首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magmatic system feeding the last eruption of the volcano La Fossa, Vulcano Island, Italy was studied. The petrogenetic mechanisms controlling the differentiation of erupted rocks were investigated through petrography, mineral chemistry, major, trace and rare earth element and Sr, Nd and Pb isotopic geochemistry. In addition, melt inclusion and fluid inclusion data were collected on both juvenile material and xenolithic partially melted metamorphic clasts to quantify the P-T conditions of the magma chamber feeding the eruption. A regular and continuous chemical zoning has been highlighted: rhyolites are the first erupted products, followed by trachytes and latites, whereas rhyolitic compositions were also found in the upper part of the sequence. The chemical and isotopic composition of the rhyolites indicates that they originated by fractional crystallization from latitic magmas plus the assimilation of crustal material; the trachytes represent hybrid magmas resulting from the mixing of latites and rhyolites, contaminated in the shallow magmatic system. The erupted products, primarily compositionally zoned from latites to rhyolites, are heterogeneous due to syn-eruptive mingling. The occurrence of magmacrust interaction processes, evidenced by isotopic variations (87Sr/86Sr=0.70474±3 to 0.70511±3; 143Nd/144Nd=0.512550±6 to 0.512614±8; 206Pb/204Pb=19.318–19.489; 207Pb/204Pb=15.642–15.782; 208Pb/204Pb=39.175–39.613), is confirmed by the presence of partially melted metamorphic xenoliths, with 87Sr/86Sr=0.71633±6 to 0.72505±2 and 143Nd/144Nd=0.51229±7, in rhyolites and trachytes. AFC calculations indicate a few percentage contribution of crustal material to the differentiating magmas. Thermometric measurements on melt inclusions indicate that the crystallization temperatures of the latites and trachytes were in the range of 1050–1100° C, whereas the temperature of the rhyolites appears to have been around 1000°C at the time of the eruption. Compositional data on melt inclusions reveal that the magmas involved in the eruption contained about 1–1.5 wt.% dissolved H2O in pre-eruptive conditions. Secondary fluid inclusions found in metamorphic xenoliths give low equilibration pressure data (30–60 MPa), giving the location of the higher portions of the chamber at around 1500–2000 m of depth.  相似文献   

2.
Over the last 42 ka, volcanic activity at Lipari Island (Aeolian Arc, Italy) produced lava domes, flows and pyroclastic deposits with rhyolitic composition, showing in many cases evidence of magma mixing such as latitic enclaves and banding. In this same period, on nearby Vulcano Island, similar rhyolitic lava domes, pyroclastic products and lava flows, ranging in composition from shoshonite to rhyolite, were erupted. As a whole, the post-42 ka products of Lipari and Vulcano show geochemical variations with time, which are well correlated between the two islands and may correspond to a modification of the primary magmas. The rhyolitic products are similar to each other in their major elements composition, but differ in their trace element abundances (e.g. La ranging from 40 to 78 ppm for SiO2 close to 75 wt%). Their isotopic composition is variable, too. The 87Sr/86Sr (0.704723–0.705992) and 143Nd/144Nd (0.512575–0.512526) ranges partially overlap those of the more mafic products (latites), having 87Sr/86Sr from 0.7044 to 0.7047 and 143Nd/144Nd from 0.512672 to 0.512615. 206Pb/204Pb is 19.390–19.450 in latites and 19.350–19.380 in rhyolites. Crystal fractionation and crustal assimilation processes of andesitic to latitic melts, showing an increasing content in incompatible elements in time, may explain the genesis of the different rhyolitic magmas. The rocks of the local crustal basement assimilated may correspond to lithotypes present in the Calabrian Arc. Mixing and mingling processes between latitic and rhyolitic magmas that are not genetically related occur during most of the eruptions. The alignment of vents related to the volcanic activity of the last 40 ka corresponds to the NNW–SSE Tindari–Letojanni strike-slip fault and to the correlated N–S extensional fault system. The mafic magmas erupted along these different directions display evidence of an evolution at different PH2O conditions. This suggests that the Tindari–Letojanni fault played a relevant role in the ascent, storage and diversification of magmas during the recent volcanic activity.  相似文献   

