首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Large deformation FEMLIP drained analysis of a vertical cut   总被引:1,自引:0,他引:1  
Understanding and modelling the whole instability mechanisms of a slope are fundamental issues from a scientific and technical viewpoint. To date, small strain Lagrangian approaches have mostly been used in solid mechanics for modelling the failure stage, whereas Eulerian approaches are common in fluid mechanics for propagation analysis. A combination of both approaches allows the stability, failure and propagation stages of a slope to be analysed in a unique mathematical framework. To this end, this paper adopts a finite element method with Lagrangian integration points (FEMLIP), which is currently implemented in the ELLIPSIS code and has been used in geophysics and civil engineering applications. The method combines the robustness of an Eulerian mesh with the flexibility of a set of Lagrangian particles, which allows the history of the material to be taken into account. FEMLIP is first validated with reference to benchmarks with analytical solutions, and is then tested in a large deformation drained analysis of a vertical cut in coarse-grained soils. The results are compared with those provided by the standard engineering methods (1) the limit equilibrium method (LEM) and (2) standard stress–strain elasto-plastic FEM analysis. The comparison shows that FEMLIP is a reliable method for the analysis of both the stability and the instability of a vertical cut, and can be confidently used to analyse more complex problems related to natural slopes.  相似文献   

2.
In traditional tunneling, an analysis of the face stability is required to avoid failure mechanisms or excessive face extrusion. Face reinforcement can improve face stability and reduce deformations. In the present work a numerical study of both unreinforced and reinforced tunnel excavation faces by means of 3D FEM analyses is presented. The results are compared with those of the traditional limit equilibrium method and with an analytical solution based on previous numerical studies. It could be shown that the LEM may lead to non-conservative results. Finally, the deformation response is assessed and the benefits of face reinforcements are investigated.  相似文献   

3.
A case study of a debris slide (estimated volume of about 35,000 m3) is described in this paper. This slide occurred in April 2009 in the North Western Italian Alps (Aosta valley) and damaged the SR25 road along the Valgrisenche valley. Ground investigations started with severe safety and logistic issues being posed. Given the need to open as soon as possible the road, the design of the landslide stabilization works was carried out using a “design as you go” approach. The stabilization measures were conceived to be flexible in order to allow for changes and integration during construction, in line with the progressive refinement of the geological–geotechnical slope model being developed. Back analysis by means of the limit equilibrium method (LEM) and the finite element method (FEM) was used. Groundwater level rise following heavy rainfall and spring snow melting was found to be the main cause of the debris slide. The stabilization works were designed by using both the LEM and FEM methods. The stability conditions of the engineered slope were assessed based on the available performance monitoring data.  相似文献   

4.
吴春秋  肖大平 《岩土力学》2007,28(Z1):905-908
通过对复合地基加固路堤稳定性的极限平衡法和有限单元法的计算结果进行对比分析,揭示出当路堤的稳定性由复合地基决定时,极限平衡法和有限单元法的计算结果存在较大差异。应用岩土有限元软件Plaxis中的强度折减法可得到合理的路堤稳定性分析结果。对复合地基中桩体破坏模式的分析认为,桩体发生非剪断破坏之外的弯曲、转动、拉伸等破坏模式是极限平衡法与有限单元法计算结果产生差异的根本原因。由此进一步指出,当处理存在土与结构物相互作用的边坡稳定问题时,极限平衡法的分析结果可能会高估了边坡的稳定性,应慎重判别其合理性。  相似文献   

