50.25, and 74.07 mg/g. Results showed that only ICFB was found to be more effective in removing metal ions from the leachate. The amount of adsorbed metals from the leachate was 2.88, 21.20, 1.91, 0.1, and 0.08 mg/g for As, Fe, Mn, Zn, and Pb, respectively. The FT‐IR analysis showed involvement of the functional groups of the FB in the metal ions sorption. Scanning electron microscopy revealed that surface morphological changed following metal ions adsorption. The study showed that the indigenous fungus A. fumigatus was able to remove As, Fe, Mn, Pb, and Zn from the leachate of gold mine tailings and therefore the potential for removing metal ions from metal‐bearing leachate.  相似文献   

7.
8.
A simple, rapid, and accurate method was developed for separation and preconcentration of trace levels of iron(III) and zinc(II) ions in environmental samples. Methyl‐2‐(4‐methoxy‐benzoyl)‐3‐(4‐methoxyphenyl)‐3‐oxopropanoylcarbamate (MMPC) has been proposed as a new complexing agent for Fe(III) and Zn(II) ions using solvent extraction prior to their determination by flame atomic absorption spectrometry (FAAS). Fe(III) and Zn(II) ions can be selectively separated from Fe(II), Pb(II), Co(II), Cu(II), Mn(II), Cr(III), Ni(II), Cd(II), Ag(I), Au(III), Pd(II), Cr(VI), and Al(III) ions in the solution by using the MMPC reagent. The analytical parameters such as pH, sample volume, shaking time, amount of MMPC reagent, volume of methyl isobutyl ketone (MIBK), effect of ionic strength, and type of back extractant were investigated. The recovery values for Fe(III) and Zn(II) ions were greater than 95% and the detection limits for Fe(III) and Zn(II) ions were 0.26 and 0.32 µg L?1, respectively. The precision of the method as the relative standard deviation changed between 1.8 and 2.1%. Calibration curves have a determination coefficient (r2) of at least 0.997 or higher. The preconcentration factor was found to be 100. Accuracy of the method was checked by analyzing of a certified reference material and spiked samples. The developed method was applied to several matrices such as water, hair, and food samples.  相似文献   

9.
In this study, a new sorbent is synthesized using surface imprinting technique. Cu(II)‐imprinted multiwalled carbon nanotube sorbent (Cu(II)‐IMWCNT) is used as the solid phase in the solid‐phase extraction method. After the preconcentration procedure, Cu(II) ions are determined by high‐resolution continuum source atomic absorption spectrometry. A total of 0.1 mol L?1 ethylenediaminetetraacetic acid (EDTA) is used to remove Cu(II) ions from the sorbent surface. The optimum experimental conditions for effective preconcentration of Cu(II), parameters such as pH, eluent type and concentration, flow rate, sample volume, sorbent capacity, and selectivity are investigated. The synthesized solid phase is characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The maximum adsorption capacities of Cu(II)‐IMWCNT and non‐imprinted solid phases are 270.3 and 14.3 mg g?1 at pH 5, respectively. Under optimum experimental conditions for Cu(II) ions, the limit of detection is 0.07 μg L?1 and preconcentration factor is 40. In addition, it is determined to be reusable without significant decrease in recovery values up to 100 adsorption–desorption cycles. Cu(II)‐IMWCNT have a high stability. To check the accuracy of the developed method, certified reference materials, and water samples are analyzed with satisfactory analytical results.  相似文献   

10.
The coprecipitation method is widely used for the preconcentration of trace metal ions prior to their determination by flame atomic absorption spectrometry (FAAS). A simple and sensitive method based on coprecipitation of Fe(III) and Ni(II) ions with Cu(II)‐4‐(2‐pyridylazo)‐resorcinol was developed. The analytical parameters including pH, amount of copper (II), amount of reagent, sample volume, etc., were examined. It was found that the metal ions studied were quantitatively coprecipitated in the pH range of 5.0–6.5. The detection limits (DL) (n = 10, 3s/b) were found to be 0.68 µg L?1 for Fe(III) and 0.43 µg L?1 for Ni(II) and the relative standard deviations (RSD) were ≤4.0%. The proposed method was validated by the analysis of three certified reference materials (TMDA 54.4 fortified lake water, SRM 1568a rice flour, and GBW07605 tea) and recovery tests. The method was successfully applied to sea water, lake water, and various food samples.  相似文献   