3.
A suite of 16 basanitic volcanic rocks, representing all stages in the evolution of the La Breña — El Jagüey (LBEJ) Maar Complex, has been studied petrographically and analyzed for mineral compositions and whole-rock major element, trace element, and Sr–Nd–Pb isotopic compositions. Two feldspathic granulite xenoliths were also studied as possible lower-crustal contaminants to the LBEJ magmas. The volcanic rocks contain the stable minerals olivine, plagioclase, augite, and titanomagnetite±ilmenite, plus a diverse suite of xenocrusts derived from disaggregation of mantle xenoliths of spinel lherzolite (olivine, orthopyroxene, spinel) and lower-crustal granulite xenoliths (plagioclase, quartz, augite, ilmenite). Late-stage interstitial melts rich in Fe and Ti migrated into vesicles in several samples, forming coarse-grained segregation vesicles that are dominated by ilmenite blades up to 2 mm long. The whole-rock elemental data are typical of intra-plate basanitic rocks, with strong enrichments in large ion lithophile elements (i.e. K, Th, U) as well as high field strength elements (i.e. Nb, Ta) relative to mid-ocean ridge basalts (MORB) and estimates of primordial mantle abundances. Mg# increased systematically with time during the evolution of the LBEJ Maar Complex, from 57.0–58.2 in the pre-maar lavas to 59.1–63.8 in the post-maar lavas. Compatible elements (Ca, Sc, Cr, Co, Ni) correlate positively with Mg#, whereas a large group of incompatible elements (Al, Na, K, P, Rb, Sr, Zr, Nb, Ba, La, Ce, Sm, Hf, Ta, Th, U) correlate negatively with Mg#. These trends can be closely reproduced by simple models of fractional crystallization, provided that the incompatible element abundances of the parental, high-Mg# magmas are allowed minor variability. All successful fractionation models demand an important role for augite, despite its presence in the LBEJ volcanic rocks as only a late-stage microphenocrystic and groundmass mineral. Minor garnet fractionation is necessary to produce depletion of heavy rare earth element (REE) abundances in the pre-maar lavas, whose REE patterns cross those for the rest of the suite. The importance of augite and garnet fractionation indicate that the differentiation of the LBEJ magmas took place within the upper mantle, a conclusion that is supported by the presence of spinel lherzolite xenoliths in magmas from all stages in the evolution of the maar complex. Isotopic data for seven LBEJ volcanic rocks show the following ranges: 87Sr/86Sr 0.70327–0.70347, Nd 4.2–5.0, 206Pb/204Pb 18.60–18.81, 207Pb/204Pb 15.58–15.65, 208Pb/204Pb 38.19–38.58. Sr-Nd values are negatively correlated and form a trend parallel to the mantle array, overlapping the field for ocean island basalts (OIB). The LBEJ rocks have similar 87Sr/86Sr values but lower Nd compared to basanitic rocks from the US Basin and Range Province (BRP). Pb isotopic ratios are positively correlated and overlap the braod fields for MORB and OIB and the small fields for Mexican ore deposits and volcanic rocks from the active subduction-related Mexican Volcanic Belt. The LBEJ rocks have slightly more radiogenic Pb than basanitic rocks from the US BRP. Despite correlations among the isotopic ratios of the LBEJ suite, none of these ratios correlate with position in the eruption sequence, Mg#, or any other compositional parameter. The two lower-crustal xenoliths have high 87Sr/86Sr values (0.707, 0.710) and low Nd (-1.5,-8.0) compared to the LBEJ volcanic rocks, but their Pb isotopic compositions are only slightly more radiogenic than the volcanic rocks. These data do not support the widely held view that the lower crust is a major reservoir of unradiogenic Pb. In order to further constrain the role played by crustal contamination in generating the isotopic diversity in the LBEJ suite, we conducted an extensive investigation of Sr–Nd–Pb isotopic ratios for scoria clasts from different levels of a single scoria-fall horizon in the pyroclastic sequence related to the formation of La Breña Maar. Our results do not support an important role for crustal contamination in the LBEJ magmas. Rather, we conclude that minor isotopic variability exists in the mantle source regions beneath the maar complex.  相似文献   

4.
The Campi Flegrei hosts numerous monogenetic vents inferred to be younger than the 15 ka Neapolitan Yellow Tuff. Sanidine crystals from the three young Campi Flegrei vents of Fondi di Baia, Bacoli and Nisida were dated using 40Ar/39Ar geochronology. These vents, together with several other young edifices, occur roughly along the inner border of the Campi Flegrei caldera, suggesting that the volcanic conduits are controlled by caldera-bounding faults. Plateau ages of ∼9.6 ka (Fondi di Baia), ∼8.6 ka (Bacoli) and ∼3.9 ka (Nisida) indicate eruptive activity during intervals previously interpreted as quiescent. A critical revision, involving calendar age correction of literature 14C data and available 40Ar/39Ar age data, is presented. A new reference chronostratigraphic framework for Holocene Phlegrean activity, which significantly differs from the previously adopted ones, is proposed. This has important implications for understanding the Campi Flegrei eruptive history and, ultimately, for the evaluation of related volcanic risk and hazard, for which the inferred history of its recent activity is generally taken into account.  相似文献   