5.
During the last decade, soil degradation coupled with global climate changes has increased hydrogeological hazards in Mexico. In tropical volcanic terrains, alteration processes have enhanced the formation of clay minerals that promote water retention and result in soil/rock weakness. Intense seasonal rainfall can trigger the liquefaction and remobilization of these low-resistance terrains. During the first week of October 1999, heavy rains affected eastern Mexico, including Puebla State. As a consequence, approximately 3000 mass movements, consisting of rock and soil slides and slips, debris flows and avalanches were generated in this area. In the town of Teziutlán (Puebla), which is located on volcanic deposits, a single mass-movement event caused approximately 150 deaths. In the present work we identified two types of mass movements in the Teziutlán area—Type 1: superficial erosion of an unwelded ignimbritic sequence forming small detrital fans, and Type 2: thin soil slide/debris flow from the remobilization of a volcanic sequence composed of clay-rich paleosols interbedded with ashfall horizons. The clay-rich volcanic paleosols favored the formation of perched water tables on a hydraulic aquiclude. Positive pore-water pressures triggered the failure. Based on these results, the principal human settlement in the Teziutlán area may be threatened by future debris flows, which could cause serious harm to the dense population and severe damage to its infrastructure. It is necessary to prevent future deaths and damage by installation of mitigative measures based on detailed studies. Without any further study, it will not be possible to prevent and mitigate a natural disaster with the same magnitude as the 1999 catastrophic hydrogeological phenomena.  相似文献   

6.
The Campanian Apennines are characterized by the presence of monocline ridges, mainly formed by limestone. During the periods of volcanic activity of the Somma-Vesuvius and Phlegrean Fields, the ridges were mantled with pyroclastic materials in varying thickness. The pyroclastics have been involved in destructive landslides both in historical time and in the recent past (1997, 1998, 1999). The landslides occur following intense and prolonged rainfalls. In some cases, landslides extended up to 4 km into the surrounding lowlands and reached towns, causing severe destruction and over 200 deaths. Generally, the landslides begin as small debris slides that develop into large, shallow debris avalanches or debris flows involving pyroclastic horizons and colluvial soils (0.5–2 m thick) on steep and vegetated slopes, often at the heads of gullies. During motion, the landslide materials eroded vegetation and soils from the slope, so that the moving material volume tended to increase. Then, proceeding towards and beyond the base of the slopes, the phenomena evolved into hyperconcentrated streamflow due to dilution by incorporating water. The results of motion analyses are described. An empirical rheological relationship was used including two principal terms that depend on the total normal stress and on the flow velocity. On this basis, the model has simulated the velocity and duration of debris avalanches and the distribution of the deposits. The selected areas were those of Sarno/Quindici and Cervinara, where a large amount of data is available both on the material properties and geomorphological setting. It was found that the majority of the cases at the two sites can be simulated successfully with only one specific pair of rheologic parameters. This provides the possibility for first-order predictions to be made of the motion of future landslides. Such predictions will be a valuable tool for outlining potential hazard areas and designing remedial measures.  相似文献   

7.
http://www.sciencedirect.com/science/article/pii/S1674987111000508   总被引:2,自引:0,他引:2  
This paper presents the results of a set of numerical models focussing on structural controls on hydrothermal mineralization.We first give an overview of natural phenomena of structurally-controlled ore formation and the background theory and mechanisms for such controls. We then provide the results of a group of simple 2D numerical models validated through comparison with Cu-vein structure observed near the Shilu Copper deposit(Yangchun,Guangdong Province, China) and finally a case study of 3D numerical modelling applied to the Hodgkinson Province in North Queensland(Australia).Two modelling approaches,discrete deformation modelling and continuum coupled deformation and fluid flow modelling,are involved.The 2D model-derived patterns are remarkably consistent with the Cu-vein structure from the Shilu Copper deposit,and show that both modelling approaches can realistically simulate the mechanical behaviours of shear and dilatant fractures.The continuum coupled deformation and fluid flow model indicates that pattern of the Cuveins near the Shilu deposit is the result of shear strain localization,development of dilation and fluid focussing into the dilatant fracture segments.The 3D case-study models(with deformation and fluid flow coupling) on the Hodgkinson Province generated a number of potential gold mineralization targets.  相似文献   