11.
A novel, simple method based on magnetic separation was developed for analytical purposes. In this method, N‐methyl‐D‐glucamine (NMDG) modified magnetic microparticles that were synthesized by using the sol‐gel method were used for the selective extraction and preconcentration of boron from aqueous solutions. This method combines the simplicity and selectivity of solvent extraction with the easy separation of magnetic microparticles from a solution with a magnet without any preliminary filtration step. The structure of the prepared γ‐Fe2O3‐SiO2‐NMDG (magnetic sorbent) composites were characterized by using X‐ray diffraction (XRD), Transmission Electron Microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FTIR). The influence of different parameters on the sorbent capacity, such as the sorption/desorption of boron, magnetic sorbent dosage, pH, equilibrium time, type, and amount of stripping solution, were evaluated by using the magnetic sorbent. Any equilibrium pH greater than 6 can be used for sorption. Desorption from the sorbent was carried out by using 1.0 M HCl. The sorption and desorption efficiency of the γ‐Fe2O3‐SiO2‐NMDG was found as 92.5 ± 0.5% and 99.8 ± 6%, respectively.  相似文献   

12.
This paper discusses about the adsorption of metal ions such as Cu(II), Cd(II), Zn(II), and Ni(II) from aqueous solution by sulfuric acid treated cashew nut shell (STCNS). The adsorption process depends on the solution pH, adsorbent dose, contact time, initial metal ions concentration, and temperature. The adsorption kinetics was relatively fast and equilibrium was reached at 30 min. The adsorption equilibrium follows Langmuir adsorption isotherm model. The maximum adsorption capacity values of the modified cashew nut shell (CNS) for metal ions were 406.6 mg/g for Cu(II), 436.7 mg/g for Cd(II), 455.7 mg/g for Zn(II), and 456.3 mg/g for Ni(II). The thermodynamic study shows the adsorption of metal ions onto the STCNS was spontaneous and exothermic in nature. The kinetics of metal ions adsorption onto the STCNS followed a pseudo‐second‐order kinetic model. The external mass transfer controlled metal ions removal at the earlier stages and intraparticle diffusion at the later stages of adsorption. A Boyd kinetic plot confirms that the external mass transfer was the slowest step involved in the adsorption of metal ions onto the STCNS. A single‐stage batch adsorber was designed using the Langmuir adsorption isotherm equation.  相似文献   

13.
In this work, 8‐hydroxyquinoline is used as the active sites in cross‐linked chitosan beads with epichlorohydrin (CT‐8HQ). The CT‐8HQ material was shaped in bead form and used for heavy metal removal from aqueous solution. The study was carried out at pH 5.0 with both batch and column methods and the maximum adsorption capacity of metal ions by the CT‐8HQ was attained in 4 h in the batch experiment. The adsorption capacity order was: Cu2+ > Ni2+ > Zn2+ for both mono‐ and multi‐component systems with batch conditions. From breakthrough curves with column conditions, the adsorption capacity followed the order Cu2+ > Zn2+ > Ni2+ for both mono‐ and multi‐component systems. The CT‐8HQ beads maintained good metal adsorption capacity for all five cycles with absorbent restoration achieved with the use of 1.0 mol L–1 HCl solution, with 90% regeneration.  相似文献   