5.
Historical volcanic rocks of the Aeolian islands range in composition from shoshonitic basalts to rhyolites, which might reflect fractional crystallization of a shoshonitic parent magma. However Sr and Pb isotopic data indicate a more complex history. The shoshonitic basalts at present erupted at Stromboli, although chemically similar to the postulated parent magma, are genetically unrelated to the other studied rocks. Sr isotopes indicate that Vulcano, Vulcanello and Lipari had independent magma sources. It is proposed that crustal contamination raised the Sr isotopic composition of the Lipari rhyolites. The rocks of these island are related by a common very steep trend of207Pb/204Pbvs. 206Pb/204Pb. Such a trend is a common feature of orogenic magmas and shows that Pb was derived by mixing of at least two components. Presently it is impossible to constrain precisely either the timing or the physical meaning of the Pb end members. The Pb isotopic trend in the Eolian island is very distinct from those recorded in volcanic rocks both from behind the arc (Etna, Iblean Mts.) and from Central and Southern Italy.  相似文献   

6.
Digital marine seismic reflection data acquired in 1973 in the Bay of Pozzuoli, and recently reprocessed, were used to study the volcanological evolution of the marine sector of Campi Flegrei Caldera during the last 37 ka. In order to gain more information, interpretation also involved estimation of the "pseudo-velocity" and the "pseudo-density" from the resistivity logs of two onshore deep exploration wells. The main results are: (1) discovery of ancient pre-18 ka and post-37 ka submarine and mainly effusive volcanic activity, along coeval emission centers located at the edges of Campi Flegrei Caldera; (2) confirmation that the caldera collapse in the marine sector of Campi Flegrei seems strongly controlled by regional NE–SW and NW–SE structural discontinuities; (3) the finding of at least two episodes of collapse in the bay; and (4) identification of a post-18 ka volcanic deflation phase that has caused about 150–200 m of subsidence in the central sector of the Bay of Pozzuoli in the last 18 ka.Editorial responsibilty: T. Druitt  相似文献   

7.
Igneous rocks from the Philippine tectonic plate recovered on Deep Sea Drilling Project Legs 31, 58 and 59 have been analyzed for Sr, Nd and Pb isotope ratios. Samples include rocks from the West Philippine Basin, Daito Basin and Benham Rise (40–60 m.y.), the Palau-Kyushu Ridge (29–44 m.y.) and the Parece Vela and Shikoku basins (17–30 m.y.). Samples from the West Philippine, Parece Vela and Shikoku basins are MORB (mid-ocean ridge basalt)-like with 87Sr/86Sr= 0.7026−0.7032, 143Nd/144Nd= 0.51300−0.51315, and 206Pb/204Pb= 17.8−18.1. Samples from the Daito Basin and Benham Rise are OIB (oceanic island basalt)-like with 87Sr/86Sr= 0.7038−0.7040, 143Nd/144Nd= 0.51285−0.51291 and 206Pb/204Pb= 18.8−19.2. All of these rocks have elevated 207Pb/204Pb and 208Pb/204Pb compared to the Northern Hemisphere Regression Line (NHRL) and have δ207Pb values of 0 to +6 and δ208Pb values of +32 to +65. Lavas from the Palau-Kyushu Ridge, a remnant island arc, have 87Sr/86Sr= 7032−0.7035, 143Nd/144Nd= 0.51308−0.51310 and 206Pb/204Pb= 18.4−18.5. Unlike the basin magmas erupted before and after them, these lavas plot along the NHRL and have Pb-isotope ratios similar to modern Pacific plate MORB's. This characteristic is shared by other Palau-Kyushu Arc volcanic rocks that have been sampled from submerged and subaerial portions of the Mariana fore-arc.At least four geochemically distinct magma sources are required for these Philippine plate magmas. The basin magmas tap Source 1, a MORB-mantle source that was contaminated by EMI (enriched mantle component 1 [31]) and Source 2, an OIB-like mantle source with some characteristics of EMII (enriched mantle component 2 [31]). The arc lavas are derived from Source 3, a MORB-source or residue mantle including Sr and Pb from the subducted oceanic crust, and Source 4, MORB-source or residue mantle including a component with characteristics of HIMU (mantle component with high U/Pb [31]). These same sources can account for many of the isotopic characteristics of recent Philippine plate arc and basin lavas. The enriched components in these sources which are associated with the DUPAL anomaly were probably introduced into the asthenosphere from the deep mantle when the Philippine plate was located in the Southern Hemisphere 60 m.y.b.p.  相似文献   