8.
Rapid mass movements such as avalanches, debris flows, and rock fall are periodic or episodic phenomena that occur in alpine regions. Recent studies have shown that debris flows generate characteristic signals in the low-frequency infrasonic spectrum (4–15 Hz). Infrasound can travel thousands of kilometers and can still be detectable. This characteristic provides a basis for the development of wide area automated monitoring systems that can operate in locations unaffected by the activity of the process. This study focuses on the infrasound vibrations produced by a debris flow at the Lattenbach torrent, Tyrol (Austria), and by two events at the Illgraben torrent, Canton of Valais (Switzerland). The Lattenbach torrent is a very active torrent, which is located in the west of Tyrol in a geologic fault zone between the Silvrettakristallin and the Northern Limestone Alps. It has a large supply of loose sediment. The Illgraben torrent, which is well known for its frequent sediment transport and debris flow activity, has been equipped with instruments for debris flow monitoring since the year 2000. This study shows that debris flow emits low-frequency infrasonic signals that can be monitored and correlated with seismic signals. During the passage of the debris flow, several surges were identified by ultrasonic gauges and detected in the time series and the running spectra of infrasonic data.  相似文献   

9.
ABSTRACT

Location of failure slip surfaces plays a critical role in landslide risk assessment and mitigation, particularly for unstable slopes, because it is a key input to design of stabilisation measures for unstable slopes and it determines the volume of the sliding soil mass (i.e. landslide consequence). The failure slip surfaces in the numerical analysis (e.g. finite element/different method, FEM/FDM) are often identified using shear strength reduction (SSR) method. A careful examination of FEM results showed that, although the SSR method performs well for stable slopes, it might provide misleading results for unstable slopes. To properly locate failure slip surfaces for unstable slopes, this paper presents a particle-based numerical method called smoothed particle hydrodynamics (SPH), which is mesh-free, immune to the mesh distortion problem in FEM/FDM, and able to directly simulate large deformation of soils that occurs during landslides. A series of slope stability analyses is performed using an in-house SPH programme. Failure slip surfaces are properly identified by SPH for both stable and unstable slopes. Furthermore, because SPH provides a spatial distribution of the post-landslide large displacement of soils, the failure slip surfaces can be identified conveniently using soil displacement. A displacement-based criterion is proposed to locate the failure slip surfaces.  相似文献   

10.
The shallow deposits of unsaturated pyroclastic soils covering the slopes in the Campania region (southern Italy) are systematically affected by various rainfall-induced slope instabilities. The type and triggering of these instabilities depend on several factors, among which in situ soil suction—as an initial condition—and rainfall—as a boundary condition—play a fundamental role. Based on the available database—which includes a comprehensive catalogue of historical data, in situ soil suction measurements and soil laboratory tests along with the results of geomechanical analyses—this paper discusses the relationships among in situ soil suction and rainfall conditions and induced slope instability types. The goal is to reach a better understanding of past events and gain further insight into the analysis and forecasting of future events. In particular, the paper outlines how the season strongly affects the spatial distribution and the type of slope instability likely to develop. For example, erosion phenomena essentially occur at the end of the dry season and originate hyperconcentrated flows while first-time shallow slides prevail in the rainy season and later propagate as debris flows or as debris avalanches.  相似文献   

11.
Liquefaction can result in the damage or collapse of structures during an earthquake and can therefore be a great threat to life and property. Many site investigations of liquefaction disasters are needed to study the large-scale deformation and flow mechanisms of liquefied soils that can be used for performance assessments and infrastructure improvement. To overcome the disadvantages of traditional flow analysis methods for liquefied soils, a soil–water-coupled smoothed particle hydrodynamics (SPH) modeling method was developed to analyze flow in liquefied soils. In the proposed SPH method, water and soil were simulated as different layers, while permeability, porosity, and interaction forces could be combined to model water-saturated porous media. A simple shear test was simulated using the SPH method with an elastic model to verify its application to solid phase materials. Subsequently, the applicability of the proposed SPH modeling method to the simulation of interaction forces between water and soil was verified by a falling-head permeability test. The coupled SPH method produced good simulations for both the simple shear and falling-head permeability tests. Using a fit-for-purpose experimental apparatus, a physical flow model test of liquefied sand has been designed and conducted. To complement the physical test, a numerical simulation has been undertaken based on the soil–water-coupled SPH method. The numerical results correspond well with the physical model test results in observed configurations and velocity vectors. An embankment failure in northern Sweden was selected so that the application of the soil–water-coupled SPH method could be extended to an actual example of liquefaction. The coupled SPH method simulated the embankment failure with the site investigation well. They have also estimated horizontal displacements and velocities, which can be used to greatly improve the seismic safety of structures.  相似文献   