14.
The potential to remove Ni(II) ions from aqueous solutions using sea beach sand, a carbonate‐quartz mineral, was thoroughly investigated. The effects of relevant parameters such as solution pH, adsorbent dose, metal ions concentration, and temperature on Ni(II) sorption onto beach sand were examined. The sorption data followed the Langmuir, Freundlich and Dubinin‐Radushkevich (D‐R) isotherms. The adsorption was endothermic in nature at ambient temperature and the computation of the parameters, ΔH, ΔS and ΔG indicated the interactions between sorbate and sorbent to be thermodynamically favorable. Equilibrium was achieved very quickly within 30 min of shaking. A pseudo‐first order Lagergren equation was used to test the adsorption kinetics. Other kinetic models, e. g., the Morris‐Weber and Reichenberg equations, were used to calculate the rate constant of intraparticle diffusion and the fate of the diffusion process, respectively. The influence of some of the common cations and anions were also a subject of this study.  相似文献   

15.
Due to the unique chemical properties and therefore wide range of applications, significant amounts of reactive dyes often end up in waste waters and this issue raises the need for more efficient treatment technologies. This work investigates the ability of magnetite nanoparticles functionalized with imidazolium based ionic liquid (IL) as an efficient sorbent for the removal of the Reactive black 5 from wastewater. Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, thermo‐gravimetric analysis, and zeta potential measurement were used to characterize the synthesized nanosorbent. The results showed that under optimal conditions, the dye removal efficiency of the grafted IL is 98.5% after a single run. Regeneration of the used sorbent could be possible and the modified magnetic nanoparticles exhibited good reusability. The isothermal data of RB5 sorption conformed well to the Langmuir model and the maximum sorption capacity of IL@Fe3O4 for RB5 was 161.29 mg g?1. Thermodynamic study indicated that the adsorption is endothermic and spontaneous. The use of such a system can provide fast and efficient removal of the reactive dyes from wastewater by using an external magnetic field.  相似文献   

16.
The possible use of activated alumina powder (AAP) as adsorbent for Cr(III), Ni(II), and Cu(II) from synthetic solutions was investigated. The effect of various parameters on batch adsorption process such as pH, contact time, adsorbent dosage, particle size, temperature, and initial metal ions concentration were studied to optimize the conditions for maximum metal ion removal. Both higher (molar) and lower (ppm) initial metal ion concentration sets were subjected to adsorption on AAP. Adsorption process revealed that equilibrium was established in 50 min for Cr(III) at pH 4.70, 80 min for Ni(II) at pH 7.00, and 40 min for Cu(II) at pH 3.02. Percentage removal was found to be highest at 55°C for Cr(III) and Ni(II) with 420 µm and 45°C for Cu(II) with 250‐µm particle size AAP. A dosage of 2 g for Cr(III), 8 g for Ni(II), and 10 g Cu(II) gave promising data in the metal ion removal. The adsorption process followed Langmuir as well as Freundlich models. The thermodynamics of adsorption of these metal ions on activated aluminum indicated that the adsorption was spontaneous and endothermic in nature. Present study indicates that AAP can act as a promising adsorbent for industrial wastewater treatment.  相似文献   

17.
Biosorption potential of Cedrus deodara sawdust (CDS) in terms of sorption of Zn(II) ion across liquid phase has been evaluated in the present investigation. The surface of the CDS biomass before the sorption of Zn(II) ions seemed to be more porous, non‐crystalline and heterogeneous. The maximum uptake capacity of CDS was 97.39 mg g?1. Sorption of Zn(II) ion on the surface of CDS sawdust was maximum at pH 5, temperature 45°C, initial concentration of Zn(II) ion 100 mg L?1, biomass dose 1 g L?1, contact time 150 min, and agitation rate 160 rpm. Pseudo second‐order kinetics with the highest linear regression coefficient (R2 = 0.99), and lowest values of error functions, i.e., chi (χ2) and sum of square errors (SSE) against pseudo first‐order rate kinetics showed that the sorption of Zn(II) ion on the surface of CDS was mediated by chemosoprtive forces of attraction rather than physical adsorption. Mechanistically, relatively higher proportion of sorption of Zn(II) ion in early phase of contact time was profoundly explained by Bangham's equation and film diffusivity (Df). Intraparticle or pore diffusion (Dp) of Zn(II) ion inside the pores of CDS was rate limiting step at the later stage of contact time. Furthermore, the thermodynamic study on sorption of metal ion delineated the fact that the Zn(II) sorption on the surface of CDS was spontaneous, endothermic together with increased entropy at solid liquid interface.  相似文献   