8.
The central Campanian Plain is dominated by the structural depression of Acerra whose origin is tectonic, but may have been enlarged and further depressed after the eruption of the Campanian Ignimbrite (42-25 ka). The deposits of the Campanian Ignimbrite are possibly the results of multiple eruptions with huge pyroclastic deposits that covered all the Campanian Plain.The more recent activity of Vesuvius, Campi Flegrei and Procida occurred on the borders of Acerra depression and resulted from a reactivation of regional faults after the Campanian Ignimbrite cycle. The activity of Vesuvius produced the building of a stratovolcano mostly by effusive and plinian explosive eruptions. The Campi Flegrei area, on the contrary, was dominated by the eruption of the Neapolitan Yellow Tuff at 12 ka that produced a caldera collapse of the Gulf of Pozzuoli. The caldera formation controlled the emplacement of the recent activity of Campi Flegrei and the new volcanoes were formed only within the caldera or along its rim.  相似文献   

9.
The Philippine islands are situated between two oppositely dipping zones of seismicity. With the exception of a few areas, such as in the west central Philippines where the North Palawan continental terrane (NPCT) has collided with the archipelago, these seismic zones are well defined to depths of 200 km. Active volcanic chains overlay segments in each of these zones, suggesting that subduction is presently taking place both east and west of the islands. Lavas we have studied are thus divided between what has been termed the West Philippine arc and the East Philippine arc.West Philippine arc volcanic rocks which were extruded before the Philippine archipelago collided with the NPCT, or which are younger than the collision but crop out hundreds of kilometers from the collision zone, and all but one of the rocks from the East Philippine arc fall in the MORB field on207Pb/204Pb versus206Pb/204Pb covariation diagrams. This is surprising considering the frequency with which arc materials have207Pb/204Pb ratios higher than those of MORB, the highBa/REE and Sr/REE ratios in the lavas and the possibility of sediment subduction given the small accretionary prisms. All of these rocks have high208Pb/204Pb ratios with respect to Pacific and Atlantic Ocean MORB, but are similar to Indian Ocean MORB and IOB. Thus the Philippines consist of island arcs with the peculiar Dupal isotopic anomaly documented between 0° and 60°S in the southern hemisphere and particularly in the Indian Ocean region. This demonstrates that the Dupal isotopic anomaly is not restricted to the southern hemisphere, or to MORB and OIB.Post-collision rocks cropping out near the NPCT, in the West Philippine arc, have elevated208Pb/204Pb and 207Pb/204Pb ratios that could be attributed to assimilation of the newly introduced continental crust (NPCT) by mantle-derived magmas or to the addition of a sedimentary component to mantle-derived magmas.  相似文献   

10.
The isotopic compositions of Sr, Nd and Pb together with the abundances of Rb, Sr, U and Pb have been determined for mafic and felsic potassic alkaline rocks from the young Virunga volcanic field in the western branch of the East African rift system.87Sr/86Sr varies from 0.7055 to 0.7082 in the mafic rocks and from 0.7073 to 0.7103 in the felsic rocks. The latter all come from one volcano, Sabinyo. Sabinyo rocks have negative εNdvalues ofεNd = ?10. Nd and Sr isotopic variations in the basic potassic rocks are correlated and plot between Sabinyo and previously reported [1] compositions (εNd = +2.5;87Sr/86Sr≈ 0.7047) for Nyiragongo nephelinites. The Pb isotopic compositions for Sabinyo rocks are nearly uniform and average206Pb/204Pb≈ 19.4,207Pb/204Pb= 15.79–15.84,208Pb/204Pb≈ 41.2. The basic potassic rocks have similar206Pb/204Pb values but range in207Pb/204Pb and208Pb/204Pb from the Sabinyo values to less radiogenic compositions.Excellent correlations of87Sr/86Sr with Rb/Sr, 1/Sr and207Pb/206Pb for Sabinyo rocks suggest these to be members of a hybrid magma series. However, the nearly uniform Pb compositions for this series points to radiogenic growth of87Sr in the magma source region following an event which homogenized the isotopic compositions but not Rb/Sr. The Rb-Sr age derived from the erupted Sabinyo isochron-mixing line is consistent with the ~500 Myr Pb-Pb age from Nyiragongo [1], which suggests that this event affected all Virunga magma sources. The event can again be traced in the Pb-Pb, Pb-Sr and Nd-Sr isotopic correlations for all Virunga rocks, including Nyiragongo, when allowances are made for radiogenic growth subsequent to this mixing or incomplete homogenization event. Inferred parent/daughter element fractionations point to a metasomatic event during which a mantle fluid invaded two lithospheric reservoirs: a +εNd reservoir sampled by the Nyiragongo nephelinites and suggested to be the subcontinental mantle and a ?εNd reservoir sampled by the mafic and felsic potasssic volcanism. Whether this ?εNd reservoir is the crust, continental crustal material in the mantle or anomalous mantle cannot be decided from the data. The simplest answer, that this reservoir is the continental crust, seems to be at variance with experimental evidence suggesting a subcrustal origin for basic potassic magmas. Partial melting of the ancient metasomatised lithospheric domains and ensuing volcanism seems to be entirely a response to decompression and rising geotherms during rifting and thinning of the lithosphere.  相似文献   