12.
A model building strategy is tested to assess the susceptibility for extreme climatic events driven shallow landslides. In fact, extreme climatic inputs such as storms typically are very local phenomena in the Mediterranean areas, so that with the exception of recently stricken areas, the landslide inventories which are required to train any stochastic model are actually unavailable. A solution is here proposed, consisting in training a susceptibility model in a source catchment, which was implemented by applying the binary logistic regression technique, and exporting its predicting function (selected predictors regressed coefficients) in a target catchment to predict its landslide distribution. To test the method, we exploit the disaster that occurred in the Messina area (southern Italy) on 1 October 2009 where, following a 250-mm/8-h storm, approximately two thousand debris flow/debris avalanches landslides in an area of 21 km2 triggered, killing 37 people and injuring more than 100, and causing 0.5 M € worth of structural damage. The debris flows and debris avalanches phenomena involved the thin weathered mantle of the Varisican low to high-grade metamorphic rocks that outcrop in the eastern slopes of the Peloritani Mounts. Two 10-km2-wide stream catchments, which are located inside the storm core area, were exploited: susceptibility models trained in the Briga catchment were tested when exported to predict the landslides distribution in the Giampilieri catchment. The prediction performance (based on goodness of fit, prediction skill, accuracy and precision assessment) of the exported model was then compared with that of a model prepared in the Giampilieri catchment exploiting its landslide inventory. The results demonstrate that the landslide scenario observed in the Giampilieri catchment can be predicted with the same high performance without knowing its landslide distribution: we obtained, in fact, a very poor decrease in predictive performance when comparing the exported model to the native random partition-based model.  相似文献   

13.
A pore-scale numerical model based on Smoothed Particle Hydrodynamics (SPH) is described for modelling fluid flow phenomena in porous media. Originally developed for astrophysics applications, SPH is extended to model incompressible flows of low Reynolds number as encountered in groundwater flow systems. In this paper, an overview of SPH is provided and the required modifications for modelling flow through porous media are described, including treatment of viscosity, equation of state, and no-slip boundary conditions. The performance of the model is demonstrated for two-dimensional flow through idealized porous media composed of spatially periodic square and hexagonal arrays of cylinders. The results are in close agreement with solutions obtained using the finite element method and published solutions in the literature. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Several high-altitude slope instability phenomena, involving rock blocks of different volumes, have been observed in recent years. The increase in these phenomena could be correlated to climatic variations and to a general increase in temperature that has induced both ice melting with consequent water seepage and glacial lowering, with a consequent loss of support of the rock face. The degradation of the high-altitude thermal layer, which is known as “permafrost”, can determine the formation of highly fractured rock slopes where instabilities can concentrate. The present research has developed a methodology to improve the understanding and assessment of rock slope stability conditions in high mountain environments where access is difficult. The observed instabilities are controlled by the presence of discontinuities that can determine block detachments. Consequently, a detailed survey of the rock faces is necessary, both in terms of topography and geological structure, and in order to locate the discontinuities on the slope to obtain a better geometric reconstruction and subsequent stability analysis of the blocky rock mass. Photogrammetric surveys performed at different times allow the geostructure of the rock mass to be determined and the rock block volumes and detachment mechanisms to be estimated, in order to assess the stability conditions and potential triggering mechanisms. Photogrammetric surveys facilitate both the characterisation of the rock mass and the monitoring of slope instabilities over time. The methodology has been applied in a case study pertaining to the North Face of Aiguilles Marbrées in the Mont Blanc massif, which suffers from frequent instability phenomena. A slope failure that occurred in 2007 has been back-analysed using both the limit equilibrium method (LEM) and 3D distinct element modelling (DEM). The method has been supported and validated with traditional in situ surveys and measurements of the discontinuity orientation and other rock mass features.  相似文献   