18.
The present article describes As(III) sorption behavior of novel calix[4]arene appended TS‐4 resin. The sorption ability of TS‐4 resin has been evaluated at wide range of pH, i.e., pH 2–14. The maximum As(III) sorption efficiency (95%) was achieved at pH 2, which shows that the TS‐4 resin possesses greater affinity for As(III) at this pH. Column sorption mechanism was evaluated through various operating parameters, i.e., change in concentration, flow rate, bed heights, and pH. The experimental data were also tested against bed depth service time model and from the results; it has been observed that the data is in close agreement with the theoretically calculated values. Thus, from the data it has been revealed that TS‐4 resin has maximum column efficiency of 0.13 mmol g?1. Application of TS‐4 to real samples indicates a slight decrease (2–3%) in extraction efficiency of TS‐4 because of high concentration of total dissolved salts. Thermal behavior was tested by differential scanning calorimetry and it has been observed that TS‐4 resin is stable up to 160°C. TS‐4 resin was found to be regenerable and best regeneration was achieved by using 4% solution of NaOH. It can be deduced from the study that the resin will find its applicability in small as well as industrial scale water purification plants.  相似文献   

19.
Competitive sorption of estriol (E3) and 17α‐ethinylestradiol (EE2) was studied on activated charcoal. Better sorption of E3 (88.9%) and EE2 (69.5%) was observed with single‐solute sorption system than with bi‐solute sorption system. Single‐solute sorption kinetics of E3 and EE2 were evaluated with two (Langmuir and Freundlich) and three (dual mode and Song) parameter models. Freundlich model (R2, 0.9915 (E3); 0.9875 (EE2)) showed good prediction compared to other models for single‐solute sorption. Adsorption capacity documented reduced efficacy (86.4% (E3); 65.9% (EE2)) due to induced competitive behavior between the estrogens in aqueous phase. Bi‐solute adsorption kinetics of E3 and EE2 were described by IAST with two and three parameter models. Among these models, IAST‐Freundlich model (R2, 0.9765 (E3); 0.9985 (EE2)) was best in predicting bi‐solute sorption of E3 and EE2 by activated charcoal. All these models showed favorable representation of both single‐ and bi‐solute sorption behaviors.  相似文献   

20.
In the present study, chemical oxygen demand (COD) removal by packed‐columns of activated carbon (AC) derived from two different materials (coal activated carbon, CAC and wood activated carbon, WAC) is reported as part of an on‐site wastewater treatment system for handling small volumes of wastewater generated at wood‐floor industries for which there are no proper on‐site treatment options available in the market. The performance of the sorbents, the effect of bed depth (0.19 and 0.57 m) and volumetric load (0.10 and 0.24 m h?1) on the breakthrough curve of sorption systems were studied. The results indicated the feasibility of using both ACs to treat these wastewaters. At the bed depth (0.57 m), volumetric load (0.24 m h?1), and 30% breakthrough, CAC and WAC showed treatment capacity of 40.5 L kg?1 in 250 h and 23.8 L kg?1 in 63 h, respectively. This indicated that CAC requires longer retention times to reach a performance similar to WAC. The experimental data was fit into the bed depth‐service time model showing that under the same conditions, CAC had higher maximum sorption capacity (N0) than WAC. Moreover, thermal regeneration at 500°C temperature could be a cost‐effective procedure since the reuse of spent AC through such regeneration process for further treatment could still achieve 90% of the initial sorption capacity, reducing then costs for the use of new sorbents and also the need for waste disposal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号