11.
Geochemical analyses of dikes, sills, and volcanic rocks of the Mesozoic Appalachian Tholeiite (MAT) Province of the easternmost United States provide evidence that continental tholeiites are derived from continental lithospheric mantle sources that are genetically and geochronologically related to the overlying continental crust. Nineteen olivine tholeiites and sixteen quartz tholeiites from the length of this province, associated in space and time with the last opening of the Atlantic, display significant isotopic heterogeneity: initial εNd = +3.8 to −5.7; initial 87Sr/86Sr= 0.7044−0.7072; 206Pb/204Pb= 17.49−19.14; 207Pb/204Pb= 15.55−15.65; 208Pb/204Pb= 37.24−39.11. In PbPb space, the MAT define a linear array displaced above the field for MORB and thus resemble oceanic basalts with DUPAL Pb isotopic traits. A regression of this array yields a secondary PbPb isochron age of ≈ 1000 Ma (μ1 = 8.26), similar to Sm/Nd isochrons from the southern half of the province and to the radiometric age of the Grenville crust underlying easternmost North America. The MAT exhibit significant trace element ratio heterogeneity (e.g., Sm/Nd= 0.226−0.327) and have trace element traits similar to convergent margin magmas [e.g., depletions of Nb and Ti relative to the rare earth elements on normalized trace element incompatibility diagrams, Ba/Nb ratios (19–75) that are significantly greater than those of MORB, and low TiO2 (0.39–0.69%)].Geochemical and geological considerations very strongly suggest that the MAT were not significantly contaminated during ascent through the continental crust. Further, isotope and trace element variations are not consistent with the involvement of contemporaneous MORB or OIB components. Rather, the materials that control the MAT incompatible element chemistry were derived from subcontinental lithospheric mantle. Thus: (1) the MAT/arc magma trace element similarities; (2) the PbPb and Sm/Nd isochron ages; and (3) the need for a method of introducing an ancient (> 2−3 Ga) Pb component into subcontinental mantle that cannot be much older than 1 Ga leads to a model whereby the MAT were generated by the melting of sediment-contaminated arc mantle that was incorporated into the continental lithosphere during arc activity preceding the Grenville Orogeny (≈ 1000 Ma).  相似文献   

12.
A new pyroclastic stratigraphy is presented for the island of Ischia, Italy, for the period ∼75–50 ka BP. The data indicate that this period bore witness to the largest eruptions recorded on the island and that it was considerably more volcanically active than previously thought. Numerous vents were probably active during this period. The deposits of at least 10 explosive phonolite to basaltic-trachyandesite eruptions are described and interpreted. They record a diverse range of explosive volcanic activity including voluminous fountain-fed ignimbrite eruptions, fallout from sustained eruption columns, block-and-ash flows, and phreatomagmatic eruptions. Previously unknown eruptions have been recognised for the first time on the island. Several of the eruptions produced pyroclastic density currents that covered the whole island as well as the neighbouring island of Procida and parts of the mainland. The morphology of Ischia was significantly different to that seen today, with edifices to the south and west and a submerged depression in the centre. The largest volcanic event, the Monte Epomeo Green Tuff (MEGT) resulted in caldera collapse across all or part of the island. It is shown to comprise at least two thick intracaldera ignimbrite flow-units, separated by volcaniclastic sediments that were deposited during a pause in the eruption. Extracaldera deposits of the MEGT include a pumice fall deposit emplaced during the opening phases of the eruption, a widespread lithic lag breccia outcropping across much of Ischia and Procida, and a distal ignimbrite in south-west Campi Flegrei. During this period the style and magnitude of volcanism was dictated by the dynamics of a large differentiated magma chamber, which was partially destroyed during the MEGT eruption. This contrasts with the small-volume Holocene and historical effusive and explosive activity on Ischia, the timing and distribution of which has been controlled by the resurgence of the Monte Epomeo block. The new data contribute to a clearer understanding of the long-term volcanic and magmatic evolution of Ischia.  相似文献   