15.
The Niumiangou Creek rock avalanche was triggered by an Ms 8.0 earthquake that happened on 12 May 2008 in the Sichuan Province, China. The rock avalanche traveled a horizontal distance of 3.0 km over a vertical elevation difference of 0.89 km, equivalent to a coefficient of friction of only 0.29. The travel path of the rock avalanche can be divided into three segments: (1) failing and disintegrating, (2) flying, (3) flowing. In the failing and disintegrating segment, the rock slope failed because of the coupled action of horizontal and vertical force of the earthquake, then smashed into the opposite mountain and disintegrated. In the flying segment, the disintegrating rock mass changed direction and flew into the Lianhuaxin Creek, which was different from the previous research results that concluded rock debris flowed in Lianhuaxin Creek. A great amount of air trapped and compressed under the rock debris acted as air cushion and supported the rock debris to fly a further distance. In the flowing segment, the rock debris flowed on the ground surface in Niumiangou Creek. The flowing velocity has been estimated from the maximum elevation and runup according to the damaged trimlines of the debris. The saturated fine material in Niumiangou Creek entrained by the failed debris mass is thought to have contributed to the long runout of the debris. The Niumiangou Creek rock avalanche is one of the three longest rock avalanches triggered by Wenchuan earthquake. The conclusions of the paper have implications for hazard assessment of potential rock avalanches in the earthquake area and the other similar mountainous area in west China.  相似文献   

16.
Flow-like landslides have caused significant damage and casualties worldwide. However, studying such phenomena with traditional simulation methods is made difficult by their complex fluidization characteristics. In this paper, we use smoothed-particle hydrodynamics (SPH) for the run-out analysis of flow-like landslides. Compared with conventional methods, the proposed SPH modeling technique is the combination of a Bingham flow model and Navier?CStokes equations in the framework of computational fluid dynamics. At first, two benchmark problems of dam break and granular flow are simulated and verified to evaluate the accuracy of the SPH model. Then, run-out analyses are performed for flow-like landslides triggered by the Ms 8.0 Wenchuan earthquake that occurred on 12 May 2008 in Sichuan Province, China. Run-out analyses of the Tangjiashan, Wangjiayan, and Donghekou landslides are conducted by the application of SPH models to real flow-like landslides. All simulations show good agreement with characteristics of flow-like landslides observed in the field. We have found that numerical modeling can capture the fundamental dynamic behavior of these flow-like landslides and produce preliminary results for hazard assessment and site selection for reconstruction in earthquake-prone areas.  相似文献   

17.
Catastrophic volcanic debris avalanches reshape volcanic edifices with up to half of pre-collapse cone volumes being removed. Deposition from this debris avalanche deposit often fills and inundates the surrounding landscape and may permanently change the distribution of drainage networks. On the weakly-incised Mt. Taranaki ring-plain, volcanic debris avalanche deposits typically form a large, wedge shape (in plan view), over all flat-lying fans. Following volcanic debris avalanches a period of intense re-sedimentation commonly begins on ring-plain areas, particularly in wet or temperate climates. This is exacerbated by large areas of denuded landscape, ongoing instability in the scarp/source region, damming of river/stream systems, and in some cases inherent instability of the volcanic debris avalanche deposits. In addition, on Mt. Taranaki, the collapse of a segment of the cone by volcanic debris avalanche often generates long periods of renewed volcanism, generating large volumes of juvenile tephra onto unstable and unvegetated slopes, or construction of new domes with associated rock falls and block-and-ash flows. The distal ring-plain impact from these post-debris avalanche conditions and processes is primarily accumulation of long run-out debris flow and hyperconcentrated flow deposits with a variety of lithologies and sedimentary character. Common to these post-debris avalanche units is evidence for high-water-content flows that are typically non-cohesive. Hence sedimentary variations in these units are high in lateral and longitudinal exposure in relation to local topography. The post-collapse deposits flank large-scale fans and hence similar lithological and chronological sequences can form on widely disparate sectors of the ring plain. These deposits on Mt. Taranaki provide a record of landscape response and ring-plain evolution in three stages that divide the currently identified Warea Formation: 1) the deposition of broad fans of material adjacent to the debris avalanche unit; 2) channel formation and erosion of Stage 1 deposits, primarily at the contact between debris avalanche deposits and the Stage 1 deposits and the refilling of these channels; and 3) the development of broad tabular sheet flows on top of the debris avalanche, leaving sediments between debris avalanche mounds. After a volcanic debris avalanche, these processes represent an ever changing and evolving hazard-scape with hazard maps needing to be regularly updated to take account of which stage the sedimentary system is in.  相似文献   