13.
Two groups of rhyolites have been recognized at San Vincenzo (Tuscany, Italy). Group A rhyolites are characterized by plagioclase, quartz, biotite, sanidine and cordierite mineral assemblages. They show constant MgO and variable CaO and Na2O contents. Initial87Sr/86Sr ratios in group A samples range between 0.71950 and 0.72535, whereas the Nd isotopic compositions are relatively constant (0.51215–0.51222). Group B rhyolites are characterized by orthopyroxene and clinopyroxene as additional minerals, and show textural, mineralogical and chemical evidence of interaction with more mafic magmas. The Sr and Nd isotopic ratios range between 0.71283–0.71542 and 0.51224–0.51227 respectively. Magmatic inclusions of variable size (1 mm to 10 cm) were found in groups B rhyolites. These inclusions consist mainly of diopsidic clinopyroxene and minor olivine and biotite. They are latitic in composition and represent blobs of hybrid intermediate magmas entrained in the rhyolitic melts. These magmatic inclusions have relatively high Sr contents (996–1529 ppm) and Sr and Nd isotope-ratios of 0.70807–0.70830 and 0.51245–0.51252 respectively.87Sr/87Sr data on minerals separated from both group A and B rhyolites and magmatic inclusions reveal strong isotopic disequilibria due to the presence of both restitic and newly crystallized phases in group A rhyolites and due to interaction of rhyolites with a mantle-de-rived magma in group B rhyolites. Isotopic data on whole rocks and minerals allow us to interpret the group A rhyolites as representative of different degrees of melting of an isotopically fairly homogeneous pelitic source; conversely, group B rhyolites underwent interactions with a mantle-derived magma. The crustal source as inferred from isotopic systematics would be characterized by87Sr/86Sr and143Nd/144Nd ratios close to 0.7194 and 0.51216 respectively. The sub-crustal magma would have Sr isotopic composition close to 0.7077 and a143Nd/144Nd ratio greater than or equal to 0.51252. These isotopic features are different from those reported for the parental magmas postulated for Vulsini and Alban Hills in the nearby Roman Magmatic Province, and are similar to those of the Vesuvius and Ischia magmas.  相似文献   

14.
New Sr and Nd isotope data for whole rocks, glasses and minerals are combined to reconstruct the nature and origin of mixing end-members of the 200 km3 trachytic to phonolitic Campanian Ignimbrite (Campi Flegrei, Italy) magmatic system. The least-evolved magmatic end-member shows equilibrium between host glass and the majority of the phenocrysts and is less radiogenic in Sr and Nd than the most-evolved magma. On the contrary, only the Fe-rich pyroxene from the most-evolved erupted magma is in equilibrium with the matrix glass, while all other minerals are in isotopic disequilibrium. These magmas mixed prior to and during the Campanian Ignimbrite eruption and minerals were freely exchanged between the magma batches. Combining the results of the geochemical investigations on magma end-members with geophysical and geological data, we develop the following scenario. In stage 1, a parental, less differentiated magma rose into the middle crust, and evolved through combined crustal assimilation and crystal fractionation. In stage 2, the differentiated magma rose to shallower depth, fed the pre-Campanian Ignimbrite activity and evolved by further open-system processes into the most-evolved and most-radiogenic Campanian Ignimbrite end-member magma. In stage 3, new trachytic magma, isotopically distinct from the pre-Campanian Ignimbrite magmas, rose from ca. 6 km to shallower depth, recharged the most-evolved pre-Campanian Ignimbrite magma chamber, and formed the large and stratified Campanian Ignimbrite magmatic system. During the course of the Campanian Ignimbrite eruption, the two layers were tapped separately and/or simultaneously, and gave rise to the range of chemical and isotopic values displayed by the Campanian Ignimbrite pumices, glasses and minerals.  相似文献   