18.
We pay a revisit to some classical geomechanics problems using a novel computational multiscale modelling approach. The multiscale approach employs a hierarchical coupling of the finite element method (FEM) and the discrete element method. It solves a boundary value problem at the continuum scale by FEM and derives the material point response from the discrete element method simulation attached to each Gauss point of the FEM mesh. The multiscale modelling framework not only helps successfully bypass phenomenological constitutive assumptions as required in conventional modelling approaches but also facilitates effective cross‐scale interpretation and understanding of soil behaviour. We examine the classical retaining wall and footing problems by this method and demonstrate that the simulating results can be well validated and verified by their analytical solutions. Furthermore, the study sheds novel multiscale insights into these classical problems and offers a new tool for geotechnical engineers to design and analyse geotechnical applications based directly upon particle‐level information of soils. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
高速远程滑坡裹气流态化模型试验研究   总被引:1,自引:0,他引:1  
为分析高速远程滑坡运动过程中碎屑流的裹气流态化特性,以汶川地震触发的谢家店子滑坡为原型,运用自行设计的流化床试验装置,开展了一系列高速远程滑坡碎屑流裹气流态化特性的试验研究。结果表明:(1) 对于颗粒粒径变化范围广(0.1~7 mm者均有)、颗粒形状极不规则、且底部细颗粒含量高的类滑坡碎屑,其床层压降随着供风量的增加并非呈线性增长趋势,而是表现出明显的气泡控制性特征,随堆积体内部气泡和气垫层位置的不同,堆积体各部位床层压降相差较大;(2) 当供风量较低时,碎屑堆积体整体稳定性较好,在堆积体表面仅可见有限气体逸散孔的分布;当供风量达到一定值后,堆积体内部流态化特性增强,可见砂质密云、气孔、纵向脊等一系列与高速远程滑坡实例中相类似现象的出现;(3) 对于滑坡类不规则颗粒,其间容易形成架桥现象,增强碎屑流整体稳定性,使气流不易扩散,在堆积体下方形成高压气垫层,产生空气擎托现象。  相似文献   

20.
Fast-moving landslides are one of the most significant dangers deriving from slope instabilities. Landslides involving large volumes can develop in rock or debris avalanches with extreme mobility and enormous destructiveness. Nevertheless, a relevant number of casualties and damages derive from small, fast-moving landslides with flow-like behaviour.

The Las Colinas landslide occurred at Santa Tecla (El Salvador, Central America) during a strong earthquake. It slid off the northern flank of the Bálsamo ridge, and resulted in almost 500 casualties and can be considered one of the most destructive landslides ever known. Earthquake shaking was amplified by the rock mass and the steep ridge topography.

We collected original geological, geomorphological and geophysical data in the Cordillera del Bálsamo area. The involved materials, ranging from lapilli to tuff layers of different strength, have been mapped and characterized.

Slope stability analyses have been performed both under static and dynamic conditions through limit equilibrium and finite element methods.

Hazard zonation for this type of landslides requires the forecast of the movement velocity and final deposition area. We used a fully two-dimensional FEM model to simulate landslide spreading downslope. The developed code allows the use of different constitutive models and yield rules with the possibility to model and study internal deformation of the landslide mass, as well material entrainment and deposition.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号