15.
Lead isotopic measurements were made on Andean igneous rocks of Jurassic to Recent age in Moquegua and Tacna Departments, southernmost Peru, to clarify the petrogenesis of the rocks and, in particular, to investigate the effect of crustal thickness on rock composition. This location in the Cordillera Occidental is ideal for such a study because the ca. 2 Ga Precambrian basement rocks (Arequipa massif) have a distinct Pb isotopic signature which is an excellent tracer of crustal interaction, and because geomorphological research has shown that the continental crust was here thickened drastically in the later Tertiary.Seven samples of quartz diorites and granodiorites from the Ilo and Toquepala intrusive complexes, and seven samples of Toquepala Group subaerial volcanics were analyzed for Pb isotopic compositions. The plutonic rocks range in age from Jurassic to Eocene; the volcanic rocks are all Late Cretaceous to Eocene. With one exception, the Pb isotopic ratios are in the ranges 206Pb/204Pb= 18.52–18.75, 207Pb/204Pb= 15.58–15.65, and 208Pb/204Pb= 38.53–38.74. The data reflect very little or no interaction with old continental material of the Arequipa massif type.Lead from four Miocene Huaylillas Formation ash-flow tuffs, two Pliocene Capillune Formation andesites and five Quaternary Barroso Group andesites has lower 206Pb/204Pb than that in the pre-Miocene rocks, but relatively high 207Pb/204Pb and 208Pb/204Pb (206Pb/204Pb= 18.16–18.30, 207Pb/204Pb= 15.55–15.63, 208Pb/204Pb= 38.45–38.90). Tilton and Barreiro [9] have shown that contamination by Arequipa massif granulites can explain the isotopic composition of the Barosso Group lavas, and the new data demonstrate that this effect is evident, to varying degrees, in all the analysed Neogene volcanic rocks. The initial incorporation of such basement material into the magma coincided with the Early Miocene uplift of this segment of the Cordillera Occidental [32], and thus with the creation of a thick crustal root. The data strongly imply a relationship between crustal thickness and degree of crustal contamination of magmas in this area, but a rigorous relationship is not yet established.  相似文献   

16.
The Campi Flegrei (Campanian Region, Italy) experienced two cataclysmic caldera-forming eruptions which produced the Campanian Ignimbrite (39 ka, CI) and the Neapolitan Yellow Tuff (15 ka, NYT). We studied the minor eruptions before both these large events to understand magma chamber evolution leading towards such catastrophic eruptions. Major, trace element, and Sr and Nd isotope compositions of pre-Campanian Ignimbrite and pre-Neapolitan Yellow Tuff products define distinct geochemical groups, which are here interpreted as distinct magma batches. These batches do not show any transitional trend towards the CI and NYT eruptions. The CI and NYT systems are decoupled geochemically and isotopically. At least one of the pre-CI and one of the pre-NYT erupted magma batches qualifies as mixing endmembers for the large CI and NYT eruptions, and thus, must have been stored in reservoirs for some time to remain available for the CI and NYT eruptions. The least evolved, isotopically distinct magma compositions that are typical of the last phases of the NYT and CI eruptions did not occur before caldera-forming events. Based on the new data, we propose the following scenario: Multiple magma chambers with distinct compositions existed below the Campi Flegrei before the CI and NYT eruptions and remained generally separated for some time unless new magma was recharged. In each case, one of the residing magma reservoirs was recharged by a new large-volume magma input of intermediate composition from a deeper differentiating magma reservoir. This may have triggered the coalescence of the previously separated reservoirs into one large chamber which fed the cataclysmic caldera-forming eruption. Large magma chambers in the Campi Flegrei may therefore be ephemeral features, interrupted by periods of evolution in individual, separated magma reservoirs.  相似文献   

17.
Volcanic and hypabyssal rocks ranging in age from 12 to 3 Ma from the Fernando de Noronha archipelago in the western equatorial Atlantic Ocean can generally be divided into two age-compositional groups that have variable and distinct isotopic compositions. Predominantly older alkali basalts and trachytes are generally characterized by more radiogenic Sr-isotopic (87Sr/86Sr= 0.70457–0.70485) compositions and less radiogenic Nd-isotopic (143/Nd144Nd= 0.51271–0.51281) and Pb-isotopic (206Pb/204Pb= 19.132–19.282) compositions relative to the generally younger, more alkaline Si-undersaturated rocks which include nephelinites, ankaratrites, and melilitites (87Sr/86Sr= 0.70365–0.70418,143Nd/144Nd= 0.51277–0.51290,206Pb/204Pb= 19.317–19.565). These variations suggest the influence of at least two separate components in the source(s) of both series. One component is characterized by highRb/Sr and low μ, possibly derived from delaminated subcontinental lithosphere, whereas the other has high μ and lowRb/Sr similar to the source of St. Helena lavas. A third component is suggested by correlated compositions in the latest alkaline, Si-undersaturated lavas, and this component may be derived from depleted mantle. These isotopic variations in conjunction with the generally increasing degree of alkalinity with time are consistent with the temporal depletion of a low-μ, highRb/Sr component and increasing contributions from a high-μ component in the sources of the volanic rocks of Fernando de Noronha.  相似文献   

18.
The lithological and compositional characteristics of eighteen different pyroclastic deposits of Campanian origin, dated between 125 cal ky BP and 22 cal ky BP, were described. The pyroclastic deposits were correlated among different outcrops mainly located on the Apennine slopes that border the southern Campanian Plain. They were grouped in two main stratigraphic and chronologic intervals of regional significance: a) between Pomici di Base (22.03 cal ky BP; Somma–Vesuvius) and Campanian Ignimbrite (39 cal ky BP; Campi Flegrei) eruptions; and b) older than Campanian Ignimbrite eruption. Three new 14C AMS datings support the proposed correlations. Six eruptions were attributed to the Pomici di Base-Campanian Ignimbrite stratigraphic interval, while twelve eruptions are older than Campanian Ignimbrite. Of the studied deposits two originated from Ischia island, five are related to Campi Flegrei, and three to Somma–Vesuvius. Two eruptions have an uncertain correlation with Somma–Vesuvius or Campi Flegrei, while six eruptions remain of uncertain source. Minimum volumes of five eruptions were assessed, ranging between 0.5 km3 and 4 km3. Two of the studied deposits were correlated with Y-3 and X-5 tephra layers, which are widely dispersed in the central Mediterranean area. The new stratigraphic and chronologic data provide an upgraded chrono-stratigraphy for the explosive activity of Neapolitan volcanoes in the period between 125 and 22 cal ky BP.  相似文献   

19.
This paper reports geochemical and Pb-Sr-Nd isotopic compositions of the Indosinian Yangba (215 Ma),Nanyili (225 Ma) and Mopi granitoids from the Bikou block of the northwestern margin of the Yangtze plate. These granitoids are enriched in Al (Al2O3:14.56%―16.48%) and Sr (352 μg/g―1047 μg/g),and depleted in Y (<16 μg/g) and HREE (e.g. Yb<1.61 μg/g),resulting in high Sr/Y (36.3―150) and (La/Yb)N (7.8―36.3) ratios and strongly fractionationed REE patterns. The Indosinian granotoids show initial Sr isotopic ratios (ISr) from 0.70419 to 70752,εNd(t) values from-3.1 to -8.5,and initial Pb isotopic ratios 206Pb/204Pb=17.891-18.250,207Pb/204Pb=15.494-15.575,and 208Pb/204Pb=37.788-38.335. Their geochemi-cal signatures indicate that the granitoids are adakitic. However,they are distinct from some adakites,generated by partial melting of subducted oceanic slab and/or underplated basaltic lower crust,be-cause they have high K (K2O: 1.49%―3.84%) and evolved Nd isotopic compositions,with older Nd iso-topic model ages (TDM=1.06―1.83 Ga). Geochemical and Sr-Nd isotopic compositions suggest that the magmas of the Insoninian adakitic rocks in the Bikou block were derived from partial melting of thick-ened basaltic lower crust. Combined with regional analyses,a lithospheric delamination model after collision between the North China and South China plates can account for the Indosinian adakitic magma generation. On the other hand,based on the Pb-Sr-Nd isotopic probing to the magma sources of the adakitic rocks,it is suggested that there is an unexposed continent-type basement under the exposed Bikou Group volcanic rocks. This can constrain on the Bikou Group volcanic rocks not to be MORB-or OIB-type.  相似文献   

20.
Volcanological analysis of the 10 000 yr –1538 explosive activity at Campi Flegrei shows that the most common explosive eruptions are characterized by the emplacement of flow or surge deposits, originating from the interaction between magma and shallow and/or sea water. The minimum volumes of pyroclastic products range between 0.04 and 0.7 km3; the proximal areas covered by these products range from 3–4 to 40–50 km2. The pyroclastic flow and surge deposits occurring inside the caldera have been strongly controlled by pre-existent morphology; because of this, the area of present Napoli city was blanketed by approximately 5 m of pyroclastic deposits, during the last 5000 yr.Previous analysis suggests that the presence of even very low topographic obstacles may influence pyroclastic density current run out such that future eruptive deposits would mainly be confined inside the caldera rim. We suggest that a future eruption at Campi Flegrei would not seriously involve the urbanized area of Napoli city located on the hills. On the contrary, the plains located on the eastern side of the caldera (Fuorigrotta, Bagnoli) would be the most damaged area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号